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THE UNION OF FLAT 0*-l)-BALLS IS FLAT IN Rn 

BY ROBION C. KIRBY1 
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THEOREM.2 Let jSJ""*1 and jS}""1 be two locally flat (n-l)-balls in Rn 

with /3inj82 = 9j3indj32=:=j3n~~2, where j3n~*2 is an (n—2)-ball which is 
locally flat in dfii and d/32. Then fiiUfii is aflat (n —I)-ball in Rn. 

This result has been announced by Cernavskiï [l], but only for 
n è 5 since his outlined proof uses engulfing. Our proof avoids engulf­
ing and works for all n; a thorough knowledge of Cantrell and 
Lacher's version (see [2, §§4 and 5]) of Cernavskifs theorem is 
necessary to understand our proof. 

We also have another proof of the following corollary which ap­
pears in [4]. 

COROLLARY. Let g : .Mn"~1-*JVn be an imbedding of an (n — l)-manifold 
into an n-manifold which is locally flat except on a set E. If n>3, 
then E contains no isolated points (see [3] for the same result when M 
and N are spheres). 

PROOF. Let C be a neighborhood of an isolated point pin M which 
is homeomorphic to an (» — l)-ball, with g locally flat on C—p. Then 
split C into (n-~ l)-balls C\ and Cz so that C== CxUd and C\C\& is an 
(w-~2)-ball containing p. g is locally flat on C\ and C2 except at the 
point p on their boundaries. Then, since n> 3, g is flat on all of C% and 
C2 by [5], It follows from the theorem that C1UC2 » C is flat, so E has 
no isolated points. 

1 Research supported by NSF Grant 6530. 
2 Added in proof. Cernavskiï has independently proven this theorem by similar 

methods. 
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Let Rn be Euclidean w-space, Bn be the unit w-ball, and Rk be im­
bedded in R» as i?* = {xERn\xk+1= • . . - x n = 0}. We will coordi-
natize i?" by using Rn = Rn~2XR2 with polar coordinates on R2. Thus 
points of Rn will be triples (s, r, 0) with sG^""2, f èO, and 0£R and 
with the convention that (0, r, 0) is a point on the positive #n-i-axis 
and (0, r, TT/2) is a point on the positive #n-axis. Let #*= {(z, r, 0) 
ERn\0=<j>} and D^H^r\B\ Note that DJUD***B"-1 and 
DTr\Do~B»-\ Let TF(0i, ft) be the wedge {(0, r, 0)|0i^0g02} and 
l^(0i, 02) = TF(0i, 02)n£». 

PROOF OF THEOREM. Suppose ft and ft are given by imbeddings 
/ i : DX-*R» and/2 : D0->Rn. Since ]8W~2 is locally flat in 5ft and ôft, 
the closures of ôft-ft*-2 and ôft--j3n~2 are homeomorphic to (n-1) -
balls. Then we may assume that fi(D1r)r\f2(Do)=f1(B

n-2)^f2(B
n-2) 

Since locally flat imbeddings of balls are flat, f% and f2 extend to 
imbeddings of Rn into i?w (still called/i and ƒ»). We can require that 
the extensions are chosen so that fiÇffr)r\f2(Do) ==&»-* and/2(J3W) 
Cfi(Rn). Then it suffices to show that Dv\Jfrxf2{D^) is locally flat. 
Le t /^ / r 1 / . . 

Since f(D0)r\HT~Bn-2
f we can assume that ƒ (Z>0) C ^ (0 , TT/4) by 

rotating/(Z)0) around i?w~2 and away from H9 while fixing Hr. Then, 
in the coordinates of f(Bn), we can rotate ƒ (Z?r) close to f(D0), so we 
may as well assume that ƒ(2?,) C W(0, TT/4) and lies between ffW4 

and/(£>0) (see Figure 1). 
Let h Rn~int Ho-*Rn~mt W(0, TT/2) be the obvious homeo-

morphism which takes the wedge W(0, 7r)~int H0 onto W(w/2t IT) 
- i n t jErx/2 and fixes int W(r, 2ir). The set W(0, ir)r\f(Bn) is separated 

hf(Bn-D1T/uBn"'2) 

FIGURE 1 FIGURE 2 
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into two sets by f(Dv/2); let T denote the set containing ƒ (Z)0). Then 
(see Figure 2) define an imbedding h: f(Bn-DrnUBn~2)->R* by 

*(ƒ(*)) = ƒ(*) i f / ( * ) 6 2\ 

= *ƒ(*) if ƒ 0*0 C r. 

To ensure that A is an imbedding it may be necessary to trim away 
part of ƒ(£»), still leaving a * ball-neighborhood " of /(U0) (in Figure 3, 
restricting to the dotted ball would eliminate the annoying feelers) 
Note that hf=f on D0 and hf(DT) C W(T/2, IT). 

We need to extend hf\ ffî(ir, 2ir) to an imbedding of Bn into R\ 
We can assume that for some e > 0 , f(D2r^e)CW(0, ir/2), so then 
hf=f on -D2T-«. Let gi be the homeomorphism of 5W—JDx/2U£n-2 

which fixes points outside T^(3TT/4, 2TT) and moves D 2 f H to £>„.. Let g2: 
¥ ( ^ ( 3 T T / 4 , 27r-€))^fe/(llr(37r/4, TT)) be the homeomorphism defined 
by gi*=hfgi(hf)-K Now define an imbedding g:/(TF(0, 27r -c ) -» i^ by 

«(*) = ft(«) if * G A/(lP(3ir/4, 2TT - e)), 

= x otherwise. 

To make sure that g is well defined, it may be necessary to again shrink 
f(B») towards Bn~*so that int / ( ^ ( O , 2ir-€))na*f(lP(3ir/4, 2*—e)) 
Chf(DZir/i). Let i : JF(0, ir)->l^(0, 2ir-€) and note tha tg / ï = /*/on Z)T. 
Then (see Figure 4), we can piece together gfi and &ƒ to get an im­
bedding F: Bn->Rn; specifically, let 

F(x) **gfi(x) iîxE ^ ( 0 , T T ) , 

- *ƒ(*) if x G TF(TT, 2T) . 

F = / on D0i so F ( D o ) C ^ ( ~ 7 r / 2 , ir/2), and F(Dv)~hf(Dr) 
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CW(T/2, 3TT/2). Thus F{B«~l) is "transverse" to H*I%\JHUI%, and 
that is the key to the proof. I t allows us to find an isotopy making 
F(De) tangent to H$ at Bn~2 for all 0. This isotopy is constructed in 
the latter part of the proof of Lemma 5.2 of [2], Then a homeomor-
phism of Rn can be constructed which fixes Dr and takes F(Do) to D0 

(see the proof of Theorem 6.1 in [2]). Thus (i?n, j3iUj32) is pairwise 
homeomorphic to (Rn, Dr\JDo), finishing the proof. 
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