REFERENCES - 1. G. Brauer, Research Problem: Sets of convergence of exponential series, Bull. Amer. Math. Soc. 72 (1966), p. 470. - 2. L. Gillman and M. Jerison, Rings of continuous functions, Van Nostrand, New York, 1960. - 3. N. Dunford and J. T. Schwartz, Linear operators. I, Interscience, New York, 1958. - 4. V. M. Darevsky, On intrinsically perfect methods of summation, Bull. Acad. Sci. URSS Ser. Mat. (Izv. Akad. Nauk SSSR Ser. Mat.) 10 (1946), 97-104. University of Minnesota ## THE UNION OF FLAT (n-1)-BALLS IS FLAT IN \mathbb{R}^n BY ROBION C. KIRBY1 Communicated by Eldon Dyer, December 15, 1967 THEOREM.² Let β_1^{n-1} and β_2^{n-1} be two locally flat (n-1)-balls in \mathbb{R}^n with $\beta_1 \cap \beta_2 = \partial \beta_1 \cap \partial \beta_2 = \beta^{n-2}$, where β^{n-2} is an (n-2)-ball which is locally flat in $\partial \beta_1$ and $\partial \beta_2$. Then $\beta_1 \cup \beta_2$ is a flat (n-1)-ball in \mathbb{R}^n . This result has been announced by Černavskii [1], but only for $n \ge 5$ since his outlined proof uses engulfing. Our proof avoids engulfing and works for all n; a thorough knowledge of Cantrell and Lacher's version (see [2, §§4 and 5]) of Černavskii's theorem is necessary to understand our proof. We also have another proof of the following corollary which appears in [4]. COROLLARY. Let $g: M^{n-1} \rightarrow N^n$ be an imbedding of an (n-1)-manifold into an n-manifold which is locally flat except on a set E. If n>3, then E contains no isolated points (see [3] for the same result when M and N are spheres). PROOF. Let C be a neighborhood of an isolated point p in M which is homeomorphic to an (n-1)-ball, with g locally flat on C-p. Then split C into (n-1)-balls C_1 and C_2 so that $C = C_1 \cup C_2$ and $C_1 \cap C_2$ is an (n-2)-ball containing p. g is locally flat on C_1 and C_2 except at the point p on their boundaries. Then, since n > 3, g is flat on all of C_1 and C_2 by [5]. It follows from the theorem that $C_1 \cup C_2 = C$ is flat, so E has no isolated points. ¹ Research supported by NSF Grant 6530. ² Added in proof. Černavskii has independently proven this theorem by similar methods. Let R^n be Euclidean n-space, B^n be the unit n-ball, and R^k be imbedded in R^n as $R^k = \{x \in R^n | x_{k+1} = \cdots = x_n = 0\}$. We will coordinatize R^n by using $R^n = R^{n-2} \times R^2$ with polar coordinates on R^2 . Thus points of R^n will be triples (z, r, θ) with $z \in R^{n-2}$, $r \ge 0$, and $\theta \in R$ and with the convention that (0, r, 0) is a point on the positive x_{n-1} -axis and $(0, r, \pi/2)$ is a point on the positive x_n -axis. Let $H_{\phi} = \{(z, r, \theta) \in R^n | \theta = \phi\}$ and $D_{\phi} = H_{\phi} \cap B^n$. Note that $D_{\pi} \cup D_0 = B^{n-1}$ and $D_{\pi} \cap D_0 = B^{n-2}$. Let $W(\theta_1, \theta_2)$ be the wedge $\{(z, r, \theta) | \theta_1 \le \theta \le \theta_2\}$ and $\widetilde{W}(\theta_1, \theta_2) = W(\theta_1, \theta_2) \cap B^n$. PROOF OF THEOREM. Suppose β_1 and β_2 are given by imbeddings $f_1: D_\pi \to R^n$ and $f_2: D_0 \to R^n$. Since β^{n-2} is locally flat in $\partial \beta_1$ and $\partial \beta_2$, the closures of $\partial \beta_1 - \beta^{n-2}$ and $\partial \beta_2 - \beta^{n-2}$ are homeomorphic to (n-1)-balls. Then we may assume that $f_1(D_\pi) \cap f_2(D_0) = f_1(B^{n-2}) = f_2(B^{n-2}) = \beta^{n-2}$. Since locally flat imbeddings of balls are flat, f_1 and f_2 extend to imbeddings of R^n into R^n (still called f_1 and f_2). We can require that the extensions are chosen so that $f_1(H_\pi) \cap f_2(D_0) = \beta^{n-2}$ and $f_2(B^n) \cap f_1(R^n)$. Then it suffices to show that $D_\pi \cup f_1^{-1}f_2(D_0)$ is locally flat. Let $f = f_1^{-1}f_2$. Since $f(D_0) \cap H_{\pi} = B^{n-2}$, we can assume that $f(D_0) \subset W(0, \pi/4)$ by rotating $f(D_0)$ around R^{n-2} and away from H_{π} while fixing H_{π} . Then, in the coordinates of $f(B^n)$, we can rotate $f(D_{\pi})$ close to $f(D_0)$, so we may as well assume that $f(D_{\pi}) \subset W(0, \pi/4)$ and lies between $H_{\pi/4}$ and $f(D_0)$ (see Figure 1). Let $\tilde{h}: R^n - \text{int } H_0 \to R^n - \text{int } W(0, \pi/2)$ be the obvious homeomorphism which takes the wedge $W(0, \pi) - \text{int } H_0$ onto $W(\pi/2, \pi) - \text{int } H_{\pi/2}$ and fixes int $W(\pi, 2\pi)$. The set $W(0, \pi) \cap f(B^n)$ is separated FIGURE 1 FIGURE 2 into two sets by $f(D_{\pi/2})$; let T denote the set containing $f(D_0)$. Then (see Figure 2) define an imbedding $h: f(B^n - D_{\pi/2} \cup B^{n-2}) \to R^n$ by $$h(f(x)) = f(x)$$ if $f(x) \in T$, = $h(x)$ if $f(x) \notin T$. To ensure that h is an imbedding it may be necessary to trim away part of $f(B^n)$, still leaving a "ball-neighborhood" of $f(D_0)$ (in Figure 3, restricting to the dotted ball would eliminate the annoying feelers). Note that hf = f on D_0 and $hf(D_\pi) \subset W(\pi/2, \pi)$. We need to extend $hf|\tilde{W}(\pi, 2\pi)$ to an imbedding of B^n into R^n . We can assume that for some $\epsilon > 0$, $f(D_{2\pi-\epsilon}) \subset W(0, \pi/2)$, so then hf = f on $D_{2\pi-\epsilon}$. Let g_1 be the homeomorphism of $B^n - D_{\pi/2} \cup B^{n-2}$ which fixes points outside $\tilde{W}(3\pi/4, 2\pi)$ and moves $D_{2\pi-\epsilon}$ to D_{π} . Let g_2 : $hf(\tilde{W}(3\pi/4, 2\pi-\epsilon)) \to hf(\tilde{W}(3\pi/4, \pi))$ be the homeomorphism defined by $g_2 = hfg_1(hf)^{-1}$. Now define an imbedding $g: f(\tilde{W}(0, 2\pi-\epsilon) \to R^n)$ by $$g(x) = g_2(x)$$ if $x \in hf(\tilde{W}(3\pi/4, 2\pi - \epsilon))$, = x otherwise. To make sure that g is well defined, it may be necessary to again shrink $f(B^n)$ towards B^{n-2} so that int $f(\tilde{W}(0, 2\pi - \epsilon)) \cap \partial h f(\tilde{W}(3\pi/4, 2\pi - \epsilon)) \cap (h f(D_{3\pi/4}))$. Let $i : \tilde{W}(0, \pi) \to \tilde{W}(0, 2\pi - \epsilon)$ and note that g f i = h f on D_{π} . Then (see Figure 4), we can piece together g f i and h f to get an imbedding $F : B^n \to R^n$; specifically, let $$F(x) = gfi(x) \quad \text{if } x \in \widetilde{W}(0, \pi),$$ = $hf(x) \quad \text{if } x \in \widetilde{W}(\pi, 2\pi).$ F=f on D_0 , so $F(D_0) \subset W(-\pi/2, \pi/2)$, and $F(D_\pi) = hf(D_\pi)$ $\subset W(\pi/2, 3\pi/2)$. Thus $F(B^{n-1})$ is "transverse" to $H_{\pi/2} \cup H_{3\pi/2}$, and that is the key to the proof. It allows us to find an isotopy making $F(D_{\theta})$ tangent to H_{θ} at B^{n-2} for all θ . This isotopy is constructed in the latter part of the proof of Lemma 5.2 of [2]. Then a homeomorphism of R^n can be constructed which fixes D_{π} and takes $F(D_0)$ to D_0 (see the proof of Theorem 6.1 in [2]). Thus $(R^n, \beta_1 \cup \beta_2)$ is pairwise homeomorphic to $(R^n, D_{\pi} \cup D_0)$, finishing the proof. ## REFERENCES - 1. A. V. Černavskiĭ, Singular points of topological imbeddings of manifolds and the union of locally flat cells, Soviet Math. Dokl. 7 (1966), 433-436. - 2. J. C. Cantrell and R. C. Lacher, Some conditions for manifolds to be locally flat, (to appear). - 3. T. Hutchinson, Two-point spheres are flat, Notices Amer. Math. Soc. 14 (1967), 364, Abstract 644-18. - 4. R. C. Kirby, On the set of non-locally flat points of a submanifold of co-dimension one, Ann. of Math. - 5. R. C. Lacher, Locally flat strings and half-strings, Proc. Amer. Math. Soc. 18 (1967), 299-304. University of California, Los Angeles