SOME REMARKS ON l-l SUMMABILITY

BY H. I. BROWN AND D. R. KERR

Communicated by Everett Pitcher, December 5, 1967

Introduction. If x is a complex number sequence and $A = (a_{nk})$ is an infinite matrix of complex numbers, then A determines a transformation of x into the sequence Ax, where $(Ax)_n = \sum_k a_{nk}x_k$. Let l represent the set of complex sequences with finite norm $||x|| = \sum_k |x_k|$. If $Ax \in l$ whenever $x \in l$, then A is called an l-l method of summation. Let l_A denote the summability field of A, that is, the set of all sequences x such that $Ax \in l$. In [3] an attempt is made to characterize those l-l methods A for which $l_A = l$. In what follows we give counterexamples to Theorems 7 and 9 of [3], announce several positive results related to these theorems, and generalize Theorem 5 of [3] for the class of factorable l-l methods.

1. Terminology and notation. Knopp and Lorentz [4] show that the matrix A is an l-l method if and only if $||A|| < \infty$, where $||A|| = \sup_k \sum_n |a_{nk}|$. ||A|| is the norm of A as an operator from l to l. It is known that l_A inherits a locally convex topology making it an FK space. Moreover, each $f \in l_A$, the dual space of l_A , has the representation

$$f(x) = \sum_{n} t_{n} \sum_{k} a_{nk} x_{k} + \sum_{k} \beta_{k} x_{k}$$

for some bounded sequences t and β . An l-l method A is reversible if the equation y=Ax has a unique solution x in l_A for each y in l. An l-l method A is called perfect if l is dense in l_A (equivalently, if the set $\Delta = \{e^k : k=1, 2, \cdots\}$, where e^k is the sequence having a one in the kth coordinate and zeros elsewhere, is fundamental in l_A). Let m_r denote the set of all sequences x with finite norm $||x|| = \sup_m |\sum_{k=1}^m x_k|$. In [3], an l-l method A is called 0-perfect if every sequence x in $m_r \cap l_A$ is a limit point in l_A of the set l. Concerning these concepts, Jürimäe makes the following two statements. (In Statement B he omits the assumption of reversibility.)

STATEMENT A [3, THEOREM 7]. If A is an 0-perfect l-l method with $l_A \subseteq m_r$, then $l_A = l$.

STATEMENT B [3, THEOREM 9]. A reversible 0-perfect l-l method B sums a sequence $x \in l$ if and only if

(1)
$$\sup_{m} \sup_{k} \left| \sum_{n=1}^{m} b'_{nk} \right| = \infty,$$

where $B' = (b'_{nk})$ is the two-sided reciprocal for B. (Given a matrix BC is a two-sided reciprocal for B if BC = CB = I, where I is the identity matrix. Right and left reciprocals are defined analogously.)

2. Examples. Let $A = (a_{nk})$ be defined by the set of equations

$$a_{1k} = 1$$
 $(k = 1, 2, \cdots),$
 $a_{nk} = 0$ otherwise.

A is an 0-perfect l-l method (indeed, A is perfect; see [2, p. 361]). Moreover, $l_A = c_r$, where c_r is the set of all sequences x for which the series $\sum_k x_k$ converges. Hence, for 0-perfect l-l methods, the condition $l_A \subseteq m_r$ is clearly not sufficient for $l_A = l$ as Statement A asserts.

Next let $B = (b_{nk})$ be given by the set of equations

$$b_{1k} = 1$$
 $(k = 1, 2, \cdots),$
 $b_{nn} = b_{n,n+1} = 1$ $(n = 2, 3, \cdots),$
 $b_{nk} = 0$ otherwise.

B is one-to-one on l_A because $\{\alpha(-1)^k\} \in l_A \subset c_r$ if and only if $\alpha = 0$. Furthermore, given $y \in l$ choose $x_k = \sum_{i=k}^{\infty} (-1)^{i-k} y_i$ for $k = 2, 3, \cdots$, and $x_1 = y_1 - \sum_{k=2}^{\infty} \sum_{i=k}^{\infty} (-1)^{i-k} y_i$. Then Bx = y so that B is onto l. Since the zero sequence is the only bounded left annihilator of B, B is perfect [2, Theorem 2]. Its two-sided reciprocal $B' = (b'_{nk})$ is given by the set of equations

$$b'_{11} = 1,$$
 $b'_{1,2k} = -1$ $(k = 1, 2, \cdots),$
 $b'_{1,2k+1} = 0$ $(k = 1, 2, \cdots),$
 $b'_{n,n+k-1} = (-1)^{k-1}$ $(k \ge 1, n \ge 2),$
 $b'_{nk} = 0$ otherwise.

Clearly, B' does not satisfy Equation (1), yet l_B properly contains l since $\{(-1)^k/k\} \subset l_B$; hence, for a reversible 0-perfect l-l method, Equation (1) is not necessary for $l_A = l$ as Statement B asserts.

3. Comments and results concerning $l_A = l$. The hypotheses of each of Statements A and B do imply that $l_A \subseteq c_r$. This is not surprising since these hypotheses seem to be more natural for $c_r - c_r$ methods than for l-l methods.

Using a result of Banach [1, p. 49], one can easily show that every reversible l-l method has a unique two-sided reciprocal which is its inverse as an operator from l_A to l. This result leads immediately to the following theorem.

THEOREM 1. Let A be a reversible l-l method. Then $l_A = l$ if and only if its two-sided reciprocal is an l-l method.

Indeed, since $A'(l) = l_A$, $l_A = l$ if and only if A' is an l - l method. Using the techniques of FK spaces (see, for example, [5]) one gets the following results concerning left reciprocals.

LEMMA 1. If the l-l method A has a left l-l reciprocal B, then l is closed in l_A .

PROOF. For $x \in l$, $||x|| = ||(BA)x|| \le ||B|| \cdot ||Ax||$, where $||B|| < \infty$ since B is l-l. Therefore, the l_A topology on l is stronger than the usual topology on l.

From this lemma we get the following result.

THEOREM 2. Let A be a reversible l-l method. Then $l_A = l$ if and only if A has a unique left l-l reciprocal.

PROOF. If A has a left l-l reciprocal, it is unique if and only if the only bounded sequence which annihilates A from the left is the zero sequence. (For, if one can choose a nonzero bounded sequence t such that tA = 0, then adding t to any row yields a second left l-l reciprocal. Conversely, if A has two left l-l reciprocals, their difference yields a nonzero bounded sequence which annihilates A from the left.) If $l_A = l$, 0 is the only bounded left annihilator of A [2, Theorem 2, p. 359], and, by Theorem 1, A has a left l-l reciprocal, which is therefore unique. On the other hand, if A has a left l-l reciprocal then, by Lemma 1, l is closed in l_A , and if this reciprocal is unique l is dense in l_A [2, Theorem 2, p. 359].

In a paper being prepared, the problem of $l_A = l$ will be further investigated.

4. Factorable methods. A matrix $A = (a_{nk})$ is factorable if $a_{nk} = a_n b_k$ for $k \le n$ and 0 for k > n. Let E be an FK space containing the set of all finite sequences. An l-l method A will be called E-perfect if Δ is fundamental in $E \cap l_A$, where the closure is taken in the l_A -topology. For example, A is 0-perfect if and only if A is m_r -perfect. The following result is proved in [3, Theorem 5].

THEOREM. Let A be a reversible l-l method. If for every bounded sequence t the condition tA=0 implies the condition

$$\lim_{S} \sum_{k} \left| \sum_{n=1}^{S} (a_{nk} - a_{n,k+1}) t_{n} \right| = 0,$$

then A is 0-perfect.

We now show that we may drop the assumption of reversibility for factorable l-l methods.

For any sequence space E, let E^* denote the set of sequences t such that $\sum_k t_k x_k$ converges for every $x \in E$.

THEOREM 3. Let A be a factorable l-l method with $a \in l$. If $b \in E^*$, then A is E-perfect.

PROOF. Let $f \in l'_A$ such that f = 0 on l. Then there exists a bounded sequence t such that for all $x \in l_A$,

$$f(x) = \sum_{n=1}^{\infty} t_n a_n \sum_{k=1}^{n} b_k x_k - \sum_{k=1}^{\infty} b_k x_k \sum_{n=k}^{\infty} t_n a_n.$$

For each $h=1, 2, \cdots$, let

$$F_h(x) = \sum_{n=1}^{\infty} t_n a_n \sum_{k=1}^{n} b_k x_k - \sum_{k=1}^{h} b_k x_k \sum_{n=k}^{\infty} t_n a_n.$$

Then $\lim_{h} F_h(x) = f(x)$ for each $x \in l_A$.

Now let $\epsilon > 0$ be given and restrict x to $E \cap l_A$. Then

$$|F_h(x)| = \left|\sum_{n=h+1}^{\infty} t_n a_n \sum_{k=h+1}^n b_k x_k\right| \le \sum_{n=h+1}^{\infty} |t_n a_n| \cdot \left|\sum_{k=h+1}^n b_k x_k\right|.$$

Let $M = \sum_{n=1}^{\infty} |t_n a_n|$. If M = 0, $|F_h(x)| = 0$ for each h. If $M \neq 0$, choose H so that for $h \geq H$, $|\sum_{k=h+1}^{n} b_k x_k| < \epsilon/M$ for all $n \geq h+1$. Then for $h \geq H$, $|F_h(x)| < \epsilon$. It follows that f vanishes on $E \cap l_A$, so that A is E-perfect.

That the converse of Theorem 3 is false follows by letting E = s, the FK space of all sequences, and letting A be given by $a_n = 2^{-n}$ and $b_k = 2^k$. $l_A = l$ since the two-sided reciprocal for A is l - l and yet b is not in s^* .

BIBLIOGRAPHY

- S. Banach, Théorie des opérations linéaries, Monografje Matematyczne, Warsaw. 1932.
- 2. H. I. Brown and V. F. Cowling, On consistency of l-l methods of summation, Michigan Math. J. 12 (1965), 357-362.
- 3. E. Jürimäe, Certain questions of inclusion and compatibility of absolute summability methods, Tartu Riikl. Ül. Toimetised 150 (1964), 132-143. (Russian)
- 4. K. Knopp and G. G. Lorentz, Beiträge zur absoluten Limitierung, Arch. Math. 2 (1949), 10-16.
 - 5. A. Wilansky, Functional analysis, Blaisdell, New York, 1964.

STATE UNIVERSITY OF NEW YORK AT ALBANY