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In this note we state some results, mostly without proof, conce 
ing the comparison of integral inequalities of a certain type. As a?" 
cations of these results we can deduce from a unified source theor 
of approximation theory due to Jackson, Bernstein, and Zygn1 

comparison theorems for moduli of smoothness of different or 
and theorems of Hardy and Littlewood and of Zygmund conce p 

harmonic functions. Moreover, our results yield "inverse theor 
for arbitrary integral kernels which even for many classical ke 
(Fejér's, etc.) seem not to be known; thus we complete in some e 
tial respects a program outlined by P. L. Butzer in a series of P P 
[1], [2], [3] (see esp. [ l , p . 95 ] ) . # 

A preliminary version of this work giving further details m 
found in the author's mimeographed lecture notes [5J.1 

. s j-e^l' 
1.1. We denote by R the real line, by C the class of function» , 

bounded and uniformly continuous on R, and by <r a real finite 
measure on R satisfying cr(R) = 0. Define for ƒ £ C and # è ° 

(1) £>,(ƒ; u) = sup f fit - uv)da(v) 
teR I J 

and for / ^ 0 , 

(2) «,(/ ;Q = sup £,(ƒ; «). 

to zero*5 

I t is easily seen that D9(f; u) (and hence also œa(J; «)) tends t ^ 
w—»0. The primary purpose of this note is to compare (for yje c^' 
rate of decrease of these functions for different choices of *• 
Dff) co, the a-deviation and a-modulus of/, respectively. whe r e f 

1.2. EXAMPLES, (i) Take for <r the "binomial measure" P'yfo 
is a positive integer, i.e. j3r is the discrete measure with mass K ^ of 
at the point n (n = 0, 1, • - • , r). The cr-modulus is then the tn ^ ^ce 
smoothness of order r of the function ƒ ( [4, p. 47]). We write c*r 
of co/3r; coi is also called the modulus of continuity of/. ^to 

1 For full details see the author's forthcoming paper A Tauberion theo^ ^^M^ 
approximation theory in Acta Math. There a discussion of the £p~" ^ 
able cases is also given. 

* Cr,n here denotes r!/(w!(r—»)!). 
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(ii) Let Z G L ^ J R ) , fKdv~l (<fo = Lebesgue measure on R) and 

(3) d<r = dH - Kdv 

where dH denotes a unit mass at 2 = 0 ("Dirac measure"). In this case 
DoiSi ") = 11/~/xll, where X« l /«, the norm denotes supremum over J?, 
and/x is the "singular" convolution integral 

(4) ƒ*(/) = f f(t - —J K{v)dv = f ƒ(* - v)\KQii)dv. 

Thus, Z?, denotes the "error of approximation" (measured in the 
sup norm) to ƒ by a convolution integral depending in a familiar way 
upon a ("large") parameter X. 

1.3. Further conventions concerning terminology and notation. In 
what follows, we denote by W the normed ring of Fourier transforms 
S = & of finite measures a on R. By "Si divides 52" for S^E Wwe mean 
as usual that there is some SEW7such that S2 = SiS, and by "Si di­
vides S2 at Xo" we mean that there is an SÇzW such that S2(x) 
= Si(x)S(x) for all x in some neighborhood of x^. For S=&E:W we 
write ||S||TF to denote the total variation of <r. A feemeZ means an 
integrable function K on R such that fKdv = l. By jfx we always 
denote the function defined by K\(t)=\KÇkt). By * we denote the 
usual convolution product in L1(R)1 and by a slight abuse of notation 
we write Ê to denote the Fourier transform of the measure Kdv, 
i.e. the ordinary Fourier transform of K. A norm symbol not sub­
scripted by W refers always to the C-norm, i.e. the supremum over R. 

2.1. We begin with some rather trivial but none the less useful 
results, which also serve to motivate the later theorems. 

THEOREM 1. If &i divides &%, say &2s=àiS, and A—\\S\\w> we have for 
all f EC 

(1) Du(J;u) £AD9l(fiu). 

From this theorem we get (in view of the discussion in 2.1) : 

THEOREM 2. Let J, K be kernels such that 1—f divides 1 — Ê in W. 
Then, for every ƒ E C and every X > 0 

(2) ll/-tf**ol|£4/-(/*/oll 
where A is a constant depending only on the kernels ƒ, K. 

THEOREM 3. If J, K denote the Cauchy and Fejêr kernels (see [l]) 

(3) At\\f - (ƒ * Kx)\\ S \\f - (ƒ * /OH £ ^ | | / - (ƒ * tfOll 
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where Ai and A2 are numerical constants independent of X and ƒ. 

(3) may be said to express the equivalence of the Cauchy and Fejer 
kernels from the standpoint of sup-norm approximation theory. 

2.2. The main theorems. If £1 does not divide fa we cannot in gen­
eral expect an inequality of the type (1). We can, however, establish 
a weaker inequality under the weaker hypothesis of divisibility at 
tf = 0. 

THEOREM 4. If fa divides faatx — 0, then 

(4) D^uï&AJ^D^BVu) 
t'-0 

where A, B are constants depending only on ai, <r% and 6<1 is a positive 
constant depending only on 01. 

COROLLARY. If fa divides fa atx — 0, and f has a <ri-modulus which is 
0(ua) for some a>0, then the ^-modulus is also 0(ua). 

EXAMPLE. Choose (ri=j82 (see §1.2 above), dvi~dH.—Ldv, where 

L(t) •* 7r-i/2e-t
3 (Weierstrass kernel). 

Here fa(x) = (1 — e~ix)2, fa(x) = 1 — er*2/4. It is readily checked that £1 
divides fa at x = 0 (although not globally) hence by the Corollary we 
obtain the familiar result: a)2(f; u)~0(ua) implies \\f—(f * L\)\\ 
= 0(X~a:). Since in this case fa divides £1 (globally) the implication in 
the reverse direction is also true by Theorem 1 ; this gives the "satura­
tion class" for the Weierstrass kernel (see [l]). 

THEOREM 5. Let <r be any nonnull measure, a > 0 and suppose for 
somefÇzC, Da(f; u) ^Aua holds for u>0, where A is independent ofu. 
Then for every positive integer r, if p is a measure such that, $(x)/xr 

coincides with an element of W in some neighborhood of 0, 

D,(j\ t) £ {—^A MT if f < *, 

j («(il I log < I + 1 ) iff « a , 

( a B4 \ a 
Bz + )At iir> a, 

r — a/ 

where the Bi are constants depending only on a and p. 
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EXAMPLE. Specializing cr and p to be the measures /3m and #» of 
§1.2 gives a comparison theorem for moduli of smoothness of dif­
ferent orders, e.g. o)m(t) — 0(t) implies <ui(t) = 0(t log(l//)) (case 
r = a = l). 

Choosing da = dH~-Kdv (see 1.2) and p=j3r gives 

THEOREM 6. Let K be any Ll kernel, f EC and | | / - (f * üTx) 11 = 0(\~a), 
/feew cûrif; t) is large 0 of tr, ta log (1/7) or ta according as r<a, r=a, 
orr>a. 

REMARK. We emphasize that in Theorem 6 there is no hypothesis 
whatever about the kernel. Even for various special kernels (e.g. 
Fejér's) there seem to be almost no "inverse" theorems in the litera­
ture of the type of Theorem 6, except when the assumed degree of 
approximation is the "saturation" order (see [l]). 

It is easy to deduce from Theorem 5 also 

THEOREM 7. Suppose j8>0, m is a positive integer larger than /3, and 
K an m times differ entiable kernel with K^m)ELl(R). If f EC and the 
sup norm of the mth derivative off * K\ is OÇK&), then o)r(f; t) is large O 
of tr, tr log(l/t), or tm~~& according as r is less than, equal to, or greater 
than m—fi. 

EXAMPLES. Choosing K to be the Cauchy kernel, w = 1, r = 1 gives 
(re-interpreting ƒ * K\ as a harmonic function in the half-plane y>0 
where y = l/X): If U(t, y) is continuous for y^O and harmonic for 
y>0, and dU/dt is 0(y~fi) uniformly for tER, then U(t, 0) satisfies 
a Holder condition of order 1 —/3 (Hardy and Littlewood, cf. [6, 
p. 263]). The choice w = 2, j3=l, r = 2 gives: If d2U/dt2 is 0(y~l) 
uniformly for tER, then ƒ(/) = U(t, 0) satisfies co2(f; t)*=0{t) (this 
theorem, or rather the analogous version for functions harmonic in a 
circle, is due to Zygmund [6, p. 263]. Previous proofs used special 
properties of harmonic functions. 

3. It is easy to deduce Jackson's Theorem (in the form given in [4, 
p. 58]) from the corollary to Theorem 4. The deduction is based on 

LEMMA. Let K be a kernel such that Ê(x)=Q for \x\ è l . If f has 
period 2ir, then f * K\ is a trigonometric polynomial of degree less than X. 

Now, given r, it is easy to construct a kernel K such that (i) Ê 
vanishes for \x\ ^ 1 , and (ii) (1— e~~ix)r divides 1 — Ê at # = 0. With 
such choice of K, ƒ * Kn = Tn is a trigonometric polynomial of degree 
less than n. If now for some a > 0, cor(ƒ; t) = O(ta), then by the corollary 
to Theorem 4, | |/-~r„|| is 0(nra)\ from this result the Jackson The­
orem in full generality is easily deduced. 
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Many classical "inverse theorems" of approximation theory are 
deducible from Theorem 5. Suppose, for instance, there exists for each 
n a trigonometric polynomial Tn of degree at most n — \ with 
11/ — r»|| £*A/n. Let a be any nonnuU measure such that &(x) vanishes 
for |*| g l . Writing Tn(t) = J^m<n cke

ikt, we get 

f f(t - uv)da(v) « f [ƒ(* - wz>) - Tn(t - w)lAr(n) 

+ Z ct0***(ku). 
\*>\<n 

Now, given « > 0 fix n so that l/u^n<l/u + l. Then the second term 
on the right vanishes, giving 

I ff(t - uv)d<r(v) \ S\\f - Tn\\- Ç \d<x\ £~ S Bu 

where B=Af\ d<r\. Applying Theorem 5 with a = 1, r = 2, p=182, gives 
fc>2(f; /) = O(0« This is the celebrated inverse theorem of Zygmund 
[4, p. 61, Theorem 7]. 

4. Generalizations. The above theorems may be generalized to 
Euclidean w-space and complex measures (then, however, a certain 
"Tauberian condition" must be imposed on a), also to Lp norms.8 
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8 The more trivial Theorem 1 generalizes also to distributions. This leads to a par­
ticularly illuminating proof of Jackson's theorem. 


