NONSOLVABLE FINITE GROUPS ALL OF WHOSE
LOCAL SUBGROUPS ARE SOLVABLE!
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1. Introduction. The results of this paper grew from an attempt to
classify the minimal simple groups. For obvious reasons, this paper is
a natural successor to 0.2 The structure of the proof showed that a
larger class of groups could be mastered with some further effort.
An easy corollary classifies the minimal simple groups.

In a broad way, this paper may be thought of as a successful trans-
lation of the theory of solvable groups to the theory of simple groups.
By this is meant that a substantial structure is constructed which
makes it possible to exploit properties of solvable groups to obtain
delicate information about the structure and embedding of many
solvable subgroups of the simple group under consideration. In this
way, routine results about solvable groups acquire great power.

In somewhat more detail, the arguments go as follows, apart from
numerous special cases which involve groups of small order: Let ® be
a finite group. Let $0/(®) be the set of all solvable subgroups of ®.
Then 8$0£(®) is partially ordered by inclusion and we let M$(®) be
the set of maximal elements of $0£(®). Let M*(®) be the set of all
elements of $0f(®) which are contained in precisely one element of

1 Research supported by a National Science Foundation Grant, GN-530, to the
American Mathematical Society. The author also thanks the Sloan Foundation for its
extended support.

2 0 refers to Solvability of groups of odd order, W. Feit and J. Thompson, Pacific
J. Math. (3) 13(1963), and Result X of 0 is here referred to as Result 0.X. Also, as in
0, (B) refers to Theorem B of [26].
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MS(®), so that M*(G) DMS(®). The theory of solvable groups makes
it possible to prove statements of the sort §EM*(@), and most of
the important technical results of this paper are of this type.

The characterizations of E;(3) and Si(3) which emerge are the
result of detailed and careful study. These characterizations could be
avoided in classifying the minimal simple groups, but the effort this
requires is comparable to the characterizations themselves. Further-
more, these characterizations have an independent interest. They are
prototypes for the translation referred to above.

A portion of an earlier version of this paper was read by E. C.
Dade, whose comments have led to several improvements. Recent
results of J. Alperin [1], [2], G. Glauberman [16], [17], [18], and
P. Fong [14], have also eased the proofs somewhat. A recent result
of C. Sims [33] is helpful.

It is somewhat anomalous that the character theory is not used in
this paper. The reason for this is that the relevant character theory is
in the literature [8], [9], [10], [11], [14], [15], [16], [18], [28],
[35], [45]. This anomaly is in marked contrast with 0, where char-
acter theory was needed and was not readily available.

The work is flawed because as yet I have been unable to axiomatize
the properties of solvable groups which are “really” needed. To carry
out the axiomatization of the various parts of this paper will require
several years further study. If this is done, the usual benefits will
undoubtedly accrue: stronger theorems, shorter proofs.

This first paper sets the stage. §5 introduces many of the configura-
tions which are relevant to the study of simple groups, and §6 deals
with the notion of transitivity.

2. Notation and definitions. A minimal simple group is a simple
group of composite order all of whose proper subgroups are solvable.

Following Alperin [2], the subgroup $ of the group © is a local
subgroup of ® if and only if, for some prime p, there is a nonidentity
p-subgroup P of @ such that H=N(P).

An N-group is a group all of whose local subgroups are solvable,
Since every nonidentity solvable group contains a nonidentity char-
acteristic p-subgroup for some prime p, it follows that N-groups are
precisely those groups such that the normalizer of every nonidentity
solvable subgroup is solvable.

An involution is a group element of order 2.

A noncyclic group of order 8 with exactly 1 involution is a gua-
ternion group. A noncyclic 2-group with exactly 1 involution is a
generalized quaternion group. A group wlich is generated by two dis-
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tinct involutions is a dihedral group. A four-group is a dihedral group
of order 4.

The techniques and results of 0 are used freely here. The terminol-
ogy and notation of this paper extend that of 0.

Artin’s notation [4] for simple groups is used. In addition, Sz(g)
is the group of order g2(g2+1)(g—1) discovered by Suzuki [37], Mu
is the Mathieu group of order 7920, and Z,, 4, denote the symmetric
group and alternating group on # letters. The group of inner auto-
morphisms of the group % is I(¥).

The number of conjugacy classes of involutions of ¥ is 7(¥).

If %A, B are permutation groups, A 2 B is the wreath product of
A and B, and if A, B have not been presented as permutation groups,
A 2 B is the wreath product of the regular representations of ¥, 8.
This is the regularity convention [24] and will be used on occasion.

Let ©=8/% be a section of the group ¥. There is thus a homo-
morphism of N(® NN(®) into Aut(&) induced by conjugation. The
image of N(R)NN(Q) in Aut(®) is denoted Ax(S). More generally,
if M is a subgroup of &, A (S) denotes the image of MNN(R)NN(L)
in Az(®). If X is in N(®)NN(®) and S=8K is in &, then [X, S]
denotes 2[X, K]. Similarly, if T=9/N is a section of %, if M nor-
malizes both & and &, and if [N, K]S, then we will view T as a
group of operators of &, and we let Az (&) =An(S).

I 1=PSRESPSIE - - - SB.EN, =0 is the upper m-series
for the w-solvable group &* defined via =0, (& mod PBa.),
PBat1=0,(® mod R.), =0, 1, - - -, we set PL(®) =P/ Rn—1, 2=1,

-, r, and @X(®)=R,/PBun, =0, - - -, r. Here r=1.(®) is the
w-length of @. As in 0, the major attention is focussed on PL(®),
01(®) and QX(®)(= 0,(®)).

If % is a group of operators of the group B and 1=Cg(N), we say
that ¥ has no fixed points on 3.

DErINITION 2.1. The group ® is w-reduced if and only if 0,(®)=1.
The subgroup X of the group ® is w-reducible if and only if Ag(¥) is
w-reduced.

DEFINITION 2.2. R,(®) is the subgroup of ® generated by all the
normal w-reducible r-subgroups of @.

DEerFINITION 2.3. The subgroup % of the group ® is a w-signalizer
of @ if and only if |%| and | ®: N(¥)| are #'-numbers.

DEFINITION 2.4. A noncyclic p-group P is of symplectic type if and
only if every characteristic abelian subgroup of P is cyclic.

3 By a w-solvable group, we mean a group each of whose c.f. is either a p-group for
some p in , or a x’-group, that is, we adhere to the terminology of [23], not [26]. A
w-separable group is one for which every c.f. is either a 7-group or a ='-group.
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REMARK. The groups of symplectic type are classified in [24]. This
classification is of importance in this paper. If B is a p-group of
symplectic type, then P is the central product of a cyclic group and
an extra special group, or =2 and P is the central product of an
extra special group and a group of maximal class, or p=2 and P is of
maximal class. The explicit nature of the groups of symplectic type
will be used frequently.

DEeFINITION 2.5, If P is a p-group of symplectic type, the width of
P is the largest integer # such that P contains an extra special sub-
group § of order p2#+! such that P=9-C(9). If P contains no such
extra special subgroups, the width of P is 0.

DerINITION 2.6. If % is a nilpotent group and ¥ is a characteristic
abelian subgroup of %, ®(%; ) is the set of all subgroups B of ¥
such that

(a) Bchar X,

(b) ker(Aut(¥)—Aut(®B)) is an abelian 7(¥)-group.

(c) ASZ(W).

d) [%, B]SZ(B).

(e) D(B)SZ(B).

) Cx(B)=2Z(D).

We set ®(X)=®(¥; 1) and observe that ®(X)2®(¥; A) for every
characteristic abelian subgroup ¥ of X.

Ife: A=Y2 WD + - - DUA,=1is a chain, A(C) denotes the sta-
bility group of @, that is, the group of all automorphisms « such that
fori=1,2, - - -, n, a fixes each coset of ¥;in ;4. If A is a section of
%, set Az(C) =Ax(A)NA(e).

C denotes the field of complex numbers, F, the field of g elements.
If K is a field and ® is a group, K® denotes the group algebra of @
over K.

Let K be a field of characteristic p. It is well known that the sub-
group U of the group ® is represented trivially on every irreducible
K®-module if and only if ¥ lies in 0,(®). Thus, if ¥ is a subgroup of
®& which does not lie in 0,(®), we may define rx(; @) to be the
smallest integer 7 such that @ has an »-dimensional irreducible repre-
sentation over K which does not represent ¥ trivially. In particular,
rx(A; ©) is defined for all fields of characteristic 0, with the conven-
tion that Oo(®)=1. We also set 7,(%; @) =rr (¥; ©).

DEFINITION 2.7, 8$04(®) is the set of solvable subgroups of @, and
MS(®) is the set of maximal elements of $0f(®) under inclusion.
M*(®) is the set of all solvable subgroups of ® which are contained
in precisely one element of M§(®), and if HEM*(®), M(D) is the
unique element of MS(®) which contains .
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We define for each group ©, the following sets of primes:
71(®) = {p| A S,-subgroup of @ is a nonidentity cyclic group}.
m(®) = {p| (i) A Sp-subgroup P of @ is noncyclic. (i) Sens(P) =

9.
m3(®) = { pl (i) If P is a S,-subgroup of @, then Scns(P) = . (ii)
N e(P) contains a nonidentity subgroup}.
74(®) = {p| (i) If P is a S,-subgroup of ®, then Scns(P) = . (ii)
M o(P) contains only 1}.
As proved in [5], if p is an odd prime in m3(®), the structure of the
Sp-subgroups of @ is known. Those 2-groups £ with $¢n3(T) = & are
as yet undetermined, an awkward situation.

If p and ¢ are odd primes, we write p~q if and only if $04(®) con-
tains an element which contains elementary subgroups of order p?
and ¢%, otherwise p~gq. This definition conforms with 0. We wish to
extend the relation in a useful fashion. This is difficult. We need the
sets U(p) explicitly.

DEeFINITION 2.8. Let pE7(®) and P be a S,-subgroup of @. If
every normal abelian subgroup of P is cyclic, then W(P) =&. If Z(P)
is noncyclic, then W(P) = {A|ACSZ(P), U is of type (p, ) }. 1f B con-
tains a noncyclic normal abelian subgroup and Z(P) is cyclic, then
W(P) = {A| AP, Ais of type (p, p) }. U(p) =UU(P), P ranging over
all the S,-subgroups of ®. In case we wish to emphasize the depend-
ence on @, we write Us(p) for U(p).

DEFINITION 2.9. If $ is odd, we set 3(p) = { 2[| o is a p-subgroup of
® and ¥ contains a subgroup B of type (p, p) such that for each B
in B, Ce(B) contains an element of U(p)} 3(2) = {2[[ I is a 2-sub-
group of ® and ¥ contains a noncyclic abelian subgroup of order 8}.

For a prime g, we write ¢g~2 and 2~q if and only if there is an ele-
ment of $0£(®) which contains elements of 3(g) and 3(2).

DEFINITION 2.10. &(p)=8ws(p) is the set of subgroups € of ® of
type (p, p) which centralize every element in U g(€; p’).

Let pEm(@)Umy(®) and let P be a S,-subgroup of &. The sets
@;(P) are relevant. Here, as in 0,

A (P) = {2[] (i) % is a subgroup of P. (ii) U contains some ele-
ment of Scns(P)}.

@is1(PB) = {¥] (i) U is a subgroup of P. (ii) U contains a subgroup

B of type (p, p) such that Cp(B) E@:(P) for all B in
B}, i=1,2,3.
Let G(PB)=a4(P) and @:(p) =Ua:(B), a(p) =UG(PB), where in both

unions, P ranges over all the S,-subgroups of ®.

4 The Ss-subgroups of Janko’s simple group of order 604,800 are of this type.
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If G, HE®, we write G~gH if and only if G and H are @-conju-
gate, and similarly for subsets of . If there is no danger of confusion,
we write G~H. The negation of ~ is ~. We are thus using the sym-
bol ~ in two senses, but since a prime is hardly to be confused with
an element of a finite group, no confusion is likely. Following Brauer,
if $ is a subgroup of ® and G, HE D satisfy G~gH and G~eH,
we say that G and H are fused in ®, or that a fusion of G and H
occurs in ©.

3. Statement of main theorem and corollaries.

MAaIN THEOREM. Each nonsolvable N-group is isomorphic to a group
® such that I(S)SOCAut(&), where & is one of the following N-
groups:

(a) Lu(g), ¢>3.

(b) Sz(g), g=22+1, n=1.

(c) Ls(3).

(d) Mu.

(e) A

B Us(3).

COROLLARY 1. Every minimal simple group is isomorphic to one of
the following minimal simple groups:

(a) La2(27), p any prime.

(b) L:(3?), p any odd prime.

(c) Lai(p), p any prime exceeding 3 such that p2+1=0 (mod 5).

(d) Sz(22), p any odd prime.

(e) Ls(3).

COROLLARY 2. 4 finite group is solvable if and only if every pair of
its elements generates a solvable group.

COROLLARY 3. 4 finite group is solvable if and only if it does not con-

tain three nonidentity elements A, B, C of pairwise coprime orders such
that ABC=1.

COROLLARY 4. If ® is a nonsolvable group with |w(®)| =3, then
one of the following groups is involved in &: Ly(4), Lo(7), Ls(8), La(17),
L4(3).

COROLLARY 5. If every c.f. of the finite group ® is an N-group and n
is a divisor of | @[ such that there are exactly n elements in & of order
dividing n, they form a subgroup.

COROLLARY 6. If ® is a nonsolvable group, then | w(®) | = 3.
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Corollary 6 of Burnside is well known. The interested reader may
extract the relevant results from 0 and the present paper to give a
new proof of Corollary 6. The other five corollaries are probably new.
The possible existence of Corollary 3 was mentioned in [22]. Corol-
lary 5 is a minuscule contribution to an old problem and sheds no
light on it. Finally, we state a characterization theorem for E,(3)
and S4(3).

THEOREM ES. Ex(3) and S4(3) are the only simple groups & such that
(i) 2, 3€m(©).
(i) If pE{2, 3}, ®, is a S,-subgroup of & and AEScns(Oy), then
n(A) s trivial.
(iii) The normalizer of every nonidentity 3-subgroup of ® is solvable.
(iv) The centralizer of every involution of & is solvable.
(v) 2~3, that is, ® has a solvable subgroup containing
(a) a moncyclic abelian subgroup of order 8,
(b) an elementary subgroup of type (3, 3) each element of which cen-
tralizes a subgroup in U(3).

4. Proofs of corollaries. It is a consequence of results of Dickson
[12] that the groups listed in (a), (b), (c), (¢) of Corollary 1 are
minimal simple groups. Suzuki [37] has shown that the groups in
(d) are minimal simple groups. By Lemma 5.33, U3(3)DL2(7), so
Corollary 1 follows from the Main Theorem.

Corollary 2 is an almost trivial consequence of Corollary 1. Explicit
proofs are available for all the groups listed in Corollary 1 [34].

In proving Corollary 3, it suffices to show that for each minimal
simple group ®, there are elements 4, B, C of ® of pairwise coprime
order with ABC=1. As the character tables of all the minimal simple
groups have been determined [12], [37], Corollary 3 may be easily
verified. We remark that if ®=Sz(¢), we may choose 4, B, C of
orders ¢g—1, g—r+1, g+r+1, where 2¢g=r2

Corollary 4 is a consequence of elementary number theory and
Corollary 1.

In proving Corollary 5 for @, an appeal to a result of Zemlin [46]
entitles us to assume that ® is simple. Rust [31] has verified Corollary
5 for Ly(g), Ls(3), 47 and Sz(q). We omit the discussion of My and
U3(3), which is not difficult.

5. Preliminary lemmas.
5.1. Inequalities and modules.

LeMMA 5.1. Suppose B is a p-group and A is a subgroup of P
of order p. Let B be an abelian subgroup of B containing A, and set
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D=N(B)NN). Let A be the set of linear characters of B whick do not

have A in their kernel and let Ay, « - - , As be the orbits under the action of
D. Then
(@) o(¥; P)Zmin{|Adf, - - -, [A]}.

(b) re(¥; ‘B)zlAqs(G)] where C: BDOADI1.

Proor. Since r¢(U; B)=rc(¥; D), we may assume that D=9.
Let M be an irreducible CP-module on which 9 acts nontrivially,
and let X be the character afforded by M. By Clifford’s theorem,
X33=c2)\1-, where {)\z} is an orbit of linear characters of 8 and ¢
is a positive integer. Since I <|PB, U is not in the kernel of any A;,
so {\:i} =A; for some j. Hence dim M=ClAj| _Z_lAj,, proving (a).

Let € be the largest subgroup of P which stabilizes €. Then
Asp(e) =Ag(@R), and each A; is a union of orbits under €. To prove (b),
it suffices to show that Ag(@) acts regularly on A. Choose NEA,
aEAg(@), as#1. Since a>%1, there is a B in B such that Be=BA,
where A4 is a generator for Y. Hence, A(B%) =\ (B), so A%\,

LEMMA 5.2. Suppose  =PQ where | SBI =p is an odd prime and Q.
1s @ normal g-subgroup such that Q' = Cq(B), ¢#p. Suppose also that
cl(Q)=2 and Q'=D(Q). Suppose V is an kD-module, where k is a
field of characteristic p and Cy(Q)=0. Let Vo= Cy(B). Then dim V,
< (dim V)/2.

Proor. We proceed by induction on dim V. Suppose V is not
irreducible and that W is a proper submodule. Since V,+W/W is
contained in the centralizer of B on V/W, we may apply the lemma
to W and V/W to complete the proof. Suppose V is irreducible. If
£/ =1, the lemma is trivial, since in this case, V is a free 2B-module,
so suppose Q1.

Let Qo= Cgo(V). Since ps%g, we get Q'Q/Qo= Cg0,(B), so
that our hypotheses are satisfied with §/Q, in the role of . We may
therefore assume that Q acts faithfully on V. Hence, Z(§) is cyclic,
so in particular, Q' is cyclic, so £ is of order ¢. Since Q'= Ca (D),
we get Z(9) =Q’. Suppose Z()DLQ'. Then Z(Q) =Q'X L, where
Q1 admits P and Cq,(P) =1. Since QuCTZ(Q), we get Q1] P, so
Cy(L1) =0. Replacing Q by Qu, we are reduced to a previous case.
Hence, we may assume that Z(Q)=9/, so Q is extra special.

If P acts irreducibly on Q/Q’=9, then the proof of (B) implies
the desired inequality. Suppose P acts reducibly on /Q' and that
LQu/LQ) is an irreducible constituent. If L, is nonabelian, we are in
the preceding situation, so suppose that every irreducible constituent
of P on Q/Q corresponds to an abelian subgroup of L. We can then
choose Qs sothat Q,/Q’ isanirreducible constituent such that £; Q. is
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extraspecial, and we may assume that Q = Q;Q,. Choose 0; € Q. — Q’,
and set Q=Q:1Q.. If (B, P)=9, we are done, since Cy(Q)=0.
Suppose (B, PP for all such Q. Then the mapping Q1 Q' —Q, Q'
can be extended to an isomorphism ¢ of Q;/Q’ =01 to Qu/Q' =Qe
as P-modules. Let Q (o) be the inverse image of {QQ"I QED:} in Q.
Thus, Q(s) admits P and Q(0)/Q'=LQy/ Q' as P-modules. Since
Q(o) is abelian, it follows that for all Q;€Q;, [Q1Q:, (QiQ2)P]=1,
where = (P). Hence, [Q1, OF] = [Qf, Q:]. Replacing Qs by QF, we get
[01, OF*1=[0F, Q]1=1[01, Q:], so Q. centralizes QiF". Since p is
odd, we get Q' =1. This contradiction completes the proof.

REMARK. There is a group of order 33-2 which shows that the odd-
ness assumption in the previous lemma is necessary.

LeMMA 5.3. Suppose P is a p-group whose Frattini subgroup is
elementary and central. For each field F of characteristic #p and each
FB-module V on which P acts faithfully, the following hold:

(a) If p5<2, then dim VZm(P)| F(): F|.

(b) If p=2, then dim V=2m(P)/3.

Here ¢ is a primitive pth root of 1 in an extension field of F.

Proor. We assume without loss of generality that P acts faithfully
on no proper submodule of V. By complete reducibility, 8 has no
fixed points on V. Suppose V= V1@ V,, where V; is a proper sub-
module, 2=1, 2. Let P1= Cp(V1). Since P, is faithfully represented
on V, and PB/P; is faithfully represented on Vi and since #(P/P1)
+m(P1) =m(P), the lemma follows by induction on ]‘BI in this case.
We may therefore assume that V is irreducible, and so P is the central
product of a cyclic group of order p'*¢ and an extra special group of
order p2+1, where ¢e<1. Hence, m(P) =2r-+eand dim V=p"| F(¢): F| .
The lemma follows.

REMARK. The central product of a cyclic group of order 4 and a
quaternion group shows that 2/3 may not be replaced by any larger
value in (b).

LEMMA 5.4. Let P be a p-subgroup of the p-solvable group & and let
N be a subgroup of P with AL 0,(S). Then for each field F of char-
acteristic p, rr(U; ©) =7rc(A; P).

Proor. Let V be an irreducible F&-module of minimal dimension
on which ¥ acts nontrivially. We must show that dim V=r¢(¥; B).
Let $=Ce(V), &=8/9. Thus, F=BH/S=P/BNG is a S,
subgroup of & and Y=AH/H 1. Since r¢(U; P)Sre(¥; P), we may
assume that  =1. With this normalization, together with char F=7p,
we have 0,(&) =1, so P acts faithfully on 0,/(&). We may therefore
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choose a P-admissible special g-subgroup Q of 0,(&) on which U
acts nontrivially, and such that Q/D(Q) is a chief factor of PQ.

Since AL 0,(QP), it follows that when V is viewed as an FQP-
module, there is a c.f. on which ¥ acts nontrivially. Hence, dim V
=rr(UA; BQ). This inequality entitles us to assume that S&=PQ.

Define the positive integer s by l Q: D(Q)I =¢*, and let K be the
algebraic closure of F,. Then s=rx(; P), since A does not centralize
KQ®r,Q/D(RQ). Since pg, it is well known that 7x(U; P) =r¢(U; P).
Thus, s=7¢(¥; B). However, if g=2, we get the stronger inequality
s22re(U; B), as Q/D(Q) is not absolutely irreducible for P. The
lemma now follows from Lemma 5.3 with Q in the role of .

REMARK. Lemma 5.4 is a typical result for p-solvable groups, for
the group Q in the lemma appears neither in the hypothesis nor
conclusion and plays the role of an intermediary, as in (B).

HypoTHESIS 5.1. (a) p is an odd prime and P is a S,-subgroup of
the group ©.

(b) U is a normal elementary subgroup of P with m () = 3.

(c) ANZ(P) =23 has order p.

(d) As(e)=A(e) where €: ADB3D1.

LeEMMA 5.5. Suppose Hypothesis 5.1 is satisfied. Choose A in A— 3
and suppose that O is a p-solvable subgroup of & which contains Cp(4).
Then B3 Opr (D).

ProorF. Let ]2[[ =p**+1, so that w=2. Let P* be a S,-subgroup of
$ which contains Cp(4). Note that since A <IP, it follows that
[‘B: Cp(4)| <pv. Since P is a S,-subgroup of @, we see that

(5.1) | p*:Cu(4)| < o

Let W=8/% be a chief factor of $ with O, (9)CLCRC O,1,,(H).
It suffices to show that B centralizes W. Suppose false. Let
M= Ag(W), and let PBo, Ao, 8o be the images of Cp(4), U, 3 in M,
respectively. Hence, 8o==3. Since 0,(M) =1, there is a Po-invariant
special g-subgroup Q of M on which 3, is faithfully represented, and
such that P, is irreducible on £/D(LQ). Since Q is faithfully repre-
sented on W, there is an irreducible F,PoQ-submodule V of W on
which Q acts nontrivially.

Let M= Ap,a(V) and let Py, s, 31, Q1 be the images of Po, Ao,
B0, Q in P so that 3:228,. Since 3¢CZ(Bo), 31 has no fixed points
on Qi/D(Ly). Let Vo= Cy(81). By Lemma 5.2, we have

(5.2) dim Vo< (dim V)/2.
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Since Q.1/D(QY) is a F,Cp(4)-module on which 8 acts nontrivially,
m(h) Zre(B; Co(4)). If g=2, we get the stronger inequality 7(Qy)
=2r¢(8; Cp(4)), since L;/D(LQy) is not absolutely irreducible in
this case. By Lemma 5.1, 7¢(3; Cp(4)) = | AC‘B(A,(e)I . By Hypothesis
5.1(d), it follows that IACa;(A) (G)l = p»—1, Hence,

(5.3) m(Q1) 2 bpr,

where =1 or 2 according as g2 or ¢=2.
On the other hand, by Lemma 5.3 we have

(5.9 dim V = am(Qy),

where a=1 or 2/3 according as ¢5%£2 or ¢=2.

Now V is a submodule of W, so =8,/ for some subgroup &
of R. Since <1 < 9, P*NKois a S,-subgroup of K, 50 o= L(P*NKy).
Let £1=2(Cs(4)N\Ry), and let 71 =R,/ Since Cp(4) centralizes
3, we have

(5.5) V1S Vo
Since | B*: Cp(4)| Sp®, so also | B*MNRe: Cp(A)NR,| <p». Hence,

(5.6) | Ro: 1| = pm.

Since Ro/R:1=280/2/81/%, we have

(5.7 dim(V/V)) < w.

Now (5.2), (5.5), and (5.7) yield that dim V=w+dim Visw
+dim Vysw-+(dim V)/2, or 2w=dim V. With (5.3) and (5.4), we
find that 2w =abp».

Since p is odd, and ab=1, w=2, we see that p=3, w=2. Thus,
P GL(4, 3). This forces g=2 so that (5.3) yields m (L) 2 6. On the
other hand, GL(4, 3) has Sy-subgroups of order 2? and of the shape
T 2 Z, where T is a Se-subgroup of GL(2, 3). Thus, S;-subgroups of
GL(4, 3) have a subgroup of index 2, every subgroup of which is gen-
erated by four elements. So 7 (L) 5. This contradiction completes
the proof.

LemMMA 5.6. Suppose the following hold:

(a) ©=86,8; where &, is a S,-subgroup of &, p=2, 3.

(b) &, is extra special and normal in S.

(c) &3 is abelian, S;*1.

(d) S is faithfully and irreducibly represented as automorphisms
of the elementary 3-group G.

(e) For each subgroup U of Ss, define 3™ = | Ce(¥): Ce(Sy)|.
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6 a) Em(Ss/N) for all subgroups U of Sa.
Then @, is a quaternion group.

Proor. Let ]@2' =2+l Hence, m(€)=2" Let 3= ] C@(@a)l .
Then m(€)—f=a((1)), so m(€)—f=m(S;), by (f). On the other
hand, since & is irreducible and faithful on €, we have O;(&)=1,
so &; is faithfully represented on &,/&}. Hence, m(S;) <n, so that
m(C) —f=<n. If f>m(E)/2, then (S; S5) centralizes a nonidentity
element of E for each S in &. Since &32% &, we can choose S in & so
that ©,C (S, &5). This is impossible, since &, inverts € Hence,
f=m(8)/2, so m(€)/2=m(€)—f=<n, and so 2»1=<n. This implies
that #<2. If n=1, we are done by (c), so suppose #=2. In this case,
we get 2<m(S;), so &; is elementary of order 9. Also, &, is the
central product of two quaternion groups Qo, Qi, and if B;= Ce,(Q4),
then | B, =3,4=0, 1, and &;=BXB1. Thus Q, is faithfully repre-
sented on Cg(By), so [ C@(EBO)I =9. Hence, I C@(@a)] = 3. This means
that a({1)) = 3, against (f). The proof is complete.

LemMA 5.7. Suppose & is a p-reduced p-solvable group and k is a
field of characteristic p. Suppose M is a kS-module on which S acts
faithfully, but that & acts faithfully on no proper submodule of M. Then
M is completely reducible.

ProoF. Let N be a maximal submodule of M, and let &= Ce(N).
By hypothesis, Sy1. Since 0,(&)=1, so also 0,(S,)=1. Let
H=0,(S0), 0=0(9)=|H|~* D> nes H. Since N is a maximal sub-
module of M, we get N=Mo. Hence, M(1—0) is an irreducible
submodule of M isomorphic to M/N. Thus, every maximal sub-
module of M is complemented. As M is obviously finitely generated,
we may write M =M@ - - - ® M, O M’, where My, - - -, M, are irre-
ducible, and M’ is either 0 or has no irreducible summands. If M’0,
let N’ be a maximal submodule of M’. Then Mi® - - - @M, AN’ is
a maximal submodule of M, so has a complement M,y giving
M=M® -+ @M, 1 ®N'. Hence, M'=M,.1®N’, against the con-
struction. The proof is complete.

LeMMA 5.8. Suppose €=, X -+ X&,, a=1, where S; is a
dihedral group of order 2p;, p; an odd prime. Suppose also that M is an
Fx&-module on which & acts faithfully and | M l =2m with m =< 2a.
Then the following hold:

(a) m=2a.

(b) M is completely reducible.

(c) M=M1® - - - ®M,, B=S(1)X - - X &(s5),8(t) centralizes
M;, j#1 and S(2) acts faithfully and irreducibly on M, 1<iSs.

(d) | @(i)l =6 or 36 for each 1.



1968] NONSOLVABLE FINITE GROUPS 395

ProoF. Let N be a submodule of M which is minimal subject to
Ce(N)=1. Let | N| =2 By Lemma 5.7, N=N:® - - - ®N,, where

each N; is irreducible. For each subset J of {1, e, a}, let &y
= (&;|jEJ). Let &= Ce(N.). Since N, is irreducible, 0,(&/&;) =1.
Hence, &'=@&gj; for some subset J(z) of {1, cee, a}, so that
S/, where J@)' = {1, - - -, a} —J().

Let X be the direct product of all the &/&*. If X=(Xy, + + -+, .X,)
€%, and u=m+ - - - +us, u;EN;, let uX = X1+ - - - + u.X,,
thereby converting IV to a Fy¥-module. Also, & is isomorphic to a
subgroup of ¥, and X=%X -+ X%, where ¥; is a dihedral
group of order 2¢;, ¢; an odd prime, 1<:<bH, b=a. Let X¢
=(1,---, &/&¢ ..., 1). By construction, ¥¢ centralizes N; for
1% and ¥¢ acts faithfully and irreducibly on N,.

Let | Ni| =2%, |¥:|,=2%. Since N; is a projective Fy¥-module,
we get #;=0 (mod 2%). Also, ¢;540, by minimality of N. Hence,
20ZmEn= D S M= 2 5.12%=2 Y 3 1 a;=2b=2a. Thus equality
holds throughout. We unravel what this means. First, N= M is com-
pletely reducible, and # = 2a, so that (a) and (b) hold. Next & and %
are isomorphic by an isomorphism which respects the action of &,
¥ on M, that is, 0: ¥, and ¥ X =u(0(X)) for all XE%, uE M. Let
& (1) =0(%%), so that ©(z) < &S, S()NS*=1. Hence &=S*X&(7), so
that &(2) =&;(;)r. Hence, ©=C&;qy X « « « XSy

Set M;=N;, so that (c) holds. Since 2%=2a;, we get a;=1 or 2.
Ifa;=1, then [@(i)] =6, since #;=2. Suppose a;=2. Then I@(i)| =36
or 60, since n;=4. If |&S(:)| =60, then &(5)’ is of order 15 with
generator .S;. Since a;=2, some element of &(¢) inverts S;. But the
characteristic roots of S; on N; are N\, N2, N4, \® for some primitive
15th root of 1 in an extension field of Fj, so .S; is nonreal. Thus, (d)
holds.

5.2. w-reducibility and R.(®).

The next lemma explores some easy consequences of Definitions 2.1
and 2.2.

LemMA 5.9. (i) R.(®) is w-reducible for all =, ®.

(ii) R,(®) is abelian for all w, ©.

(iii) For each prime p and group ®, C(R,(®)) = C(L(R,(®))).

(iv) For each prime p and group ®, Ry(®) ESZ(0,(®)).

(v) For each prime p and group ®, define Bn, €., Dn recursively, as
follows: B1=2(0,(®)), €i=C(81), D1=0,(® mod €), Bny1=3x
NC(Dn), Cri1=C(Bnt1)y Onp1=0,(® mod €,11), n=1, - - . Then
B123:2 ¢+ - ¢, while GEDISCCSDC + « -, Also, Ba=R,(®) for
suitably large n.

(vi) If O,(®)1, then R,(®)=1.
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ProoF. (i) It suffices to show that if ;, ¥, are normal w-reducible
m-subgroups of ®, then ;9> is m-reducible. Let €;=C(,),
€= C ). If D/C is a normal r-subgroup of /€, then DE,;/C;
=P/DNE,=D/C/DNE;/€ is a normal w-subgroup of &/C;, so
DCE;, 1=1, 2. Since €=CNE;, we have D/E =1, as required.

(ii) By (i), R=R.(®) is w-reducible, so &/C(R) has no non-
identity normal w-subgroups. Since RC(R)/CR)=R/Z(R) is a
normal w-subgroup of &/ C(R), we have R=Z(R), as required.

(iii) Let Gi=C(R,(®)), €= C(Uu(R,(®))). Clearly, §;C¢,. By a
well-known property of abelian groups, /€, is a p-group, so
8,/C1=1, since &/E,; is p-reduced.

(iv) Clearly, R,(0)S0,(8). Also, C(R,(®))0,(8)/C(R,(®))
=0,(0)/0,(@)NC(R,(®)) is a normal p-subgroup of @/ C(R,(®)).

(v) It is obvious that 8:2 8,2 - - -, and that €,CD,. Since D,
centralizes 8,41, we also have 9,CC,1. Suppose 3, = Bs41 for some
n. This means that D, centralizes 3,, that is, ©,ZSE,, so ©,=C, and
Ba is p-reducible. Furthermore, since 3, = 8.+1, we have €,=C,41 so
that D, =D, =E,, which means that 8,11=8n4s. Let 3=58,= 8,11
Then 8CR,(®), since B is a normal p-subgroup of ®. On the other
hand, 8: D R,(®), by (iv) and if 8, 2 R,(®) for some 7, then
C,.C C(R,(®)) =G, say. Since D,/C, is a p-group, so is D,E/C since
D,6/6x29,/DNExD,/C,/D,NE/E,, so D, E, which implies that
Br12R,(®). Hence, 8,2 R,(®) for all ». Taking r=n, we conclude
that 3D R,(J). As the reverse containment also holds, (v) is proved.

(vi) This is an immediate consequence of (v), since the center of a
nonidentity p-group is #1.

LeMMA 5.10. If ® is p-solvable and p'-reduced for some prime p and
W is a subgroup of ® which is contained in the center of some S,-subgroup
of ®, then the normal closure N of A in ® is p-reducible.

ProoF. In any case, NS Z(0,(®)). Let P be a S,-subgroup of @
with AT Z(P). Let D= 0,(® mod C(N)), so that D= (DNP) C(N).
The given factorization of D shows that D centralizes ¥, so D¢=D
centralizes A ¢ for all G in ®. Hence, D/C(N) =1, as required.

LeMMmA 5.11. Suppose S is a p-solvable group and U is an elementary
p-subgroup of &. If CA) = CNo) for every subgroup ¥, of index p in
N, then U centralizes R, (S).

Proor. Let € = C(R,(&)). Suppose the lemma is false. Let
D=0, (& mod €) so that U does not centralize D/C. Let Dy be
chosen of least order subject to (a) € CDCD, (b) Do admits ¥,
) [®Do, A1LEC. Then Dy/D is a g-group for some prime g=p, and
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U acts irreducibly and nontrivially on Do/D; where D1 =D (D, mod €).
Let Ao= Cu(Dy/€) = Ca(Dy/D1), so that [ A: QIo] =p. Let So=UDy/C
=WC/CXDo/C. Since Dy/C is represented faithfully on R,(S),
Lemma 3.7 of [20] implies that ©,/€ is represented faithfully on
R,(S)NC (o) =B, say. By hypothesis, [, B]=1. Let L=CAD,.
Then GA € Ce(B) < & By the minimality of Do, we also get
Do [Do, A]CS C(V), so RS C(V). This contradiction completes the
proof.
5.3. Groups of symplectic type.

LemmA 5.12. If T if a 2-group of symplectic type and width w, and if
T is not extra special, then T contains a characteristic subgroup Ty such
that Ty is the central product of a cyclic group of order 4 and an extra
special group of width w. If A is of odd order >1 and N acts faithfully
on T, then [T, A] is extra special of width Sw.

Proor. Let T=3,F,, where [Ty, Tz]=1, Ty is extra special of
width w and  is either cyclic or is of maximal class and order >8.
First, suppose 2. is cyclic. In this case, To=2%(T) satisfies the de-
mands of the lemma. Suppose <, is of maximal class. Let T3=D(I)
=D(T,), Tu=C(T3), To=%(T,). Since T, is the central product of
T4 and a cyclic group, again T satisfies the demands of the lemma.

We next show that ¥ centralizes £/%,. This is clear if T, is cyclic,
since T/To=T,/T2NT, is cyclic in this case. We may assume that
$: is of maximal class. Let $3=C(Z(o)). Then |T:T;| =2, and
T3/Ty is cyclic. Thus, A centralizes T/T; and T3/To, so A centralizes
T/, as I?II is odd.

Let U= [T, A]. As we have just shown, U, CSZTo, so Uo= [Ty, A].
Since Z(T,)/<TJ is of order 2 in the elementary group To/T(, there
is a subgroup U of T, which contains £¢, admits ¥, and such that
/Tl =2Z(Z0)/T¢ XU/T{. Hence, [Ty, A]=[U, A], and U is extra
special. Since l 2[[ >1 and ¥ acts faithfully on &, ¥ acts faithfully on
1, and on Uo= [I, A]. It is straightforward to check that U, is extra
special,

LeEMMA 5.13. Let & be a 2-reduced solvable group, let = 0:(&) and
assume that O is of symplectic type and width n>1. Assume also that
A is an extra special 2-subgroup of S of width n—1 and that HNA=1.
Then n=2.

ProoF. Since ¥ is faithfully represented on @3(&) and since % has
a unique minimal normal subgroup, there is a g-subgroup LQ of
Q3(®) on which ¥ is faithfully represented. Since the absolutely ir-
reducible faithful representations of U are of degree 271, we have
m(Q) =271,
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On the other hand, Q=§Q/$ for some g-subgroup { of & with
O=Q. Let § = [9, §]. By Lemma 5.12, § is extra special of width
% < n,50 | Q| divides | Si(2)|2 = (22—1)(2¢—1) - - - (22»—1). Let e
be the smallest positive even integer with 2¢=1 (mod ¢), and let
22 — 1 =4¢¢, (g ¢)=1. Hence, 2! < f[2n/e]+ [2n/q]
+[2n/q¢?]+ - + - . It is clear that f<e/2, and so 2"'<n-+2n/(g—1)
=2n, which implies # < 3. Suppose #=23. The S;-subgroups of S¢(2)
are Z3 2 Z;, so that m(Q) =3. This violates 22=<m(LQ)). Hence, n=2,

LeEMMA 5.14. Suppose & is a 2'-reduced solvable group and the follow-
ing hold:
(a) O:(&) =9 is the central product of a cyclic group and an extra
special group of width w.
(b) If &, is a Se-subgroup of &, then S,/ is elementary of arder 2*.
(©) 9:(S)=B1X - + + X B, where
(i) |Bi| =piis a prime, 1Zi<w,
(ii) &, normalizes B;, 1 i w.
Then p;=3, 1 <is=w. Furthermore, if Q is @& Se-subgroup of Os(S),
then Cg(Q)=2Z(D) and [, Q] is the central product of extra special
groups i, + + +, Os such that /9’ is a chief factor of O, (S)Ss. If
w; 15 the width of s, then w; < 2.

ProOF. Let V=9/9', Vo=2Z(9)/9'. Thus, | V| =22w+e, | V,| =2°.
Let Vi be a complement to Vy in ¥V which admits Q, and let W
=[V, Q]=[V1, Q]. We assume without loss of generality that
& =Q6&,. Thus, &=9N(Q), so W admits &, and Ces(W)=9. Let
S:=©./9, an elementary group of order 2v. Let T;= Cg,(B.),
1=5i2w, T9=N;x; T;. Thus /=BT X BoT2X -+ - X BLT¥, and
BTi=9; is dihedral of order 2p;. By Lemma 5.8, we get m =2w, so
that Vi=W. Also, V1=X1X -+ - XX, where X; is an irreducible
&-group. Let X;=9.:/9’, 1 S1=s. Since X is irreducible, 9 is either
abelian or extra special. Since &/ acts faithfully on no proper sub-
module of 77, it follows that neither does Q. Let Q;= Cqa(¥.),
Qi=N;u; Q. Thus O*#1, and QF acts faithfully on ; and without
fixed points on %;. Hence, §:= [9, Q] is extra special by Lemma
5.12, If 45}, then Q centralizes §;, so [Di, §;, Q]=[9;, OF, $:]
=1, from which we get [QF, $:, §;]=1. Since $:=[Q*, H:], we get
that £19; - - - . is the central product of i, - - -, O.. The remaining
parts of the lemma follow from Lemma 5.8.

LeMMA 5.15. Suppose & is a 2’-reduced solvable group and the fol-
lowing hold:
(@) 0:(8) =9 s the central product of w dihedral groups of order 8.
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(b) If &, is a Sp-subgroup of &, then S/ is elementary of order
2wl

€) 0:2:(S)/9=B1X -« + + X Bu_1, where

@) I 535| =p; s a prime, 1 S1Sw—1,
(i) S, normalizes B;, 1Sisw—1.
Then one of the following holds:

(@) pi=3 for all 4.

(B) There is exactly one value of i such that p;3, and for this 1,
pi=35. O is the central product of extra special groups i, * * + , Ds such
that 9:<1 0.2 (S)S,, /9’ is a chief factor of 02(S)S,, and
A(H:1/9') is dihedral of order 10, where L= 0.2 (S)S,. Finally,
D2+« - Do 15 the central product of an odd number of quaternion groups.

Proor. Let V=9/9’. We may assume that S=&,Q, where Q
is a Sy-subgroup of O, (&). First, suppose that &/9 is represented
faithfully on some proper submodule V, of V. Let W= [V,, &]. We
argue that | W| 22@-D, that is, | V: W| 24. Suppose false. Then

V: WI =2, W=V, But Vo=8/9’ for some subgroup & of 9, and

Z(.Q)[ =4, Thus, Z(8)/9’'= V1 is of order 2 and admits Q. Hence,
[Ve, Q]C Vo, against W= Vy=[Vo, &]=[Vy Q] Hence [Wl
=<22w-1, Hence, (o) holds by Lemma 5.8.

We may assume that &/9 acts faithfully on no proper submodule
of V. In particular, V= [V, Q]. By Lemma 5.7, V=11 X - - - XV,,
where each V; is an irreducible &-group. Let Q;=Cgq(V,); QF
=;xs Q; Thus, Qi+#1, and QFf acts faithfully on V; and without
fixed points on V. Let V;=9,/9’. Then for 17, Qf centralizes §;,
so [§: 9;]=1, O: is extra special and § is the central product of
1,00+, Do

Let £=Ne,(Q). Then TNH =’ and T/’ is elementary of order
2v-1 Let =Q%/9'.

We may assume that ;3 for some 7. Let R;=Cx(V;), 1=:<s,
and let X be the direct product of the R/R:;. We may convert V to
an X-module in the obvious way. Thus, ¥=%1X : + + X%s, where ¥;
is a dihedral group of order 2p;, 1<¢=<b, and b=w—1. If b>w—1,
then by Lemma 5.8, p;=3 for all 4. Hence, b=w-—1, and so ¥==R.
This implies that R=R1X - - - XR*, where [R¢, V;]=1 for i5j,
and RR;=RIXRi=N. Let | R]a=2%, | V,-EZ"*‘. As we have seen
before, v;=2%. Thus, 2w= > v;= > 2%=2) a;=2(w—1). Suppose
29> 2a; for some ¢. Then 2% —2qa,;=2, as the inequalities show, so
a;=3, while for 757, 2a;=2%. Since 2%>2a;, we get v;=2% for all j
(including j=17). Hence, v;,=8. If j=<4, then 9;=2 or 4, so that RJ
is a 2, 3-group. Hence, R* is not a 2, 3-group. Since v;=8 and H; is
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extraspecial, | %¢| » divides (22—1)(2¢—1)(26—1)(28—1) =35.52-7-17.
If 7| |9¢|, then S¢ does not act irreducibly on Vi If 17| | S|, then
O: (R?) acts irreducibly on V;, so that O (R¥) is necessarily cyclic.
Hence, we get | Oz:(ER")l =3.5-17=28—1, so that O, (R?) permutes
transitively V;—~O. This is not the case, since §; is extra special.
Hence, R*is a 2, 3, 5-group. If 52| | ER"I , then §; is the central product
of i and His, where §;; is the central product of a quaternion group
and a dihedral group such that §;; admits Os(R?). On the one hand,
Aut(9.;) has no subgroup of order 15, and on the other Oz(R?)
normalizes both i, and 9. This is impossible, so |§R"| =28.32.5,
Let Oy (R%)=AXBXE, where || =|B| =3, || =5. Since V; is
irreducible, € has no fixed points on V;. We may assume that Cy (%)
#1, Cy,(B)1. Thus, Ox(R?)/A acts faithfully on Cy (¥)=O;/',
and §f is of width 2. This is impossible, since no extra special 2-
group of width 2 has an automorphism of order 15; so this case does
not arise.

We conclude that 2% =2g; for all 7, so a;=1 or 2. By the inequal-
ities, there is ¢ such that v;> 2% Since v; is even, we get v;—2% =2,
v;=2¢%, for all j#1.

Since a;=1 or 2 for all j, and since v;=2% for all j#4, we get that
R is not a 2, 3-group.

Suppose a;=2. Then v;=6. As V;is irreducible, 5} | %¢|, so we may
assume that |$¢| =22.3-7. Since V; is irreducible, O,(%t?) has no
fixed points on V;, p=3, 7. We may write V,= VX Vi, where V;
admits O;(R%), j=1, 2, and [ V;,-[ =8. Since O3(N?) has no fixed
points on V;, O3(N?) does not normalize V. Since O3(R?) centralizes
O,(R7), we get that Vi and Vyp are isomorphic O7(R?)-groups. Hence,
the elements of O;(%?)— {1} are nonreal in 9. This is impossible,
so this case does not occur.

Suppose finally that a;=1. Then v,=4. Since R*is not a 2, 3-group,
we get IER‘[ =10. Hence, §; is the central product of a quaternion
group and a dihedral group, so (§;|j4) is the central product of an
odd number of quaternion groups, by (a). The lemma follows after
a suitable relabeling.

5.4. p-groups, p-solvability and F(@®).

LEMMA 5.16. Let © be a p-solvable, p'-reduced group. Let U be a p-
subgroup of S and Q an element of N(Y; p') satisfying (Y, Q]=0=1.
Let = 0,(S). Then [, U, Q]=1.

Proor. We assume without loss of generality that § is elementary.
Let $1=[$, ©], so that $,=[$:, Q]=1. Suppose that [&1, ¥, Q]
=1. As §; is normalized by % and as Q has no fixed points on 91,
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we have [©;, A]=1. Thus, ¥ and so [¥, Q] centralize 1. But
[%, ©]=Q. This contradiction completes the proof.

LemmA 5.17. Suppose $=PQ where Q is a normal 2-subgroup of
D, B is a p-group, p an odd prime, and Q= [PB, Q]=1. Suppose
furthermore that P centralizes every characteristic subgroup of Q. Then
Q s special.

Proor. Let ¢ = cl(Q). If ¢ = 3, then C,1(Q) is abelian, so
[Coua(Q), B]=1. This implies that [P, Q, C.a(Q)]=1, by the
three subgroups lemma. Hence, C,1(Q)Z2(Q), since Q= [P, Q).
This is not the case, so ¢ <2. Hence, c=2, since L is obviously non-
abelian. Hence, Q'CZ(Q), so Q'=Z(Q), since P has no fixed points
on Q/Q'. If Q/Q' is elementary, we are done. Otherwise, let
o= (L mod Q) so that 0/LQ’ is of exponent 4. Since Q is of
class 2, it follows that if X, YEQ,, then 1=[X*, V]=[X?, ¥?] so
that D(Qy) is abelian. This is impossible, since Q =[P, QJ]. The
proof is complete.

LeEmMA 5.18. If ¥ is nilpotent and U is a characteristic abelian sub-
group of %, then ®(X; A) = . (See Definition 2.6.)

The proof of this lemma is given in Lemma 0.8.2.

LEMMA 5.19. Suppose O is a S,-subgroup of the solvable group & and
that 2, 3€'. If AESS(F(D)), then CA)=AXD where D is a «'-
group.

ProoF. Proceeding by induction on |&|, we may assume that
0.,(©)=1. Hence, F(&)CF(9), so [F(S), %, A]=1. Let €: F(S)
=G DCD - -+ DCy=1 be part of a chief series of &, and let
Vi=G€;/Cip1, Via pi-group, =0, - - -, k—1. Then the S, -subgroup
of U centralizes V; and the S, -subgroup ¥; of U satisfies [V, A, As]
=1. Since V; is p;-reducible in S, it follows from (B) and $;=35 that
ACC(V,). As is well known, NI} C(V)=F(S), so ACF(S),
AEScn(F(S)). Suppose CE C(A) and C?"=1 for some p in 7. We will
show that CE. In any case, C stabilizes F(&)2%21, so C central-
izes each V;, so CEF(®). Since AESSn(F(S)), we get CEY. Since
9 contains every m-element of C(¥), the lemma follows.

LeEMMA 5.20. Suppose M is a normal elementary 2-subgroup of the
solvable group &, and the following hold:

(@) & contains an elementary subgroup of order p® for some odd
prime p.

(b) & contains a cyclic 3-subgroup L with the following properties:
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(i) BUQ) centralizes M.

(i) [Q, M] 15 a four-group.
Then & contains an elementary subgroup § of order p® for some odd
prime p such that Cg([Q, M]) is noncyclic.

Proor. Let  be a 2’-subgroup of & which contains QO and is
minimal subject to containing an elementary subgroup of order ¢ for
some prime ¢. We suppose without loss of generality that § acts
irreducibly on . Suppose § is a 3-group. Then H=9,Q, where
H0<1 D, Do is elementary and |©o| =3% Thus, Q permutes transi-
tively the Wedderburn components of $, on . Since |S>0I is odd,
(b)(ii) implies that there is only 1 Wedderburn component. Hence,
Cgo,(M) is noncyclic and we are done. We may therefore suppose
that & has no elementary subgroup of order 3% Thus, 9 is a 3, p-
group for some prime p. Since p=5, it follows from Lemma 0.8.5
that 9 is p-closed; H=9,Q where 9, is the S,-subgroup of 9.
Minimality of § forces $, to be of exponent p and [.@,,’ [ Sp% As
above, the irreducible §,-subgroups of I are pairwise isomorphic. If
| Cs,(M)| > p, we are done, so suppose | Cg,(M)| = p. Hence,
9/ Cs, (M) =P, is extra special. Clearly, Q does not centralize §,.
Since [EUE, L] is a four-group, we get that p="7. Thus, §; contains a
noncentral subgroup & of order 7 such that I [®, M]| =28 This is
not the case, since I is a free FoR-module. The proof is complete.

LemuMmA 5.21. Suppose the following hold:
(i) M is a solvable group.
(ii) T <s a noncyclic normal elementary 2-subgroup of I and one of
the following holds:
(a) § is 2-reducible in M.
(b) T contains a subgroup Fo of order 2 which is central in I and
T/ o is 2-reducible in M.
(iii) I 4s an involution of M with |§: Cs(I)| =2.
(iv) There is at least one odd prime p such that M contains an ele-
mentary subgroup of order p3.
Let §* = [§, I]. Then there are an odd prime g and an elementary sub-
group Q of M of order ¢g® such that Co(F*) is noncyclic.

Proor. If § is 2-reducible in I, set Fo=1, otherwise, let F, be the
subgroup given in (ii)(b). Let V=F/Fo, €= Cm(V). If IEG, then
[§, I]=%o and the lemma is clear. We may assume that I &G. Hence,
I inverts an element M of M of odd prime power order r*>1, such
that M€ @€, M &G@. Since Cy(I) is of index 2 in V, it follows that
r=23. Thus, this lemma follows from Lemma 5,20,
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LeMMmA 5.22. Suppose p is an odd prime, & is a p'-reduced p-solvable
group, S, is a Sy-subgroup of & and U is a normal cyclic subgroup of
S. Then A 0,(S).

ProOF. Suppose false. Since every subgroup of ¥ is normal in &,,
we may assume that | A: AN 0,(S)| =p. Since [0,(S), ¥, A]=1, it
follows that p =3. Proceeding by induction on [@| , We may assume
that O;(©) is elementary and that & = 0; 3 (S)¥. Thus, S,= 0,(&)A
and ¥ is cyclic of order 9. Since [, 03(&)]=(¥), it follows that
03,5 (&) = 0;(8)Q, where L is a quaternion group. Minimality of &
forces | 03(&)| =9. Hence, &= 0;(&) - N(Q) and N(Q)N0y(S) =1.
This implies that &; has exponent 3, against the presence of U. The
proof is complete.

LeMMmA 5.23. Suppose A is a normal subgroup of the p-group P and
B is an abelian subgroup of N whick is normal in P. Then there is an
element € of Scn() which contains B and is normal in P.

Proor. Let € be maximal subject to (a) €<, (b) BSECY,
(c) € =1. If €EC Cu(€), then there is a subgroup D of ¥ such that
DLP, CCDC Cxu(6), ISD: @| =p. Thus, D is abelian against the
maximality of €. Hence, € = Ca(C) Escn(¥).

LEMMA 5.24. Suppose p is an odd prime, ® is a p-solvable group, and
® has no elementary subgroup of order p3. Then each chief p-factor of
® s of order p or p2.

Proor. Let @, be a S,-subgroup of @. We assume without loss of
generality that O, (®)=1. Let = 0,(G). First, suppose p=5. In
this case, the structure of @, is given in 0.3.4 and the lemma follows.
So suppose p=3.

Choose BERB(H), and let A= (B). Let O be a Sy-subgroup of
@®. Thus, Q is represented faithfully on 9, so by definition of B, Q
is represented faithfully on 8. By 0.3.6, Q is represented faithfully
on 9.

By definition of B, cl(B) =2, so A is of exponent 3. Hence, m () =2
since & has no elementary subgroup of order 27. Hence, Q is iso-
morphic to a subgroup of GL(2, 3), so Q is a 2-group. Furthermore,
since ®;/9 is represented faithfully on O;.(®)/$ it follows that
‘ @3: @‘ __5_3

Let @ be a part of a chief series of @ from 1 to § passing through
A and through He=ACs(N). If I%[I =3, then 9B is cyclic, and 9 is
metacyclic, and the lemma is clear. Suppose l%[[ =9, Here we get
| ©: “‘:’OI =< 3. Also, $, has just 4 subgroups of order 3, each of which
is central. As is well known [5], §, is metacyclic, and we are done.
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Suppose l2I| =27. Here we get [@: $o| =3, and $, is the central
product of % and a cyclic group. Again the lemma follows since the
chief factors of @ between 9 and 9, are of order 3.

LEMMA 5.25. Suppose & is a p-solvable group, p an odd prime, and
B isa subgroup of Sof type r(p, p) such that for some Byin B, B=NU(B),
where P is a Sp-subgroup of C(Bo). Then every element of N (B; p') is
contained in Oy (S).

Proor. We may assume that O, (&) =1 and try to show that 1 is
the only element of U (B; p’). Suppose PEU (B; p'), P=1. We may
assume that ) is an elementary g-group for some prime ¢sp, and
that 9B acts irreducibly on §). Let § = 0,(&). Thus, 9 acts faithfully
on §.eWe may assume that =998 and that Y centralizes D(9),
and that §) has no fixed points on $/D(9). Hence,  is of exponent
p, by Lemma 0.8.7 and 0.3.6. This implies that B is a S,-subgroup
of C(B), so by Theorem 2 of [41], we have 9 O,.(S). The proof is
complete.

5.5. Groups of low order.

LEMMA 5.26. Suppose &=PQ, B=9’, | B| =64, | Q| =5 and Z(P)
s a four-group. Then D is isomorphic to the centralizer of an involution
0f U3(4).

ProoF. As is well known [36], the centralizers of involutions of
Us(4) satisfy the hypotheses. Thus, it suffices to show that the
hypotheses determine 9.

Since P=¢’, it follows that P is special. Let P be an element of P
of order 4. Thus, P = (P®) so we can choose a generator Q of Q such
that [P, Pe] 1. Let P; = P¢, i =0, 1, 2, 3. Thus, P¢ = P
= PoP1PyPsZ, where Z&EZ(P). If XEB, then

PXE = (P[P, X])¥'F = (P,[P, X])* = P[P, X][P, X].
For i=0, 1, 2, 3, set B;=PX"%¢'% and
x—l X—l v
2 =Py O = (Py[Py, X])OX = (PoP,P,PuZ[ Py, X)X
= POP1P2P3[P3, X][PoPlePs, X]Z = P0P1P2P3[P3, X]Z.

We can choose X in P such that [P;, X]=2Z and replacing Q by
X-10X, we may assume at the outset that

PX7'ex -

Q R
* Py = PP P,Ps, P;=P%¢, §=01,2,3.

Let Z,= [P, P?] =[Py, P1]#1. Since Q centralizes Z($B), we get
Zl= [Pl, P2]=[P2, P3]=[P3, POP1P2], SO that 1=[P3, POP1]. If
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[Ps, Po]E(Z1), we get that [Py, P]S(Z1), against [Py, B]=2Z(P).
Hence [P;, Po]=2Z, &(Z1). Hence [Py, P3]=2Z; and conjugation by
Q! gives [Py, P;]=Z,. Thus, the commutation relations in P are

[Po, Py] = Z,, [Py, Po] = Z,,
(**) [Po, P:] = Z,, [Py, P5] = Z,,
[Po, Ps] = Zs, [Py, Ps] = Zu.

Again, since Q centralizes Z(P), we get

Pﬁ = Pi = P: = P: = (P0P1P2P3)2 = P:PfP:P: H [P.‘,P,‘] = lez
051<js8

and so

(%) Pi=2Z, 0s5is3.

Now (*), (**), (***) determine 9.

LeMMA 5.27. Suppose T is a metacyclic 2-group and Aut(<) is not a
2-group. Then T is either a quaternion group or is abelian of type
2, 27).

Proor. We may assume that T is nonabelian.

Suppose | %’ { >2. Then T/ (T’) is a nonabelian metacyclic 2-
group, so by induction on ||, it follows that T/ (T’) is a quaternion
group. Hence, £ is a group of maximal class and order 16, so Aut(Z)
is a 2-group. This is not so, by assumption, so |5I’| =2, and T/T’ is of
type (27, 2*). If =2, then Z(T) is of type (271, 2%), so Z(T) is
centralized by every automorphism of  of odd order. Hence, T/
is nonabelian for some subgroup A of Z(T) of order 2, so that T/
is a quaternion group. This is not the case, since IE[ =25 We con-
clude that »=1. This implies that T is a quaternion group, since a
dihedral group of order 8 has no nontrivial automorphisms of odd
order.

LeEMMA 5.28. Let T be a nonabelian 2-group with Scns(T) = &. Sup-
pose N is a group of automorphisms of T of odd order and [¥, T]=T.
Then T is isomorphic to one of the following groups:

(i) A quaternion group.

(ii) A4 special group of order 64 with exactly 3 involutions, each of
which is central.

(iii) The central product of a quaternion group and a dihedral group of
order 8.
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ProorF. First, suppose that € is of symplectic type. Since [¥, T]
=T, T is extra special, by Lemma 5.12. Since S¢n3(T) = &, (i) and (iii)
are the only possibilities.

Let B be a noncyclic characteristic abelian subgroup of T of largest
order. Notice that Z(T)SB. Let €=2%(B), D=%(Y). Thus, Dis a
four-group and Cg (D) is normalized by . Since |T: Cx(D)| =2, it
follows that DCZ(T).

Suppose ¥ centralizes B. In this case, A centralizes T/Cz(YB), so
that $=Z(). Let c=cl(®). If ¢>2, then Z(T) C._1(T) is a noncyclic
characteristic abelian subgroup of T, against the maximality of 9.
Hence, ¢=2. Since 'C Y, it follows that T contains exactly 3 in-
volutions. If € is of type (4, 4), then by a result of Alperin [1], T is
metacyclic, so by Lemma 5.27,  is abelian, contrary to hypothesis.
Hence B is of type (2, 2*), n=1. Since T= [¥, T], it follows that
B==I'. Suppose #=2. Then £/5(T’) contains exactly 3 involutions,
so by induction on ||, T/BXT’) is special of order 64. But in this
case, ¥’ is of exponent 2, against B=<'. Hence, n=1. Since =T’
=Z (%), it follows that D(T) SZ(T), so that T is special.

Let |T: % I =2m, Since ' = D(Z), it follows that every linear char-
acter of T lies in the rational field. By a result of Schur-Frobenius
[15], we get 4=2m+ Zexx(l), where x ranges over all the nonlinear
characters of . If x is a nonlinear irreducible character of &, then
Z(T)Nker x is of order 2, since Z(T) =<' and Z(X) is a four-group,
while Z(Z/ker x) is cyclic. Let 1, Sz, S be the subgroups of Z(T)
of order 2, and let a;= ) _e,x(1), where x ranges over all the nonlinear
irreducible characters of T with Z()Nker x=3;, =1, 2, 3. Thus,
4=2m4a14a;+a;s.

Since $ admits %, we get m = 3. Hence, we may assume that nota-
tion is chosen so that 8)a;. Let €=Z/8:. Then |D(Q)| =2. If Z(®)
is not elementary, then no nonlinear irreducible character of € is real,
so that ¢; =0. This is not the case, so Z(2) is elementary. This implies
that =2, X, where {, is elementary and & is extra special of order
221+1, Hence a;= + | Q| -2?, since & has just 1 nonlinear irreducible
character whose degree is 2. Since 8}a:, we get <2. Suppose [=2.
Then %=1 and so |¥| =64. Suppose /=1. In this case | 2| =2, so
|Z| £32. Thus | T| =32 or 64.

If |EI =32, then since T = [T, A], it follows that 7| ]2[] However,
T is special and no nonabelian special group of order 32 has an auto-
morphism of order 7. Hence || =64.

Suppose A does not centralize B. Then B is of type (27, 27), n=1.
Suppose #=2. Then € is of type (4, 4), and by the above mentioned
result of Alperin, Cg(€)=9. Since T stabilizes €D D D1, it follows
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that T/9PB is elementary of order 4 or 16. It now follows easily that

|2[] =3, and that ¥ has no fixed points on T. Hence, cl() =2, and

the lemma follows. If #=1, the lemma also follows, since in this case
=ZX)=T".

LEMMA 5.29. Suppose S=ITQ, where |T| =64 and | Q| =5. Let
O = 0:(8) and assume that O=F(S) is the central product of a qua-
ternion group and a dihedral group of order 8. Suppose T is an involu-
tion of — D and Cy(T) contains a four-group. Then Cgy(T) is a four-
group.

Proor. Let I be an involution of Cg(T)—9’; I is available since
| §'| =2. We can assume without loss of generality that T inverts Q.
As Q acts irreducibly on /%’ and as I&Z(9), we may then choose
Q such that [I, I®]=Z5#1.

Let Iy=1I, I;=1I%, I;=1I9, I,=I%. Since (*=1, it follows that
I8=ILILL1IZe=ZeI,I,I 1, Since [11, I]=2Z, transformation by Q
ylelds (I, I]=[I;, I.]=Z. Now I? —IQT—IQ' =LILILIZe, If=1%T
--I1 =TI, Thus, I3I, is of order 4 and (I;, I1)/ 9" = Cg,9 (TD).
Since ([3[)T=1I,03# I;14, it follows that Cg(T)=(Il;, Z), a four-
group.

Lemma 5.30. Suppose & is a 3-solvable group, |&S: 0y (S)| =3,
©s is a Ss-subgroup of S and Oy (S) = [0s(S), S3). Suppose also that
& is faithfully represented as automorphisms of an elementary 3-group
V and that | V: Cv(Sy)| =3. Then 04(®) is a quaternion group.

Proor. Let V=11® - - - ®V,, where each V; is an indecompos-
able &-module. We may assume that &; does not centralize V3. Since
| V: Cv(Ss)| =3, weget | [V, @;]| =3, so that [V3, &)= [V, &;]. This
implies that ©; centralizes Vo® - - - @ V,.Since Oy (&) = [0x (&), &;],
it follows that Oy (&) also centralizes Vo® - -+ @& V,. Thus, & is
faithfully represented on V3, so we may assume that V=V, is inde-
composable.

By (B), it follows that |0s(&): Ox(S)N\C(S;)| is a power of 2.
Let T be a S;-subgroup of & which is normalized by &;. Thus,
[T, &3]51. Suppose [T, S;]<0:(S). Then by induction on |S|,
we get that [T, S;] is a quaternion group. Hence, | Oy (®): Oy (&)
NC(Sy)| =4.

Let §=Ngee Oz (&)N C(S;)8. Thus, 8= 0x(S)/§F has a faithful
permutation representation on 4 letters, and § <] &. Since [S;, &] =8,
and since 3} [ @l + it follows that & is a four-group. Now FC C(Ss),
and Ce(F) < &, so that Ce(§) contains [0 (&), ©;] = Oy (S). Hence,
FESZ(&). Since V is indecomposable, § is cyclic. Also, =1, by (B).
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Finally, no nonidentity subgroup of § has nontrivial fixed points on
V. Since § normalizes [V, ;], a group of order 3, we get | %I =2,s0
| | =2 and 04(©) = [T, S;], against our assumption.

We may now assume that [T, S;]=04(&), so that Oz (&) is a
2-group. By (B), &; centralizes every characteristic abelian subgroup
of Oy (). Hence, O3 (®) is special by Lemma 5.17. Since V is inde-
composable, Oy () is extra special. It follows from the proof of (B)
that O (&) is a quaternion group.

LeMMA 5.31. Suppose =91 X D2, where Di~Ay, 1=1, 2. Let < be
the Sa-subgroup of O and let T;=ITNDs, 1=1, 2. Let Q be a Ss-subgroup
of O and let Qi=QND;, i=1, 2. Let Q3, Q4 be the remaining sub-
groups of O of order 3, and let B be any subgroup of T of order 4. Then
one of the following holds:

i) BNT#1,

(ii) BNT,#1,

(ii)) QS N(B),

(iv) Q4EN(B).

Proor. Suppose neither (i) nor (i) holds. Then 8=(II', JJ'),
where I, JESE, I', 'EZS, and I=J, I’ J'. Since Q, permutes Tf
transitively by conjugation, we may choose a generator Q; of Q; with
I =J; since Q, permutes T} transitively, we may choose a gen-
erator Q; of Q, with I'&=J'. Let Q= (Q1Qs, so that II'?=JJ’. Since
Cz(Q) =1, it follows that T'+e+@’=1 for all T in . Hence, Q nor-
malizes B. Since (Q)=Q; or Q, either (iii) or (iv) holds.

LeEMMA 5.32. Suppose & =UT where A < &S, A is elementary of order 9
and A= C(NA). Suppose also that T is a dihedral group of order 8. Let M
be an irreducible F;&S-module on which & acts faithfully. Then | M| =16
and ¥ contains exactly one four-subgroup B such that M is a free FoSB-
module.

Proor. Let £=(T1, T:), where T3, T, are involutions, and let
Z=(T1T»)? Let B;=(T:, Z), so that B, B, are the only four-sub-
groups of 8.

LetS={T1, T1Z, Ts, T:Z} and for each I in &, let A(I) = Cu(l).
Since no element of & inverts ¥, it follows that I AU )] =3 foreach I
in §. If A(T)=A(J), then (I, J) centralizes A(I). Since Z inverts ¥,
we get I=J. Thus, as I ranges over &, A(J) ranges over all subgroups
of A of order 3.

Since ¥ is elementary of order 9, there is 4 in ¥f such that M,
= Cy(4)#0. Changing notation if necessary, we may assume that
(4)=A(T1). Thus, Bi normalizes (4) and Z inverts 4, so that M,
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admits ABV;=L0. Let My be an irreducible Q-submodule of M,.
Since & acts faithfully on the irreducible module M, we get Cy () =0.
Since T inverts A/(4), T1Z centralizes A/{A4), so T1ZE 0,(LQ/{4)).
Thus, T1Z centralizes My, so we may view M; as a FQ-module,
where Q =Q/(4, T1Z). Thus, | M1| =4, Since My+ M;T; admits S,
we get Mi® M;T>=M, and so | M| =16. Since T1Z centralizes M;
and since M7 admits 717, it follows that | CM(TlZ)I =8. Hence, M
is not a free F,®B;-module.

Choose m& My— Cy,(Z). Then (m VI VEDB,) contains M; and
M, T, so coincides with M. Hence, M is a free F;8B;-module, and we
are done.

LeMMA 5.33. Us(3)DL:(7).

ProoOF. As is well known [12], Ly(7) has an irreducible complex
matrix representation p of degree 3 whose character liesin Q((—7)1/2).
The restriction of p to a subgroup  of order 21 is absolutely irre-
ducible and so we may assume that py lies in Q((—7)¥/2). This already
forces p to lie in Q((—7)'%), so we may assume at the outset that p
lies in Q((—7)Y/?) and has p-integral entries where  is a divisor of 3 in
the ring of integers of Q((—7)1/?). Reading (mod p) gives an abso-
lutely irreducible matrix representation ¢ of Ls(7) in SL(3, 9) with
character ¢, say. Let 0*(X)=t[¢(X~1)]~, where ~ denotes the map
induced by the generator of Aut Fy. Thus, ¢* and ¢ have the same
character. Since § has just 2 irreducible representations of degree 3
in Fy and since both lie in U;(3), we may assume at the outset that
o* and o agree on 9. This forces o=0*, so a(L2(7))CU;(3), as
required.

5.6. 2-groups, tnvolutions and 2-length. The next lemma plays a
basic role in this work.

LemmA 5.34. Suppose the subgroup T of the solvable group & is
elementary of order 27>1, and |F(@)| is odd. Then F(S) contains a
subgroup A with the properties

@) A=W XWX -+ + XUy, where N; is of prime order,

(b) A; is T-invariant, 1 S1<n,

(C) Cﬁ(m) =1,

(d) if Ti=Nji Cx(A;), and D;=WT;, then D; is a dihedral group
and TP=D1X « + - XDy,

Proor. By hypothesis and 0.3.3, Cg(F(&))=1. Let ¥ be a 2-
invariant subgroup of F(&) minimal subject to (c). Since ¥ is nil-
potent, we may choose a S-invariant subgroup % of prime index in ¥.
Choose I in Cg(¥1)". Then %= [%, I] is a T-invariant normal sub-
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group of ¥, and [¥, I, I]=[¥, I]. The second equality implies that
A=W X% Let Ty=Cg(). Since Aut() is cyclic, T=T1X(I),
so if we set D= (U, I), D= (T1, {), we get TA=Dy XD;. Hence,
we are done by induction.

LEMMA 5.35. Let I be a subgroup of the group & such that

@) | M| is even.

(b) M contains the centralizer of each of its involutions.

(©) Nses M8 is of odd order.
Then (&) =1.

Let T be a Se-subgroup of M and let I be an involution in Z(<). If in
addition to (a), (b), (c) we also have

(d) NE)SI:,
then
@ (M) =1,

(ii) M contains a subgroup M of odd order such that M =M, Cne(1).

ProoOF. Let J be a fixed involution of I, and let K be any involu-
tion of & which is not conjugate to J. Then JK is of even order, so J
and K commute with an involution L. Applying (b) successively to
J and L, we have KEM. Thus, M contains the normal closure of K
in &, contrary to (c).

Suppose now that (a)—(d) all hold and J is an involution of .
Then J=S-1IS for some S in &, so TSCTIM, TE=I¥, M in M, so
SM-1ENE)TM, so SEM, that is, ¢(IN) =1.

Let €=Cm()S be a coset of Cye(I) with SEIM.5 Suppose J, K are
distinct involutions in €. Let M=JK. Thus, M?s1 and M cen-
tralizes I. Also, JE C*(M), so that I and J are not conjugate in
C*(M). Hence, IJ is of even order, so that I and J commute with a
common involution I'*. Applying (b) successively to I and I*, we get
JEM, against SEM. Hence, each coset of Cne(Z) in &—IM contains
at most one involution. Notice that (a) and (c) imply that MCS.
Since I contains exactly m = I m: Cn(L )l involutions and & contains
exactly |@: Cn (L )| involutions, it follows that each coset IS of M
in ©—IN contains exactly m involutions Iy, « - -, I, If m=1, then
M= Cm(I) and we may take My=1. Suppose m>1. Let My=M
MN(Iy, + « +, I,) so that Py is normalized by Iy, and 1, I1Iy, « + -, I11,
is a set of representatives for the cosets of Cm(I) in 9. Hence,
M=MCm(I). Clearly, |§mo] is odd, since [y commutes with no
involution of M. The proof is complete.

8 The argument here appeared in Feit [11].
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LeMMA 5.36. Let & be a 2'-reduced solvable group and let J be an
involution of @ — 0:(S). Then there is an element Q of & of odd prime
order which is inverted by J.

Lemma 5.36 is a special case of Corollary 1 of [39], and will be
used very often in this work.

Lemwma 5.37. If X is a 2-group and X' is elementary and central then
©:(X) is of exponent 4 and ker(Aut(¥X)r%8Aut(Q(X))) is a 2-group.

ProoF. The first assertion follows from the fact that [X2, V]
=[X, Y]?=1for all X, Y in %, and the second from Lemma 5.17.

LeMumA 5.38. (a) Suppose ® is a finite group of even order with no
subgroup of index 2.

(i) Let & be a Se-subgroup of © and let M be a maximal subgroup
of ®o. Then for each involution I of ®, there is an element G in ©&
such that I¢SIN.

(ii) For each 1 in U(2) and each involution I of ©, some conjugate
of I centralizes Ul (see Definition 2.8).

(b) Suppose T is an elementary 2-group and N is a group of odd order
which normalizes T and has no fixed points on L. Suppose ICT
and Ty is of index 2 in T. Then there is an element A in A with [4EI,.

ProoF. (a)(i). Let ¢ be the transfer of @ into /M. Thus, (1)
=IM/IM. Since | (GH @52| is odd, the number of cosets €= @G of ©;
in @ which satisfy €7 =G is also odd. Since ¢(I) = M ][] ¢ GIG—* where
G ranges over a set of representatives of the cosets fixed by I, we can
find G in @ with GIG*& I, as required.

Both (a)(ii) and (b) are consequences of (a)(i).

LeMMA 5.39. Suppose p is an odd prime, B is a p-group and T is an
elementary subgroup of Aut(P) of order 8. Let &= {Tl red, cp(D)
is moncyclic}. Suppose that T contains a proper subgroup To which is
disjoint from & and such that TT' €T, for all T, T'E L. Then

(a) P ¢s abelian.

(b) m(P)=3.

(©) |&]=38and (%)=L

@) To={T7T"|T, T'EEL}.

Proor. Clearly, m(P)=3, since GL(2, p) contains no elementary
subgroup of order 8. Our hypotheses guarantee that if T, T"&§,
then TT'& .

We first treat the case P'=1. Let E”={T1, cee, T7}, let PBo
=Q(P), let m(P) =m, and define a; via p%=| Cp,(T3)|. If Cu(T) =1,
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then €U {1} contains a four-subgroup of T and so T, does not exist.
Hence, Cp(T)=1. By Satz 2.3 of [44] applied to T acting on Bo, we
have 1=p—tm+22s% g0 that 3m= Y a, Clearly, a;<3 for all ¢ since
¢ {1} contains no four-subgroup. Assume by way of contradiction
that m=4. Suppose a;=3. Then each involution of T/(T}) cen-
tralizes a subgroup of Cg,(73) of order p. Let Po= Csp,(T1) X B*,
where $* admits T. Let $ be a T-subgroup of P* of order p and let
E=Cz(P). Then ES&U{1} and £ is a four-subgroup of T. This is
impossible, so that ¢;=2,7=1, 2, - - -, 7. Since & is contained in a
coset of ¥, it follows that |§| <|To| 4. Thus, D a:<4-2+3<3m,
against the preceding equality. Hence m =3 so that (b) holds.

Let P=P1 X P2 X Ps, where PB; is an indecomposable T-group. Let
A\: be the character of £ on P;, and let T;= Cg(P,), and set Ty;
=TNZ;. If i57, then Ty is of order 2; Ti;j= (T';). Also, T, Tas, Taa
all lie in § and are distinct since TS Aut($). If ¢ is any permutation
of {1, 2, 3}, then T,y inverts P,s and centralizes Poay X Poe)-
Also, Toys@ T o0 centralizes P,y and inverts both P,y and Poey,
while T2 79375 inverts PB. Thus, (c) and (d) also hold.

We may now assume that P’ 1. We apply the portion of the proof
already completed to B/P’. Let A1, Az, A; be the characters of T on
PB/P’ defined previously. We may assume that P’ is of order p. Then
2 (P) is of exponent p. If |%(P)| =p*, then we may assume by
induction on I‘BI that P=0(P), since by 0.3.6, T is faithfully repre-
sented on O (P). In this case, P is the direct product of a group of
order p and a nonabelian group of order p? and it is straightforward
to verify that ¥, does not exist. Hence, Qi (P) is of order p? and is
elementary. Hence, B'CUY(P) so that the character of T on P’ is
one of A1, Ng, A3, 52y Ay, S0 that Ay =»Ag\;. This implies that Ty cen-
tralizes B, against our hypothesis. The proof is complete.

LEMMA 5.40. Assume the following:

(i) & s a solvable group.

(i) (&) =1.

(iii) 4 Ss-subgroup T of S contains more than one involution. Then
& has 2-length 1.

Proor. We assume without loss of generality that Oy (&) =1. Let
To=0:(&). We must show that T(=g.

Let M=MN(Z(X,)). Since (&) =1, M contains all the involutions
of &. Let |§IR| =g=2m, and set €= C(M).

Let Q be a Sy-subgroup of & and let Qo=0MN0;2(S). We
assume by way of contradiction that £, C<. Then N(Qo) contains
an involution since &=I,N(Q,). Since all involutions of & are in
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M, Cm (L) ## 1. Since C;m(Qy) < S, it follows that O, centralizes M.
Hence Q centralizes every abelian subgroup of T, which Q, nor-
malizes. By Lemma 5.17, T1=[Qo, To] is special. Since T, <&, it
follows that Z(T;) = .

We argue that || =g¢» for some n=2. Namely, if WED¥ and
there are exactly 7 solutions to the equation X2=W with X in I,
then 7 does not depend on W, so Iiill =r(¢g—1)4¢. Hence, ¢g—1
divides | .| —1, which implies the assertion.

Let A be the g—1 by ¢—1 matrix whose rows are indexed by the
elements of 9 and whose columns are indexed by the hyperplanes
of M, and where the (2, j) entry is 1 if ¢ is contained in j and is 0
otherwise. Then ‘44 =xI-+yN, where N is the matrix with 1 in each
entry, x+y=g/2—1, y=¢g/4—1. Since N has rank 1 and ¢—1 is the
only nonzero characteristic root of N, it follows that ‘44 is non-
singular. Hence, 4 is nonsingular. We view & as a permutation group
on the elements of 9%, and as a permutation group on the hyper-
planes of M. By a result of Brauer (0.3.12), both representations of
& are transitive.

We next argue that n=3. Namely, ¢= D exx(1), where x ranges
over the irreducible characters of T3 and €,=0, 1 or —1 [15]. We
have e,=1 for all the g»! linear characters of 1. Let Ul be a hyper-
plane of M and T,=T:/U. Since Q, centralizes M, Ly acts on &
Since 31-— [31, Qo] so also 3:1-- [fh 0] Now |3:1| "'2 and il
= Cg,(Qo). Since Qo normalizes Z(Ty), it follows that Z(§1) is ele-
mentary of order 2g,, say, this condition being the definition of g,.
Thus, T is the direct product of an elementary group of order g, and
an extra special group of order 2a?, this condition being the definition
of a. It follows that e=¢,=¢,+5%0 for all the nonlinear irreducible
characters x, x’ of T1, of which there are go. Since & permutes transi-
tively the hyperplanes of I, we get g=g""'+ego(g—1)a. Here we also
have goa?=¢* 1= | Tt $1| This already shows that e= —1, and so
g=qua’®—qo(g—1)a=gea(a—g-+1). Since a—g+1 is odd, and ¢ is a
power of 2, we get g=a, go=1, n=3.

Suppose T1CTo. Let T,/Ty be a chief factor of & with T,CT,.
Then £, centralizes Tp/Ty so Tu=T1Cqg,(Qo). Let Ty/M
= Cg,m(Cg,(Qo)). Then Cg,(Qo) centralizes T, by the three sub-
groups lemma and the equality Ts= [Ts, Qo). Also, T3 < S. Choose
TE Cg,(Q¢) — 1. Then T2EMY, so T2= T% for some T in Tp. Hence,
TTy is an involution of To— M. This is impossible, so T, =T,.

Let Iio: EZ{,I =2! g0 that [=2m. Let M=%Z,/T; so that M is a
F,Q-module. Let N be an irreducible submodule of M. Suppose
NCM. Let INI =g*. If ¢*<q, then Q has a subgroup Q* of index
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<g—1such that Cy(Q*) 0. Hence, Cg,(Q*) 51, so that Cy(Q*) #=1.
This implies that Q is not transitive on 3¥. We conclude that ¢*=gq.
Since this inequality holds for every irreducible submodule N of M,
we get M=N@N', where |N|=|N'| =q.

Let & be the algebraic closure of F, and let M*=%k® M. Since [DI
is odd, it follows that the irreducible submodules of M* have odd
dimension. By the previous paragraph, we get that every irreducible
submodule of M* has a dimension which is a proper divisor of 2m,
so has dimension <m.

Since [ Q| is odd, a result of Ito [28] implies that for each p>m,
L has a normal abelian S,-subgroup. Since Cg(Qo)=2Z(Q), it
follows that Q, contains all the normal abelian S-subgroups of Q.
Hence, since Q,CG, it follows that all the prime divisors of | &: |
are <. By an elementary number theoretic result [4], we get m =6.
Hence |©: €| is a {2, 3, 5}-number, against 26—1=32.7. The proof
is complete.

LEMMA 5.41. Suppose the following hold:

(a) & is a solvable group.

(b) O0x(&)=1.

(c) & contains a noncyclic abelian subgroup of order 8.

(d) If R is any proper subgroup of &S of index a power of 2, then §
contains no noncyclic abelian subgroup of order 8.

Let T be a Sy-subgroup of ©. Then TS and one of the following
holds:

() T=1.

(ii) T s extra special of width at least 2.

(iii) $ contains a quaternion subgroup T, of index 2 and T
=T, Cz(Ty).

(iv) £ is special and Z(X) is a four-group.

Proor. If $'=1, the lemma follows from the containment
C(0:(®)) S 0:(@).

Let $y= 0:(®). First, suppose that T, contains a noncyclic abelian
subgroup of order 8. By (d), £,=<.

Let c=cl(Z), and assume that ¢=3. Then C,;(Z) is abelian so is
of order 4 or is cyclic. But then (d) is violated in Ce(C.—1(T)). Thus
c=2.

Case 1. | Z(T)| =2. Since | Z(T)| =2, D(T) SZ(T), so D(T) =Z(2).
Thus, £ is extra special. Clearly, the width of < is at least 2, so (ii)
holds.

Case 2. Z(T) is cyclic of order at least 4.
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Clearly, T/Z(Z) is a chief factor of &, so |T’| =2. Hence %(T)
is of exponent 4, so T=0(T). Thus, Z(T)/T' is a direct factor of
T/, s0 /T =Z(T)/T'XT/T’, with T, < S. Hence, T, contains
no noncyclic abelian subgroup of order 8 and £,/$’ is a chief factor
of &. It follows that £, is a quaternion group, so (iii) holds.

Case 3. Z(T) is noncyclic.

Since Z() is noncyclic, Z(T) is a four-group. Hence, T/Z(T) is a
chief factor of &. If Z(T) =T, then T is special and (iv) holds. We
may assume that |’ =2. Hence, Z(T) =2Z(&). Also, Z(T)/T’ is a
direct factor of /3,50 T/T'=2Z(T)/T' X T1/T’, with Ty < S. Hence,
<, is a quaternion group, so that (iii) holds.

Finally, suppose that O.(&) contains no noncyclic abelian sub-
group of order 8. If 0,(&) contains no four-subgroup, then 0,(&) is
necessarily a quaternion group, so & contains no noncyclic abelian
subgroup of order 8. Let N be a four-subgroup of 0.(&). Clearly, i
is self-centralizing in 0y(&), so 0:(&) is either of maximal class or
0:(&) =MN. Since the only 2-group of maximal class which admits a
nonidentity automorphism of odd order is the quaternion group, we
get 05(&) =N. But then & contains no noncyclic abelian subgroup
of order 8. The proof is complete.

LeMMA 5.42. Suppose the following hold:

(a) & is a solvable group which is faithfully represented as auto-
morphisms of the elementary 3-group G.

(c) B is a subgroup of & of order 3 such that G=EyXE, where 3
centralizes G, | G| =217, and &, is an indecomposable B-module.

(d) B mormalizes but does not centralize the four-subgroup Q of ©.

(e) B isthe center of a Sy-subgroup of &.
Then [0y (®), B] is either a four-group or is the central product of two
quaternion groups. Also, C=GCyXE¥ where G 1is centralized by
[0s(®), 8] and G is an irreducible faithful F3[Oy(S), 8]-module.

Proor. By (e), 8& Oy 3(&), so QL 0;(S). We assume therefore
without loss of generality that Oy (&)= [0s(S), 8], S=0:(S)8.

Let § be the normal closure of Q in & and set £ = Oy (&). For each
prime g, let &, be a S;-subgroup of & normalized by 8. If g2 and
g5#13, it follows immediately from (B) that 8 centralizes &,. Since
f=[R, 8] and since { is solvable, it follows that & is a 2, 13-group.
Since [R13, 3] is of order at most 13, it follows that 8 <] ®. Thus, § is
a 2-group.

Suppose [R5, 8]5%1. Then [f15, 8] =& is of order 13 and [&, €]
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is of order 27. This implies that & centralizes ®;. Hence, Q centralizes
G, against (a). Hence, 8 centralizes 813, so & is a 2-group.

Case 1. ® contains a noncyclic characteristic elementary abelian
subgroup 2.

Let Ao=ANZ(R). We may assume that Ao=NU(Z(R)).

First, suppose that [%,, 8]#1. Then %= [, 3] is a four-group
and [G, %] is of order 27 and is normalized by 3, while Cg(?l) is
centralized by £3. Hence, { centralizes €, so & =1. Hence, & is
a four-group and the lemma holds.

Next, suppose that B centralizes o Let €=M X -+ XM,
where M; is the join of all the irreducible -submodules of € which
are isomorphic to one of its irreducible constituents. Then 8 permutes
the M;. If 8 permutes My, M,, M; transitively, then [ M1| =3,and 3
centralizes MyX -+ «- X M,. In this case, & centralizes €, so & =1,
against [, 8]=1. Hence, 8 normalizes each M;. Hence, we may
assume that 3 centralizes M;X - - - XM, and so & has a faithful
irreducible representation. Hence, ¥, is cyclic, so Z(f) is cyclic.

Since B has no fixed points on &/8’, it follows that 3 has no fixed
points on ANZ(8)/No. Hence, AN Z:(R) is elementary of order 8. Let
€C= Cp(AN2Z;(R)). Then € < &, and D(B) centralizes [ANB:(R), 8, E].
Hence, D(€) =1, since D(€) < &. Since &/€ is a four-group, and since
Z(R) is cyclic, it follows that €=ANZ:(R). Thus, l@[ =25 and
' =2Z(R) is of order 2. In this case, { is the central product of two
quaternion groups and we are done.

Case 2. Every characteristic abelian subgroup of & is cyclic.

Since ® = [®, 8], Lemma 5.12 implies that { is extra special. The
width of & is at least 2 since Q exists. It follows that the width of &
is two. Since (Q, &) is elementary of order 8, & is the central product
of 2 quaternion groups. The proof is complete.

LEMMA 5.43. Suppose ® is a group with no subgroup of index 2, T is
a Sy-subgroup of @ and N=N(T).

@) ZENT, XW@ZED®)))=EZERE)INT)XF, where FIN and
TNZMN) =1.

(b) Suppose T is isomorphic to a subgroup of GL(3, q), q is an odd
prime power and T contains an elementary subgroup of order 8. Then

T=1.

Proor. (a) If %(Z(T))EST’, the lemma is trivial, so suppose
NU(Z(E)) LT, By complete reducibility of 2(Z(T)), it follows that
Q(ZE))=ZE))NT') X T, where F I N. Thus, it suffices to show
that FNZ(MN) =1. Suppose false, and I is an involution of FNZ(N).
Let £, be a subgroup of € which contains £’ and is maximal subject
to I&ZT,. Thus, T/T, is cyclic and every involution of T—T, lies in
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Tol. Let I=1,, - - -, I, be all the involutions of £—<T, which are
®-conjugate to I. Suppose I[;EZ(T). Then I and I; are conjugate in
N, so I=1;. Hence, m is odd. It follows that if ¢ is the transfer of @
into T/, then +(I) =Tol, against 2/| ©®: @'].

(b) Let V be the underlying space on which GL(3, ¢) acts, and
assume without loss of generality that TCGL(3, ¢). If m(Z(T))=3,
then V is the direct sum of 1-dimensional T-subspaces and so T'=1.
We may assume that m(Z(T)) <2. Let § be an elementary subgroup
of T of order 8. Hence, §§ contains an element which inverts V. Thus,
%(ZE@))LEZ'. Thus, by (a), Z(T) contains a four-group N with
NI’ =1. Since T'#1, m(Z(T)) =3. The proof of (b) is complete.

REMARK. The group U;(3) shows that with @ = U;(3), N, T as in
Lemma 5.43, we cannot conclude that 9 has no fixed points on
Z(T)/Z(X)NT', since Z(T) is cyclic of order 4 and Z(E)NT' is of
order 2.

LeMMA 5.44. Suppose D=gp({D, T|D"=T2=1, TDT=D"'Y)4is a
dihedral group of order 2n with n odd, n>1, and that D is represented
as automorphisms of an abelian 2-group N. Suppose also that AN C(D)
=1. Let o=ANC(T). Then A=A XAp.

ProOF. Set B= (Ao, AP). If 4 EANAP, then both T and D-TD
centralize 4, so that T'D-'TD=D? centralizes A. As D? is also a
generator for (D), we get A=1. Thus, B=AXAD. Let B=%>"
XUP, For each 4 in ¥y, we get APT'APEU,; so %o Bi. Hence,
AP U X AP, so that B admits D. For each 4 in %, we have A7
=A1T4-1 and AT, Thus, T inverts A/B. This implies that
D centralizes A/ B, and so A =B, as required.

LEMMA 5.45. Suppose V is an elementary abelian 2-group and & is a
solvable subgroup of Aut(V) with Oy(&S)=1. Let P be an element of S
of order 4, and assume that the minimal polynomial of P on V divides
(x—1)3 Let V=110 V@ - -+ ®V,, where each V; is an indecom-
posable (P)-module, and let | V.-I =24, 1 <i<1, notation being chosen
5o that dy=dy= « + + =dy. Then dy=3.

Proor. Suppose false. Since P21, it follows that d; = 3. Thus, our
hypothesis guarantees that di=3, d;52, 2S¢t

We proceed by induction on | &|. We get that & =Q(P), where Q
is a special g-group and where P2 inverts £/Q' and P2 centralizes Q’.
Since P is an exceptional element in the sense of Hall-Higman [26],
it follows that £ is nonabelian, and that ¢=3. Since we are proceed-
ing by way of contradiction, we may also assume that V is an irre-
ducible S-module.
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Since P? is an involution, we have Q = §Q/, where & is the set of
elements of  which are inverted by P2 Since Q is nonabelian, we
may choose Q1, Q; in & such that @y and Q; do not commute.

Since d1=3, d;<2 for ¢=2, . - -, ¢, it follows that Cy(P?) is a
hyperplane of V. Since (P?, Qi, Q2)=(P?, Qr'P%Qi, Qi'P?Q,), it fol-
lows that (Qi, Q:) centralizes a subgroup W of index 8 in V. Since the
Ss-subgroups of Aut(V/W) are abelian, it follows that [Qi, Qz] central-
izes V/W and W, so centralizes V. The proof is complete.

LEMMA 5.46. Suppose & is a solvable {2, P, q}-group where p, g are
distinct odd primes. Let { @y, S, S} be a Sylow system for & and as-
sume the following:

(a) &, 1s a minimal normal subgroup of S of order p or p2.

(b) l@ql =g and &,= [@m @q]-

(c) 0:(®)=1.
Let E be an irreducible F:&S-module on which &, acts faithfully. Let
Ey= Cg(&:). Then one of the following holds:

@) lEol =8.

(ii) | Eo| =4 and &, does not normalize E,.

Proor. Let E=E,® - - - @E,, where the E; are the Wedderburn
components of E as &,-module.

First, suppose l@,l =p. Then &,&, is cyclic and & is a Frobenius
group. Since ¢= 3, we get that (i) holds.

We may now assume that | @,I =2, Here s>1 and &,&, permutes
{El, <., E,} transitively.

Case 1. s is a power of 2.

Let &; be the stabilizer of E; in &, so that ¢| |2, |S: %| =s. We
choose notation so that &,C Ly. Let S =GN, so that | Sp: | =s.
Let T be a transversal to &, in S,.

If LCE,(C;z)I =8, let ey, e, €3 be 11nearly independent elements of
Cz,(Es). Let ¢f = E,ezet Then e}, ey, e; are linearly independent
elements of Eq, so (i) holds. We may assume that | Cz,(&,)| 4. By
induction, we get l CEl(Cz)] =4 and &, does not normalize Cg,(&,).
Hence, € ¢ &:S,, and in partxcular, &S, is nonabelian. On the
other hand, & acts reducibly on &,, since Ce,(E) is of order p and
is normal in &. Hence, &/ centralizes &,. This is not the case since
S,=F(&).

Case 2. s is not a power of 2.

Since €,C4,, it follows that I@ | =2¢¢ for some a=0. Let
Oy, * * +, O, be the orbits of {El, CIN ,} under &,. Let Ei= @ E;,
where E; ranges over 0;. Thus, E=E!@® - - - @ E" as S;-module. If
r= 3, then (i) holds. Hence, we may assume that r=2, If [ CE‘(@z)I
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=4 for some 4, then again (i) holds, so we may assume that | Cgs (&y)|
=2,1=1, 2, so that E¢= Cp(S,) ® Cz*(&,) is of order 4.

Let 8=N,2, ¥;, so that &/{, acts faithfully as a permutation group
on {Ei, -, E,}. Since €; is a ¢’-group, it follows that &,/ is
represented regularly. Since r=2, &, has 2 orbits, of size 2¢ and
2%(q@ — 1). Hence, &/%, is represented as a primitive group on
{El, e, E,} since every set of primitivity has a multiple of g ele-
ments. Hence, a=0, since & is solvable. So &/8, is a Frobenius
group of order ¢g(g—1). Since |@pl =p?, we get ¢=3.

Since s=¢, &, normalizes Ce,(E1). Hence, &, acts reducibly on
&,, so &, is abelian. Hence &; <] €., since &,&; is isomorphic to
a subgroup of GL(2, ). Since &/2==Y s, ©:&; is not 2-closed. Let
Gy = 0,(&,S3), so that ©,&;/Ss~ ) 3. By Lemma 5.7 of [20], &;is
represented faithfully on Cg(&,). Let E=[Cz(&;), 3]0, and let
F be a minimal &,&-submodule of E. Thus, | F| =4, | Cr(&y)| =2.
Hence, (ii) holds.

REMARK. (i) need not hold. There is a group of order 23:3-5? for
which a module E exists violating (i). We may take IE I =212,

LEMMA 5.47. Suppose S=&; X - - - X&,, a1, and S; is a di-
hedral group of order 2p;, where p; is an odd prime, 1 1 <a. Suppose
also that M is a kS-module, U is an Se-subgroup of &, k is of character-
istic 2, and Cy(&!)=0 for 1=i=a. Then M is a free kN-module. If
m(1—A)(1—B) =0 for all m& M and all A, BEY, then a=1.

Proor. We assume without loss of generality that k is algebraically
closed. Let 0'=l@'|—1255@1 S. Then M= Mo+ M(1—0), so that
M=M(1—g¢), since & centralizes Mo, while Cx(&’)=0. We may
further assume that M is irreducible. Let M= M,® - : - ® M,, where
M; is an irreducible #&’-module. Let x; be the character of &’
afforded by M;. Let U;=ker x;, and let U; be the stabilizer of x;in U.
Then ¥A; normalizes U; and [&’, %A;]SW; Suppose A;=1. Then
[&’, A:]51, so that U; contains some &/ . This is not the case, since
U, centralizes M, while Cy(&})=0. Hence, A;=1. Thus, ¥ permutes
transitively and regularly the M; so M is a free k¥-module. If
m(1—A4)(1—B)=0 for all 4, BEY, then a=1 by the freeness of M.

The next two lemmas deal with the following delicate situation:
& is a group, 1C&,C&,CS is a chain of normal subgroups of &
such that

(a) &, is an elementary 2-group.

(b) &1/, is a 3-group.

(c) l@: @1' =2 and X is an involution of &—&,.

Furthermore, M is an Fy&-module and N is a submodule of M such
that
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(a) &, stabilizes MDNDO.

(8) © centralizes N.

@) | M: Cu(X)| =2.

(6) M, is a subgroup of M of index 2 which contains Cux(X).

(e) IN I =4.
Let M be the set of all m in M such that some element of & of order
3 centralizes m.

LeEMMA 5.48. Suppose ©S1/&, is elementary of order 27. Then the
following hold:

(@) If fS2, then M1 —X)C M.

(b) If f=3, then My(1—X)NM 0.

Proor. Let P be an S;-subgroup of &. If P does not act faithfully
on M, both (a) and (b) are clear, since M =M. So we may assume
that P acts faithfully on M.

Case 1. [@1, X]g@o.

Here (&,, X) is a normal Sz-subgroup of &, so that N4+ M(1—X)
admits PB. Since the order of N+ M(1—X) is at most 32, some ele-
ment of PBf centralizes N+M(1—X), so N+M(1—-X)S M, and we
are done.

Case 2. [y, X] LS.

By Lemma 5.36, there is an element R of & of order 3 which is
inverted by X. Let &= { S| SE®, Sis of order 3, Sis inverted by X }.
Suppose there is S in & such that M(1—S) has order >4. Let
M =M@1-S). Thus, ¥ is a free F3(X)-module, so | 7| =2, with
fo=3. Thus, fo=2 or 3. Since P centralizes N, we get that INN=0.
Let €= Ce&(S). Then €N&, normalizes M, so centralizes M, as &,
stabilizes MDNDO. Thus, Ag(M) is 3-closed. If | #| =2¢, then some
element of & of order 3 centralizes M. If f=2, then ¥ DM(1—X),
and we are done. If f=3, then MNM,(1—X)#0, and we are done.
We may assume that lﬂ l =28, In this case, f=3, and we may as-
sume that PCE€ and that P acts faithfully on M. Furthermore, M
contains M(1—X). Hence, M= M® M.® M;, where M, is an ir-
reducible FyP-module. Since X permutes My, M,, Ms, we may assume
that X normalizes ;. Since # is a free F2(X)-module, and M, is a
summand, M, is also free. Let U= M,(1—X), so that I U| =4. Since
X centralizes U, we get UC My(1—X) @ M, M;. Hence, UN M, ® M
#0. Since M,® M, M, we are done.

We may now assume that for each S in &, M(1—X) is of order 4.
Suppose X inverts a subgroup R, of order 9. Then [M, RN,] is of order
16 (as usual, we use commutation notation as well as additive nota-
tion), and [M, R,] admits a Ss-subgroup of &. Since [M, R,]S M,
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we again are done. We may now assume that X inverts no subgroup
of & of order 9. In this case, Ss-subgroups of [&;, X] are of order 3,
by Lemma 5.36. Let T = (S, X), &*=Ne(T), so that |S: &*| =3.
Also, &* normalizes M(1—X)-+N. Since &* centralizes N, there is
asubgroup &% of &* of order 3such that [ cE@E*NMQIA—-X)+N): N|
=4. Hence, &7 centralizes M(1—X)-+N, a group of order <32. The
proof is complete.

LEMMA 5.49. If | @1: @o| > 27, then the following hold:
(@) If fS2, then M(1—X)C M.
(b) If f=3, then M,(1—X)N\ M 0.

Proor. By Lemma 5.48, we may assume that & has no elementary
subgroup P of order 27 such that &P admits X. Since &/&, is super-
solvable, we may assume that I@u @o| =34 Let P be a S;-subgroup
of &, so that &,=&,P. Again, since &/&, is supersolvable, we may
assume that Scns(P) = .

First, suppose that X centralizes a subgroup $/S, of &,/S, of
order 9. Then § normalizes N+ M (1 —X), so a Sz-subgroup of § does
not act faithfully on N+ M(1—X), since f<3 and $ centralizes N.
We may assume that | Ce,e,(X)| <3.

We assume without loss of generality that P acts faithfully on M.
If X inverts &,/&,, then since I‘BI =34, we get f=4. Hence, we may
assume that | Ce,/&,(X)| =3.

We next argue that X inverts a subgroup £/&, of order 9. Namely,
&/@, is supersolvable, so &;/&, contains an abelian subgroup of
order 27 which admits X. The existence of € follows.

Since X inverts /&,, there is a subgroup O of ® of order 9 which
is inverted by X. Hence, Ce({Q) contains a subgroup of order 27, and
Ne(Q) contains X. Also, [M, Q] admits N(Q). If | [M, Q]| <24,
then | [M, Q]| =24 and so [M, Q]S M, from which the lemma fol-
lows. We may therefore assume that | [M, Q]| =28, f=3. By our
construction of 2/@,, we get that 27| | Ce(Q)]|. If Q is cyclic, then
since GL(6, 2) has no abelian subgroup of order 27 and exponent 9,
we get that [M, Q]C M. So suppose O is elementary of order 9. Let
*/&, be an abelian subgroup of &,/&, of order 27 which admits X
with @QC2*. Since 8eny(P) = &, ¥/ S is of type (3, 9). Since GL(6, 2)
has no abelian subgroup of order 27 and exponent 9, we get [M, Q]
C M, and we are done.

LEMMA 5.50. Suppose S=ITQ is a solvable group, where T is a
Se-subgroup of S and Q=GCF is a Frobenius group with the following
properties:
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(a) The Frobenius kernel § of L is of odd prime order q and is per-
mutable with .

(b) The complement € of § in Q is of odd prime order p and is per-
mutable with T,

Then one of the following holds:

i zC6.

(i) g§<.

(iii) Cg(€) comtains a four-group.

(iv) Z(©) contains a unique involution.

PRroOF. Suppose (iii) does not hold, and | 2(®)| is even. Let 3 be
the S;-subgroup of Z(&), so that 81. Since (iii) fails, 8 is cyclic,
so (iv) holds. Thus, proceeding by way of contradiction we may as-
sume that (i), (i), (iii) fail and that | 2(&)| is odd.

Let $= 0:(&). Since Q is a Frobenius group with kernel {, it
follows that = 0, (). Since § is a S,-subgroup of &, $F < S. Since
(ii) fails, § <4 OF. Hence, H =F(S).

Since (i) does not hold, $ CZ. Since &' centralizes the chief factor
HF/9, while € does not, we have & NE=1, Hence TFIL S.

Let ] S: éjl =20pq, so that &/9 is a Frobenius group with kernel
OF/9. Since (i) fails, a=1. Since (iii) fails, Cg(€) is either cyclic or
generalized quaternion, so every section of Cg(€) is generated by 2
elements.

Let $o= [, §]. Thus, $ and N(F) normalize $,. Since S =9 - N(F),
$0<S. Let Do/P1=7V be a chief factor of &. Thus, V is a faithful
F,&/$-module, so if € is a complement to $TF/P in &S/ which con-
tains G9/9, then V is a free F2-module. In particular, | V| =2¢2"
for some positive integer ¢, and | CV(@)] =2¢% By a previous remark,
we get c=a=1.

Now Cg,(€) < Cg,(€), and Cg,(€)/Cg,(€) is of order 4, being in-
cident to Cy(€). Since (iii) fails, it follows that Cg,(€) is cyclic.

Suppose ;S H: S $1, and Ha/ Ps = W admits N(F) as an irreducible
group of operators. If [§2, F]EL Hs, then Cw(E) contains a four-group,
against the cyclicity of Cg,(€). Hence [2, F]Z ©s, and so [H1, %] =1,

Since Ho=[Do, §F] and Ho/$: is a chief factor, we get H1=D(Hq).
By Lemma 0.8.7, D(90) S Z(Do). By Lemma 5.17, §, is special. (Note
that the hypotheses of Lemma 5.17 hold since (iii) fails and a=1.)

Since ©0/$1 is a chief factor of &, we get [9, $o]S 1. By the 3
subgroups lemma, § centralizes $7 = D (o).

Since Cy(€) is a four-group, Cg,(€) is a quaternion group. Thus,
D(Ho)NC(C) is of order 2, and is centralized by $, § and N(E). Since
S=9FN(C), (iv) holds.
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5.7. Factorizations.

LeMMA 5.51. Let ©, be a S,-subgroup of the group ® and let p, q be
distinct primes. Suppose the following hold:

(a) Ae(D) is p-solvable for every p-subgroup O of ®.

(b) g|| As(D)| for some p-subgroup $ of ®.

© {p a}={2,3}.
Then ®, contains a normal subgroup 9 such that g| | As(9)|.

Proor. Let Je={$|H is a p-subgroup of ® and g¢||Ae(9)]}.
Choose § in 3¢ so that | N(9)N\@,| is maximal, and with this restric-
tion maximize | §|. Then Ho=N(H)N\G, is a S,-subgroup of N($).
Among all subgroups of N(9) which cover N(9)/C(9), let & be
minimal. Then 8N C(P) is nilpotent, so & is p-solvable. Let L= 9.
Then g contains § for some N in N($), so we may assume that
LD Do. Let Q be a S,-subgroup of & permutable with $o. Let &= $,Q,
and set Qo= 0,(S). Then &= Ho/Q, satisfies the hypotheses of
Theorem 1 of [39], so either Ca(Z($0)) or Ne(J(®o)) has no normal
p-complement. Maximality of §, forces D=0, as desired.

LEMMA 5.52. Suppose the following hold:

(a) ©=08,&;, where S, is a Sy-subgroup of &, p=2, 3.

(b) O, ( @) =1,

(c) S, is extra special of width at least 2.

(d) 0:(©)8. < @.

(e) & contains a minimal normal subgroup € such that Ce,(€)=1.

Then J(S3) < &.

ProoF. The lemma will follow from the containment J(&;) & 0;(&),
which we will establish.

By (e), C(€) is a 3-group, so 03(&) = C(E). For any subset € of &,
let € be the image of € in As(E).

Let d=max m (), A ranging over all the abelian subgroups of &;,
and choose an abelian subgroup ¥ of .S; with m(¥) =d. We must show
that AC 0;(&). Suppose false.

Let  =%S;, and in Lemma 5.6, let § play the role of &, I the
role of &;, &, the role of &,. Thus, (a)-(d) of Lemma 5.6 hold; (e) is
simply definition, so it suffices to verify (f) to complete the proof of
this lemma.

Let %, be any subgroup of . Then (Yo, Ceo))=F is abelian, so
m(F) =m o) +m(Ceo)) —m AN Ce(Uo)) =d, or m(Ce(Ao)) —m (U
NCeWUo)) =d—m(Uo) Em(A/No). Since AN Ce(Ao) & Ce(A), we have
m(CeWo)) —m (Ce()) =m(Ce@o)) —m ¥ Ce@Uo)) SmA/Wo). Thus,
(f) holds.
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LeEMMA 5.53. Suppose &, is a S;-subgroup of the solvable group &.
Assume also that & is a {3, 5}'-group and that On(S)=1. Let T
=C(Z(&)), Ma=N(Jo(S0)), Ns=N(Z(J1(S,))). Here we have set
d=max m@®), A ranging over all the abelian subgroups of S,, and
Ji(S2) = {B| BC Sy, B'=1, m(B) 2d—i}. Then for each permutation
g Of {1, 2, 3}, @=ma(l)'m¢(2).

ProorF. By Lemma 0.7.7, we may assume that &= &,Q, where Q
is a g-group for some odd prime ¢, and that (&) 2. Here we are
also using Lemma 0.7.3 to conclude that Owx(&)=1 whenever
&,c6ce.

By Theorem 1 of [43], we have &= 9Ny =NM. In particular,
NS N2, NS N By Lemma 0.8.6, it suffices to show that
NS N NN N N2, and that NS NN N5, Proceeding by induc-
tion, we may assume that &= R, for some 1< {1, 2}.

Let Q;=Q0NMN;. Thus, N;=S.Qy, j=1, 2, 3. Set $=0:(&), and
let O* be a subgroup of Q such that $LQ /P * is a chief factor of &.
By induction, we get Q*CQ,1)Q,@ for all permutations ¢ of
{1, 2, 3}. If Q,;EQ*, then since &,Q; is a group and HQ/HV* is
a chief factor we get Q=Q,;Q%=Q*Q;.

Suppose =1, In this case, we must show that Q = Q,Q;. Suppose
false. By the previous paragraph we get Q*=Q,Q;. Our induction
hypothesis implies that Q*=D(Q). In particular, Jo(S;) EH. Let A
be an abelian subgroup of &, with m(N) =d, AL H. We assume with-
out loss of generality that ¥ = Ce,(¥). Thus, Z(J1(€;)) Y. Let O
be a subgroup of Q such that (a) ¥ normalizes $O, (b) [U, Q]
EHQ*, (c) Q is minimal subject to (a) and (b). The minimality of
£ implies that ¥ acts nontrivially and irreducibly on $/9D(Q).
Let o= Cu(H/P), so that A/Y, is cyclic. Let S*=HOY. Since
PTG, it follows that Oy (&%) =1. Let H* = 0,(S*). Thus, S H*
and ANH*=N,. Let { be the subgroup of H* generated by all the
abelian subgroups 8B of $* withm(8) =d —1. Hence, Y SRS H*C S,
Let@ = Ce+(R) <&*.Since0y (&*) =1,s0als00x (€) =1.LetCy = 0,(€).
For each Cin §,, we get that (N, C) is abelian, since Y, S R, CEC(R).
Since m (N, C)) =d—1, it follows that Z(J1(S,)) SZ(C,).

Since QEQ*, by (b), it follows that & does_not normalize
Z(J1(Ss)). Hence, £ does not centralize Z(€,), so £3 does not cen-
tralize M=0U(Z(Cy)). On the other hand, if My=MIMNY,, and
limz Mo| =2v, then (Ao, M) is an abelian group with m (Ao, M))
=m@o) +w=d—1+w. Hence, w=<1. Thus, M, is of index at most 2
in M. Since M AL SN, A centralizes a hyperplane of IR, Since g=7,
and since $Q =H[Q, U], it follows that £ centralizes . This con-
tradiction shows that 751,
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Suppose i=2. Here we must show that &=9N;. Suppose false.
Then Q7 Q10Q; and Q*C 010, Since $QA/HO* is a chief factor
of S, we get Q* = 0,0, Our induction hypothesis forces Q*=D(Q).
In particular, J1(&:) £ 9. Let A be an abelian subgroup of &, with
m(A)=2d—1 and with AL H. Let O be a subgroup of O such that
(a) ¥ normalizes $Q, (b) [¥, D]LHQ*, (c) Q is minimal subject to
(2) and (b). The minimality of £ implies that ¥ acts nontrivially and
irreducibly on $Q/9D(). Let o= Cu(PN /), so that A/Y, is
cyclic, m(@o) 2d—2. Let &* = HOA, H* = 0:(S*), 3= Z(H*) D Z(S,).
Since QI O¥, it follows that £ does not centralize Z(S,), so does
not centralize 3, so does not centralize M= (3). Let Me=MNY,,
| m: IMo| =2v. Then (Ao, M) is an abelian group with m (o, M))
=m o) +w=d—2+w. Hence, w=< 2. Thus, A centralizes a subgroup
of M of index 4. Since ¢=7, it follows that £ centralizes M. The
proof is complete.

We can salvage something for the small primes.

LEMMA 5.54. Suppose S=IP is a solvable group, Ox(S)=1,
T is a Sy-subgroup of & and P is a cyclic p-group of order p*>5, p odd.
Let M= C(Z(T)), Me=N(J(T)), Ns=N(Z(J1(T))), and let Q=T (P).
Then for each permutation o of {1, 2, 3}, Q=0NN.1 - QN N, 2).

Proor. Let § = 0:(8), so that T/P is cyclic of order dividing p—1.
If /() H, then &= N, =N; and we are done. We may assume that
(@) ED. Let d=max m(¥), where U ranges over all the abelian
subgroups of T and let B be an abelian subgroup of T with m(B)
=d—1, 8L H. We will show that Q centralizes N=NU(Z(PH)). Let
RNo=NNB. Since m(BNP) =d—2, it follows that |N: mol <4. Thus,
the involution of /9 centralizes No. Since [N, B] is a free FH,T/H-
module, it follows that | [®, ]| <24, so Q centralizes [%, B], and so
centralizes N. Hence, O centralizes Z($), and so centralizes its sub-
group Z(<).

To complete the proof, it suffices to show that Q=QNN- QNN,.
Suppose false. Then J()LH, and we may assume that B is an
abelian subgroup of T with 8L H, m(B) =d. Let Bo=BN P so that
m(Bo)=d—1, BT Ni(T). Let Ho=(C|C' =1, CCH, m(C)=d—1),
so that $CN1(T), H0<S. Let H1=C¢(Ho), so that Z(J1(T)) S 1.
Since 0z () =1, 50 also O (P1) =1. Let H2=0.($1). Thus, for each
H in $i, m((H, Bo))=d—1, so that Z(J1(T)) centralizes (H, Bo).
Hence, Z(J1()) S Z(H2) <S. Let M=% (Z(H2)). Since (M, B,) is
abelian, it follows that |§m: smr\%ol <2, so the involution of B/B,
centralizes a hyperplane of M. This implies that if M=M= PHuD

e e DM,=1 is part of a chief series for &, then L centralizes
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each M;/M.41, so QO centralizes M, so centralizes Z(Hs), so central-
izes Z(J1(£)). The proof is complete.
5.8. Miscellaneous. We need a generalization of Lemma 0.8.11.

LEMMA 5.55. Suppose A is a w-group, B is a w'-group and A nor-
malizes B. Then [B, U, A]=[B, A].

Proor.8 Choose 4 in ¥, B in B, and set C= [B, 4], so that BA=BC.
For each n=1, 2, + - -, define X, by B4"=B(C"X,, so that X;=1.
Suppose X,& [B, U, A] for some #. Then BA™ =BC-C»-[Cn, 4]X4,
so that X, € [B, U, A]. Taking #n=|%| shows that C*€ [B, U, A].
Since (C)=(C"), we get CE[B, ¥, U], and so [V, A= [V, U, A]
C [8, U], as required.

LeMMA 5.56. Let &, be a S,-subgroup of the finite group ®. Let
P=0,MN0,,,(8), R=N(D), D=0,(8).

(a) If Yisa p-element of N, DED, and YPE N, then D = D1D, where
D€ Co(Y) and D& Cop(H).

(b) Elements of ®, are &-conjugate only if they are N-conjugate.

ProoF. (a) For each =0, 1, « - -, let D;= [V, D] =Y=¢.D-1¥4D,
Since ¥ and V2 are in N, so also D;EN, for all 4. Since D;ED, we
get D;EDNN=Co($). Since ¥ normalizes H, we get D;¥' € Co(D)
for all 4, j. Let Do=(D}’|4, =0, 1, - - - ). Then, Dy Co(H) and Dy
admits Y. Since YO D 1Y =Dy Y-1D-1YV=P,D-}, it follows that ¥V
centralizes some element Di! of De¢D-1. Thus, Dit=D,D-! with
D,ED,. Hence, D =D,D,, as required.

(b) Suppose X, YEG,, GE® and X =Y? Notice that §,CN.
By the Frattini argument, we have G=DN, DED, NEN. Hence,
X¥7'= VD Thus, Yisa p-element of %t and Y2 EN. Hence, D =D, D,,
D,EC(Y), D;ECo(P), by (a). Hence, X¥ = ¥YP1Ds= YD1 50 that
X =YDV with D,NEN.

The following lemma involves easy consequences of 0.

LEMMA 5.57. Suppose ® is a w-separable group. Then

(a) ® satisfies D.

(b) Let ®, bea S,-subgroup of &, € {m, 7'}, Then N(®:)N\ N(G,)
covers every central factor of ©.

ProOF. Suppose §, & are maximal w-subgroups of ®. If M is a
minimal normal subgroup of ®, we may assume that $M/M and
RKM/M are contained in S,-subgroups of /I and that /M satis-
fies D,. If M is a w-group, we get that H and & are conjugate. Suppose
M is not a w-group, so is a 7’-group. By the Schur-Zassenhaus the-

8 The proof has been supplied by N, Blackburn,
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orem, ® satisfies E,. Let £ be a S,-subgroup of @. We assume without
loss of generality that (9, 8)C2IN, so we may assume that LM =@.
Since one of &, M is solvable, ® satisfies C,. Let L= HIMNL, so that
$ and &, are S,-subgroups of HI. Since HPIN satisfies Cr, we get that
$=2¥ for some M in I, so PCT ¥, By maximality of §, we have
O =2, By symmetry, =% for some M’ in M. This completes a
proof of (a), and of course, we also get that ® satisfies D,.

Let $/& be a central factor of ©. Let |$: ] =p. By symmetry,
we may assume that pEx. Let =90, S=R0O,.. Since $NG,
= f®NMNY,, we have l RN @I =p, & I R. Since S satisfies D,, it follows
that R =GN, where N = Np(G), so that R= N, as NRDG,. Since
O =0, O,, it follows that N =G, L, where L=@,NN. Hence R={N
= R0, =PU,.. Hence, LLRKG,». Choose L in L— &G,. Thus,
L=1IL,L,, where L€, L.:&®,,, LiER. Since L and L; normalize
O, we get LiEN(O,). Since L; EH ~ K, the order of L, is a multiple
of p. Let Li=K,K,=K,K;, where K; is a p-element, K, is a p’'-
element. Then K, is a power of Ly, so KiEN(®,). Since K, ER,
we get K;EH— K. Now (K;) and &,N (K1), ) are S,-subgroups of
(K1), so we may choose YV in @, such that Y1K; Y E,. Since $
and R are normal in ¢, we have X =Y1K, YEH— &. Since (K1)G,
normalizes ®,,, we get that XEN(®)NG,CN(G)NN(G,), so
(b) holds.

LEMMA 5.58. Suppose p, q are distinct primes and & =PQ, where P
is @ normal Sy-subgroup of & and L is elementary of order g®. Let
{%, - -, X.} be the set of all subgroups of Q of order g which have
nontrivial fixed points on P. If r=2, then P = Cp(¥1) X Cp(%,).

Proor. We proceed by induction on |B]. Let R be a minimal nor-
mal subgroup of &. (Notice that Cp(Q)=1, since r=2<q-+1, and
g1 is the number of subgroups of L of order ¢.) Hence, N Z(P),
and N is an irreducible Q-group. We may assume notation is chosen
so that N C(%,). Since r=2, it follows that Q acts faithfully on P.
Hence, NCPB, and ¥, acts faithfully on P/N. If ¥, centralizes PN,
then Csp(¥.) is a complement to 9 in P, so that P=NX Cp(¥,). Since
Cp(Q) =1, we get N= Cp(¥,), and we are done. We may assume that
%, acts faithfully on /M.

If X&Qf and Cpm(X)=1, then Cp(X)#1, so X EX,\U¥,. Thus,
by our induction hypothesis, /N is the direct product of Cpm(¥1)
and Cym(¥z). In particular, Cp(¥1) <P. Since P=(Cp(¥1), Cp(¥z))
= Cp(%1) Cp(%,), it suffices to show that [Cp(¥:), Cp(¥))]=1. No-
tice that Cp(¥:)=[Cp(¥.), ¥%i]. By our induction hypothesis,
[Co(%:), C(%)]CS R, so [Co(X:), Cp(¥1), ¥1]=1. Since [Cp(%*1), %]
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=1, we also get [Cp(¥1), ¥;, Cp(¥:)]=1. By the three subgroups
lemma, we get [¥1, Cu(¥X:), Cp(¥1)]=1, and since [¥,, Cp(%:)]
= Cp(¥), the proof is complete.

LEMMA 5.59. Suppose Q is a p’-group contained in the p-solvable
group ®© and pl | As(Q)|. Then Q does not normalize any Sy-subgroup
of G.

PRrooOF. Let P be a S,-subgroup of N(Q). By hypothesis, [B, Q]#1.
Suppose by way of contradiction that ®, is a .S,-subgroup of ® which
Q normalizes. We assume without loss of generality that Q = [$, Q].

Let I be a minimal normal subgroup of . Thus, @, M/IM is a
Sp-subgroup of /I normalized by QM/IM. By induction on I@I,
we conclude that Agm(QI/M) is a p’-group. Hence, [Q, P]SI.
Since Q= [Q, B], we get QCTIM. Since 1% Q, and M is a minimal
normal subgroup of ®, we conclude that I is a p’-group, by the
p-solvability of ®. Hence, [Q, ©,]C6,NM=1. Hence, | C(Q)|,
=|®|,, so that | N(Q): C(Q)|,=1, against p| |Ae(Q)|. The proof
is complete.

6. A transitivity theorem.

LEMMA 6.1. Suppose ® is a finite group, BEU(p), p is a prime, and
BE®B!. Then the following hold:

(a) If C(B) is p-solvable, then BC O, ,(C(B)).

(b) If C(B) s p-solvable and O, (C(B))=1 for all B in B, then
B centralizes every element of 1 ¢(B; ).

Proor. We restrict our attention to the proof of (a), since (b) is an
immediate consequence of (a). Let €= C(B) and let ®, be a S,-
subgroup of N(8B). Since BEU(p), ®, is a S,-subgroup of @. Let
P=Co,(B), and let P* be a S,-subgroup of € which contains P.
Suppose BIP*. Then B/(B)SZ(B*/(B)) and since O,,,(€)
= Oy,,(€ mod (B)), the lemma follows. We may therefore assume that
B4 B*. In particular, PCP*, so BLZ(®,). By definition of U(p),
it follows that Z(®,) is cyclic.

Now BCM(Z(B)), so if p=2, the cyclicity of Z(®,) forces B
=0 (Z(B)), so that B char P < P*, against the previous argument.
Hence, p=2. If p=5, then since [B*, B, B]Z [V, B] =1, the lemma
follows from (b). Hence, p=3. Since B P*, it follows that §
=0(Z(P)) is elementary of order 27, and of course BCF.

Since PCY,, it follows that B=(B)X(Z), where (Z)=N(Z(O,)).
Thus, Z& 0y,3(€). Let Q be a S;-subgroup of € permutable with $*.
By (B), we get that Z& Oy 3(P*Q). In particular, Z does not cen-
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tralize P*M Oy 3(P*Q) =Po. Hence, P*=P,P since I‘B*: $| =3,
This means that ZOy 3(P*P) EZ(0y 3(B*P)P*/ 0 5(P*L)). Hence
[D3(B*Q), (Z)] =Ly is normalized by P*. Since Po2PL(P*Q), and
since Cp,(Z) =PoNP is of index 3 in P,, it follows from Lemma 5.30
that Qo is a quaternion group. Let $ = Cp*(Qp). Thus, P*=P(2)
and PN(Z)=1. In particular, Z is not in the Frattini subgroup of P*.
All the more so, Z&ED(P). On the other hand, D(P) I, and Z lies
in every nonidentity normal subgroup of @, since Z(®,) is cyclic.
Hence, D(B) =1, so P=={ is of order 27, while ®,~~Z;\, Z;.

We are now in a position to play off P, against . Namely, B, is
a nonabelian group of order 27 and exponent 3, and since Q, is a
quaternion group, it follows from Lemma 5.57 that N(B*) contains
a 2-element T which neither inverts nor centralizes §. But § char $*,
so T normalizes . Let A=Ae(F) and let Ay be the subgroup of A
whose elements have determinant 1 on §. Then |: %,| =1 or 2 and
A=ANu({Z)) =UAoNu(B).

A S;-subgroup s of U is of order 3 and acts indecomposably on {.
On the other hand, we argue that 13] I?I] . Suppose false. Then ¥ is a
2,3-group, hence is solvable. (Clearly, we do not need Burnside here.)
Since ®, and P* both normalize §, A is not 3-closed. Since U; is
indecomposable on §, it follows that Oy (N,) is a four-group which is a
chief factor of A. Let Oy (o)==/ C(F) under the natural projection.
Then clearly, N(§)=N(®,) SLN((Z)). Hence, we can choose L in
2 so that BL=Z%*1, since (B)=WU(B(P*), (Z)=MN(Z(¥,)). Since
L€ C(F), L normalizes (B, BL)=®. This implies that B <] N(F),
since Oy (o) is a chief factor of Y. But this means that Oy (o)
normalizes 8B, which is not the case, since Aut(8) contains no sub-
group isomorphic to 4. Hence, 13||%|. Thus, |%| =13-3-2¢ with
a <5. By Sylow’s theorem, ¥ is 13-closed. Since the 13-elements of
GL(3, 3) are nonreal, it follows that ¢=0 or 1. In any case, every
involution of ¥ inverts §. This violates the existence of T and com-
pletes the proof of the lemma.

HypotHrEsIs 6.1. (a) U is a w-subgroup of @ and ¢Ex'.

(b) If B is any minimal normal subgroup of %, then C(B) is
w-solvable.

(c) If © is any nonidentity element of U (¥; ¢), then N(Q) is
w-solvable.

(d) If Q€U; ¢) and S is a w-solvable subgroup of ® which
contains QI, then QC O (S).

LEMMA 6.2. Under Hypothesis 6.1, let Q, Q1 be maximal elements
of NA; g). If Q and Dy are not conjugate by any element of C¥),
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then for each minimal normal subgroup B of A, either Ca(B)=1 or
Co,(B)=1.

ProoF. Suppose false. Let €=Cgq(8), €,=Cgo,(8). By Hy-
pothesis 6.1, (€, ;) S O, (C(B)). Since O (C(B)) char C(B) < N(B),
we may therefore choose C in C(4) so that (€, €) is a g-group. We
assume without loss of generality that among all triples (Q, Qi, %)
which violate the lemma, QM is maximal. By the preceding argu-
ment QN1 =00#1. By Hypothesis 6.1, (Na(Qo), Ng,(Qo))
C 0, (N(Qo)), and we may therefore choose D in C(¥) so that
(Na(Q), Ng,(Qo)?) is a g-group, violating the maximality of
LN QY and completing the proof.

HypoTHESIS 6.2. (a) ¥ is a nilpotent w-subgroup of ®, r==(),
qg En'.

(b) CA)=2ZA) XD, where D is a 7'-group.

(c) For each p in w and 7 in 7-{p}, the S,-subgroup %, of ¥ cen-
tralizes every element of U (U, ; 7).

(d) & is a set of normal subgroups of ¥ with the following proper-
ties:

(i) If FEST, then every element of Uy (X; ¢) is in O (N(F)).
(ii) For each p in m, § contains a nonidentity p-stibgroup.
(e) One of the following holds:
(i) |1rl =2,
(i) There is a noncyclic abelian subgroup U of % such that
every nonidentity subgroup of Ul is in &.

LEMMA 6.3. Assume that Hypothesis 6.2 is satisfied and that (r, g, )

satisfies conditions (a), (b), (c) of Hypothesis 6.1. Then (w, q, %)
satisfies Hypothesis 6.1,

Proor. For each Q in U (¥; ¢), let $=8(Q) be the set of 7-solvable
subgroups & of @ which contain Q¥ and satisfy Qio,'(@). We
must show that 8 is empty for all Q. Suppose false and Q is of mini-
mal order subject to $(Q) . Choose & in §(Q).

Let Qo=0N0.(&). By minimality of Q, Q/Q, is a chief Q-
factor. Let o= Ca(Q/Q). Since Co(Ay) covers Q/Qo, minimality
of Q implies that %, centralizes Q. Since L does not centralize
0, +(®)/0.(&) =2 and since ¢ is solvable, Q does not centralize
F(R). Thus, there is a prime p such that QU normalizes the p-sub-
group B of € and [Q, B]5#1. We assume that B is minimal with this
property. Since (I ul, | Ox (@5)[ )=1, there is a p-subgroup P of
O, (@) which is incident with 8 and is normalized by . By con-
struction, p €m, and by Hypothesis 6.2(c), the S,-subgroup of ¥
centralizes B, so centralizes B, so centralizes Q. Minimality of 8
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and the three subgroups lemma implies that N, centralizes B, so
centralizes B. Suppose ¥, contains an element § of §. Then (Q, B, A)
CEN(§), so QSO (N(F)), by Hypothesis 6.2(d). Hence, [Q, B]
C O+ (N(F)N O (&), a w'-group. But this means that Q cen-
tralizes 9B, against our construction. Hence, ¥, contains no element
of &. In particular, ¥ is a p-group.

Since ¥ is a p-group, Hypothesis 6.2(e) (ii) holds. Since U is a non-
cyclic abelian group, UNA,=1Uos%1. But then U ETF, against the
preceding argument. The proof is complete.

THEOREM 6.1 (TRANSITIVITY THEOREM). Suppose ® is an N-group,
Oy 25 a Sp-subgroup of ®, p and g are distinct primes, and U is a normal
subgroup of ®, with the following properties:
(i) Co,(A)=2(%).
(ii) Z(A) contains an element B of U(S,).
Then

(a) for each pair of maximal elements Q, Qi of U (A; q) which are
not conjugate under C(N) and each Z in Z(N)*, either Co(Z)=1 or
C£21(Z ) =1.

(b) C(N) permutes transitively by conjugation the maximal elements
of U(Y; q) provided m(Z(A)) = 3.

Proor. Clearly, (b) is a consequence of (a), so we restrict attention
to (a). It suffices to show that (p, ¢, ¥) satisfies Hypothesis 6.1. Since
® is an N-group, conditions (a), (b), (c) are satisfied. Thus, it suffices
to show that with & the set of nonidentity subgroups of 8 Hypothesis
6.2 is satisfied. It is clear that all parts of Hypothesis 6.2 are satisfied
except possibly (d)(i).

Choose BoEF and let Q be any element of U (U; q) centralized by
Bo. Let $=N(Bo). By Lemma 6.1, 8BS0, ,(9). Hence [T, B]
C 0, (D). Thus, it suffices to show that Co(8) S0, (H). By Lemma
0.7.8, we may assume that Bo=9. In this case, $,S9. Let P
=0, ,»(H)NG,. Hence, [0, (D), AIS [Bo, A0, (H)S A0, ().
Hence [Pi($), ¥, Q]=1. By Lemma 5.16, we get [T, A]S 0, (D).
Thus, we may assume that ¥ centralizes Q. But in this case, we get
QC 0, () by Lemma 3.7 of [20]. The proof is complete.

COROLLARY 6.1. Let B be a S,y-subgroup of ®, p Eme(®), AESens(P).
If (p, q, N) satisfies Hypothesis 6.1, then N (NU; q) is trivial.

Proor. Let O be a maximal element of U (¥; ¢), and let N EN().
Then QF is a maximal element of U (A; ¢). As m(A) = 3, there is an
element 4 of A of order p such that C(A)NQ¥ =1, C(A)NQ#=1.
Thus, Lemma 6.1 implies that £ = Q¥¢ for some C in C(¥). Hence,
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N() = (N(A)NN(Q)) - C(A), so that N(L) contains a S,-subgroup
of @. Since pEm((®), we have Q =1, as required.

HvypotHEsIS 6.3. (a) (p, g, A) satisfies Hypothesis 6.1, p is an odd
prime.

(b) AE8cns(P) and P is a S,-subgroup of ©.

(c) U(Y; g) is not trivial, and Q is a maximal element of U (¥; g)
which is normalized by P.

(d) B=V(ccle(A); B).

(e) The normalizer of every nonidentity p-subgroup of © is p-
solvable.

(f) If $ is any p-solvable subgroup of ® and 9, is a S,-subgroup
of 9, then every element of 8cn(9,) is contained in O, (D).

COROLLARY 6.2. Suppose Hypothesis 6.3 is satisfied. Then Lemmas
0.17.n hold, 1=n=4. If the word “proper” in Lemmas 0.17.5 and
0.17.6 1s replaced by “p-solvable,” these lemmas hold, too.

Proor. Hypothesis 6.3 guarantees that the relevant subgroups are
p-solvable. Thus, (f) is sufficient to carry out the proofs of the desig-
nated lemmas.

HyroTHEsis 6.4. (a) 9, is a S,-subgroup of ®, AESn(H,),
g€ (®), g=p.

(b) U is a normal elementary subgroup of 9,, UCS .

(c) U centralizes every element of U (¥; ¢).

(d) If £ is a nonidentity element of U (¥; ¢), then N(Q) is p-
solvable.

(e) If 1CAC A, then C(Up) is p-solvable.

LeMMA 6.4. Suppose Hypothesis 6.4 is satisfied and B is a normal
elementary subgroup of O, of order p* with BLCUA. Suppose also that
{ b, q} P {2, 3}. Then UNDB centralizes every element of N (B; q)

Proor. If false, we may choose V in Bf so that UNYB does not
centralize every element of U g(%B; g), where €= C(V). Let Q be an
element of U ¢(B; ¢) which is not centralized by UNB. We may
assume that Q= [Q, B]. If QCS0,.(€), then UNYB centralizes no
Sg-subgroup of 0O, (€), while some S;subgroup of O, (€) is in
M (U; g). This is impossible so QS 0, (€). Hence, BN O, ,(€) =(V).

Since B centralizes a subgroup of P5(€) of index p, it follows from
(B) that {p, g} = {2, 3}. The proof is complete.

HyPOTHESIS 6.5. (2) © is a Sp,-subgroup of ©, == {p, g} ==($)
= {2, 3}.

(b) 8=0,(9)#=1, ¥=0,(9) =1.
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(c) ® contains an elementary subgroup U of order 2 which is
normal in some S,-subgroup of $.

(d) The normalizer of every nonidentity w-subgroup of © is -
solvable.

LeEMMA 6.5. Under Hypothesis 6.5, & centralizes every element of
U(R; 9.

Proor. Enlarge (U, 2% (Z(R)))=U* to an element A of Scn(H,),
9, being a S,-subgroup of Ng(l1).

We will show that Hypothesis 6.2 is satisfied with our present ¥
in the role of ¥, with p in the role of w, and with ¢ in the role of ¢,
where we let & be the set of nonidentity subgroups of U.

Since AEsen(H,) and since , is a S,-subgroup of &, Hypothesis
6.2(b) holds. Hypothesis 6.2(c) holds vacuously. Thus, it suffices to
verify Hypothesis 6.2(d).

By Lemma 0.7.4, € is a maximal element of U g(¥, g). Since
HPCTN(Q) and since N(R) is p-solvable, € is a maximal element of
" oe¥; 9.

Let U1, be a subgroup of U of order p, and let = N(U,). Let Q be
an element of M n(¥; ¢). We must show that QT 0, (N). Suppose
false and Q is minimal with this property. Let Qo=0MN0, (N).
Then /L, is a chief QU-factor. Let o= Cu(Q/Qy). Minimality
of Q forces U, to centralize L. Suppose H,MNN is a S,-subgroup of N.
Then another application of Lemma 0.7.4 yields QC 0, (N). Thus,
9,MNN is of index p in a S,-subgroup N, of N. By Lemma 0.7.8,
Q &0, (C(Ap)). Suppose A, contains an element Z of Z(H,)*. Then
CA) S C(2), so QL0,(C(Z)). However, 9, is a S,-subgroup of
C(2), so Lemma 0.7.4 is violated. Hence, no such Z is available. As
A/ Ao is cyclic, it follows that Z(DH,) is cyclic and A(Z(D,)) L Ao.
Since Z(9,) is cyclic, UEU(D,). By Lemma 6.1, we get US O, ,,(N).
Hence, [Q, U]C 0, (9). But by minimality of L, we also have
Q=[Q,u].

We have shown that Hypothesis 6.2 is satisfied. Hence, Hypothesis
6.1 is satisfied. Let Q* be any maximal element of U (¥; ¢). We can
then choose U in W such that Cg*(U)==1. Since U centralizes g,
it follows that Q* =8¢ for some C in C(¥), by Lemma 6.2. Hence,
AN R centralizes every element of U (¥U; q).

It remains to show that & centralizes every element of U (8; ¢).
Suppose QEU(R; ¢). By Lemma 6.4, U centralizes Q. We will show
that Q(Z(R)) centralizes Q. Since QC N(U1), Lemma 5.16 implies
that [Q, Q(Z(R))]S 0, (N(11)). Since ¥ normalizes some S,-sub-
group of O, (N(11)), and since 2(Z(8R)) centralizes every element of
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U (U; q), it follows that ©(Z(R)) centralizes every g-subgroup of
O, (N(1)) which it normalizes. Hence, [Q, 2:(Z(®))] is centralized
by %1(Z(R)), so L is centralized by €1(Z(8R)). Since QTN (Z(R))),
and since § is a Sp,¢-subgroup of N(Q(Z(R))), & centralizes Q by
Lemma 0.7.5. The proof is complete.

The following lemma is a careful rephrasing of the argument in
Lemma 0.20.3.

LEMMA 6.6. Suppose ® is a finite group, p, q are distinct primes and
N() is p, g-solvable for every nonidentity p, g-subgroup N of ®. Let H
be a maximal p, g-subgroup of & with Sylow system {.‘{)p, D). Let
Fo=0,(D), Foa=0.(D). Suppose that F,%1 and F,#=1. Let B be a
Sp-subgroup of ® which contains . Then

(i) Dy is a Sy-subgroup of every p, g-subgroup of © which contains
$8a

(ii) One of the following holds:

(a) B s faithfully represented on some element of U (PB; @).
(b) ©, contains no element of U(P) and | %’pl =p.
(c) $,=%9.
d) pE™(G).
(iii) If p=2, then one of the following holds:
(a) 2€mi(Q).
(b) |©: @] is even.

PRrooF. (i) Since § is a maximal p, g-subgroup of @,  is a S, ,-
subgroup of the normalizer of every nonidentity normal subgroup of
9. Let & be a p, g-subgroup of ® which contains §,§, with Sylow
system { R,, £,} where $,C &, F. < &, We must show that $,= ,.
Let A= 0,(R), Ug=0,(R).

We first show that %,S9,. Namely, Cu,(§,) is a p-subgroup of
N(%,) which admits §,. As §, centralizes all the p-subgroups of
Un@, (o), it follows that §, centralizes Cu,(F,). Hence §, cen-
tralizes ¥,, by Lemma 3.7 of [20]. Thus, ¥,Z9,, since A, H, is a
p-subgroup of N(F,).

Since §, centralizes Cu (§,), it follows that F,A,ENwE, (Dr; ).
Since $ is a maximal p, g-subgroup of ©, it follows that §¥d,=F,,
that is, A, S F,.

Since A, =F, and §, centralizes ¥,, it follows that Z(F,) SZ(¥,).
Let €=Cp(Z(¥A))<R. Since 2Z(F,)<SZ(A,), it follows that
€S C(Z(F,)). Thus, € is a p, g-subgroup of N(Z(F,)) which contains
&». By Lemma 0.7.5, §,< 0,(€). Since 0,(€) char €< R, it follows
that §,C ¥, Now let D=Cp(¥,)<IR. Then DCN(F,), so §.
C 0,(D). Hence, F, < Y,. Since we already have the reverse contain-
ment it follows that ¥,=F, <K, so $, = &, as required.
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(ii) We assume by way of contradiction that (a)-(d) all fail. Obvi-
ously, B is noncyclic, since (c) fails. Since (d) fails, we have p Ex3(®)
Ury(®). Let AESen;(P) and let Ao=AND,. If Ao=¥, then by the
transitivity theorem, $,=%P. Hence, A, CA. If ANFp51, then
AN F,NZ(D,) #1, so (i) is violated in C(UANF,NZ(D,)). Hence,
210(\ %,, =1,

Suppose B is an element of U(P) with BT H,. We assume without
loss of generality that 8C %o, Then BNF,=1, so BNZ(P) does
not centralize §, Choose Z in BNZ(P)*. As BNFp=1, we can
choose B in B* such that Z does not centralize F /M C(B). Let P*
be a S,-subgroup of C(B) which contains Cp(B). Thus, A P*. Let
£0* be a S;subgroup of C(B) which is permutable with $*. By

Lemma 6.1(a), 8BS0, ,,(C(B)), and so Z does not centralize
O,(B*Q*). Let Q(Z) be any maximal element of U (¥; ¢) which
contains Og(P*Q*). Then Z does not centralize Q(Z).

On the other hand, if Z, is any element of Z(P) of order p and
Zo&(Z), then (Z, Zo)EU(B) and (Z, Z,)SD,. Hence, for each Z
in 2 (Z(B))*#, there is a maximal element Q(Z) of U (¥; ¢) such that
[©(2), z]#1. By Lemma 6.2, all these £.(Z) are conjugate under
C®). Hence, Z(PB) is faithfully represented on each LQ(2).
Let © be a fixed maximal element of 1 (¥; g). Then N(¥)=
(N()NNL)) - C(A), so that thereis D in C(4) such that B2 normal-
izes . Since Z(PP) =Z(P)? =Z(P), it follows that P is faithfully
represented on 927, so (a) holds. This is not the case, so §, contains
no element of U(P). Since (b) fails, I%,,I >p.

Let BEU(P), Bo=BNYUy, so that Bo=U(Z(B)) is of order p
and B normalizes H,. If FNC(B) =1, then F,;NC(B)NZ(H,) #1,
so (i) is violated. Hence, §,MNC(B)=1. This is not the case, since
| B: an(%)l =p and | %,,| > p. This completes the proof of (ii).

(iii) Suppose (a) and (b) fail. Since 2Em4(®), (ii)(a) fails, as do
(c) and (d). Thus, (ii)(b) holds. Since l@: ©’ | is odd, it follows from
Lemma 5.38(a)(ii) that N($,) contains an element U of U(2). Since
2E€m4(®), Lemmas 6.1 and 6.2 imply that U centralizes every element
of U (1; ¢). This is impossible since ./F. is faithfully represented
on §,. The proof is complete.
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