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Introduction. If x is a complex number sequence and 4 =(a) is
an infinite matrix of complex numbers, then 4 determines a trans-
formation of x into the sequence Ax, where (4x)n= 2 _i @nrr. Let [
represent the set of complex sequences with finite norm ||x|| = > x| -
If AxEl whenever x &/, then A is called an ! —] method of summation.
Let l4 denote the summability field of 4, that is, the set of all se-
quences #x such that Ax €. In [3] an attempt is made to characterize
those ! —1 methods 4 for which l4=1. In what follows we give coun-
terexamples to Theorems 7 and 9 of [3], announce several positive
results related to these theorems, and generalize Theorem 5 of [3]
for the class of factorable /—! methods.

1. Terminology and notation. Knopp and Lorentz [4] show that
the matrix 4 is an /—! method if and only if ||4]| <, where ||4]|
=sup; J_u|@m|. [|4] is the norm of 4 as an operator from ! to /.
It is known that I, inherits a locally convex topology making it an
FK space. Moreover, each f&l4] the dual space of /4, has the repre-
sentation
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for some bounded sequences ¢ and 3. An I—! method 4 is reversible
if the equation y = Ax has a unique solution x in /4 for each y in . An
!—1 method 4 is called perfect if / is dense in 4 (equivalently, if the
set A= { ek k=1,2,-- }, where ¢* is the sequence having a one in
the kth coordinate and zeros elsewhere, is fundamental in I,). Let m,
denote the set of all sequences x with finite norm ||#|| =supm| 2 P12s] .
In [3], an I~ method 4 is called 0-perfect if every sequence x in
m,Ml4 is a limit point in Z4 of the set /. Concerning these concepts,
Jirimie makes the following two statements. (In Statement B he
omits the assumption of reversibility.)

STATEMENT A [3, TuEOREM 7]. If 4 is an O-perfect }—]} method
with 1,Cm,, then l4=1.

STATEMENT B [3, THEOREM 9]. A reversible 0-perfect /—/ method
B sums a sequence x &/ if and only if
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where B’=(b;;) is the two-sided reciprocal for B. (Given a matrix
B( is a two-sided reciprocal for B if BC=CB =1, where I is the iden-
tity matrix. Right and left reciprocals are defined analogously.)

2. Examples. Let A =(a.) be defined by the set of equations
an =1 (k=1,2,--+),
Gy =0 otherwise.

A is an 0O-perfect /—! method (indeed, 4 is perfect; see [2, p. 361]).

Moreover, 14 =c,, where ¢, is the set of all sequences x for which the

series 2 x; converges. Hence, for 0-perfect —I methods, the condi-

tion 1, &m, is clearly not sufficient for /4, =1 as Statement A asserts.
Next let B= (bax) be given by the set of equations

b =1 (k=1,2,--+),
bm)=bn,ﬂ+1=1 (n=2’3,...),
by =0 otherwise.

B is one-to-one on 4 because {a(—1)*} €l Ce, if and only if a=0.
Furthermore, given y &l choose ;= 2 sop(—1)+*y, fork=2,3, - - -,
and x1=y1— > 1z 2 res(—1)"*y; Then Bx=y so that B is onto /.
Since the zero sequence is the only bounded left annihilator of B, B is
perfect [2, Theorem 2]. Its two-sided reciprocal B’= (b)) is given by
the set of equations

b =1,

Ba=—1 (E=1,2---),
b1241 =0 (k=1,2,-:"),
bomipr = (=11 (k21,02 2),

bk = 0 otherwise.

Clearly, B’ does not satisfy Equation (1), yet I3 properly contains !
since {(—l)k/k} Elp; hence, for a reversible 0-perfect —I/ method,
Equation (1) is not necessary for I, =1 as Statement B asserts.

3. Comments and results concerning /4 =/ The hypotheses of
each of Statements A and B do imply that 4 Cc,. This is not surpris-
ing since these hypotheses seem to be more natural for ¢, ~—c¢, methods
than for /—I methods.

Using a result of Banach [1, p. 49], one can easily show that every
reversible ]—] method has a unique two-sided reciprocal which is its
inverse as an operator from l4 to J, This result leads immediately to
the following theorem,
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THEOREM 1. Let A be a reversible I —1 method. Then la=1if and only
if its two-sided reciprocal is an 1—1 method.

Indeed, since 4’(!) =14, la=1if and only if 4’ is an ! —I method.
Using the techniques of FK spaces (see, for example, [5]) one gets
the following results concerning left reciprocals.

LeMMA 1. If the I—1 method A has a left 1—1 reciprocal B, then 1 is
closed in 1.

Proor. For x €1, |[«]| =|| (B4)x|| < || B|| -]|4«]|, where || B|| < « since
B is l—1. Therefore, the I, topology on I is stronger than the usual
topology on /.

From this lemma we get the following result.

THEOREM 2. Let A be a reversible I —1 method. Then l4=1if and only
if A has a unique left 1—1 reciprocal.

PRroOF. If 4 has a left I—1 reciprocal, it is unique if and only if the
only bounded sequence which annihilates 4 from the left is the zero
sequence. (For, if one can choose a nonzero bounded sequence ¢ such
that ¢4 =0, then adding ¢ to any row yields a second left /—! recipro-
cal. Conversely, if 4 has two left [—I] reciprocals, their difference
yields a nonzero bounded sequence which annihilates 4 from the
left.) If 14 =1, 0 is the only bounded left annihilator of 4 [2, Theorem
2, p. 359], and, by Theorem 1, 4 has a left !—1 reciprocal, which is
therefore unique. On the other hand, if 4 has a left /—/ reciprocal
then, by Lemma 1, / is closed in 14, and if this reciprocal is unique !
is dense in I4 [2, Theorem 2, p. 359].

In a paper being prepared, the problem of /4 =1 will be further in-
vestigated.

4, Factorable methods. A matrix 4 =(a.) is factorable if @
=a,b;, for k=<n and O for £>n. Let E be an FK space containing the
set of all finite sequences. An /—! method 4 will be called E-perfect
if A is fundamental in EN4, where the closure is taken in the l4-
topology. For example, 4 is O-perfect if and only if 4 is m,-perfect.
The following result is proved in [3, Theorem 5].

THEOREM. Let A be a reversible l—1 method. If for every bounded
sequence t the condition tA =0 implies the condition

38

li;n Z Z (anlp - an,b—H)tn =0,

k Ne=l

then A is 0-perfect.
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We now show that we may drop the assumption of reversibility
for factorable /—! methods.

For any sequence space E, let E* denote the set of sequences ¢
such that Y &, converges for every x €E.

THEOREM 3. Let A be a factorable I—1 method with a El. If bEE*,
then A is E-perfect.

ProoF. Let fE! 4 such that f=0o0n . Then there exists a bounded
sequence ¢ such that for all x&l4,

@) = D tnn 2 b — D, bty D tua.
nel k1 1 ne=k
For each h=1, 2, - - -, let
L) n h 0
Fh(x) = Z InGa Z buxy — Z by Z tnGn.
A==l kmal ko1 Nk

Then lim; Fi(x) =f(x) for each x&l4.
Now let €>0 be given and restrict x to EMI4. Then

|Fh(x)|= Z InGn Z bewr | = Z ‘tna'nl‘

na=h4-1 ke=h+-1 Ranht-1

> b

keah+-1

Let M= 2 2| taaa|. If M=0, | Fi(x)| =0 for each h. If M40, choose
H so that for k2 H, | D t.p41 bixs| <e/M for all n=h+1. Then for
h=H, |F;.(x)| <e. It follows that f vanishes on EMly, so that 4 is
E-perfect.

That the converse of Theorem 3 is false follows by letting E=s, the
FK space of all sequences, and letting 4 be given by @,=2"" and
by=2%. l4=1 since the two-sided reciprocal for 4 is I—! and yet b is
not in s*.
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