
NONSOLVABLE FINITE GROUPS ALL OF WHOSE 
LOCAL SUBGROUPS ARE SOLVABLE1 

BY JOHN G. THOMPSON 

TABLE OF CONTENTS 
1. Introduction 383 
2. Notation and definitions 384 
3. Statement of main theorem and corollaries 388 
4. Proofs of corollaries 389 
5. Preliminary lemmas 389 

5.1. Inequalities and modules 389 
5.2. 7r-reducibility and fl,(®) 395 
5.3. Groups of symplectic type 397 
5.4. ^-groups, ^-solvability and F((&) 400 
5.5. Groups of low order 404 
5.6. 2-groups, involutions and 2-length 409 
5.7. Factorizations 423 
5.8. Miscellaneous 426 

6. A transitivity theorem 428 

1. Introduction. The results of this paper grew from an attempt to 
classify the minimal simple groups. For obvious reasons, this paper is 
a natural successor to 0.2 The structure of the proof showed that a 
larger class of groups could be mastered with some further effort. 
An easy corollary classifies the minimal simple groups. 

In a broad way, this paper may be thought of as a successful trans­
lation of the theory of solvable groups to the theory of simple groups. 
By this is meant that a substantial structure is constructed which 
makes it possible to exploit properties of solvable groups to obtain 
delicate information about the structure and embedding of many 
solvable subgroups of the simple group under consideration. In this 
way, routine results about solvable groups acquire great power. 

In somewhat more detail, the arguments go as follows, apart from 
numerous special cases which involve groups of small order: Let ® be 
a finite group. Let So (̂@) be the set of all solvable subgroups of ®. 
Then So/(®) is partially ordered by inclusion and we let 3ES(@) be 
the set of maximal elements of So/(@). Let 2flZ*(®) be the set of all 
elements of So/(®) which are contained in precisely one element of 

1 Research supported by a National Science Foundation Grant, GN-530, to the 
American Mathematical Society. The author also thanks the Sloan Foundation for its 
extended support. 

2 0 refers to Solvability of groups of odd order, W. Feit and J. Thompson, Pacific 
J. Math. (3) 13(1963), and Result X of 0 is here referred to as Result O.X. Also, as in 
0, (B) refers to Theorem B of [26]. 
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9ÏIS(©), so that 9fK*(©) 3 9TCS (©). The theory of solvable groups makes 
it possible to prove statements of the sort §E9tfl*(®), and most of 
the important technical results of this paper are of this type. 

The characterizations of £2(3) and 54(3) which emerge are the 
result of detailed and careful study. These characterizations could be 
avoided in classifying the minimal simple groups, but the effort this 
requires is comparable to the characterizations themselves. Further­
more, these characterizations have an independent interest. They are 
prototypes for the translation referred to above. 

A portion of an earlier version of this paper was read by E. C. 
Dade, whose comments have led to several improvements. Recent 
results of J. Alperin [l], [2], G. Glauberman [16], [17], [18], and 
P. Fong [l4], have also eased the proofs somewhat. A recent result 
of C. Sims [33] is helpful. 

It is somewhat anomalous that the character theory is not used in 
this paper. The reason for this is that the relevant character theory is 
in the literature [8], [9], [lO], [ l l ] , [14], [15], [16], [l8], [28], 
[35], [45]. This anomaly is in marked contrast with 0, where char­
acter theory was needed and was not readily available. 

The work is flawed because as yet I have been unable to axiomatize 
the properties of solvable groups which are "really" needed. To carry 
out the axiomatization of the various parts of this paper will require 
several years further study. If this is done, the usual benefits will 
undoubtedly accrue: stronger theorems, shorter proofs. 

This first paper sets the stage. §5 introduces many of the configura­
tions which are relevant to the study of simple groups, and §6 deals 
with the notion of transitivity. 

2. Notation and definitions. A minimal simple group is a simple 
group of composite order all of whose proper subgroups are solvable. 

Following Alperin [2], the subgroup § of the group © is a local 
subgroup of © if and only if, for some prime p, there is a nonidentity 
^-subgroup $ of © such that § = iV($). 

An N-group is a group all of whose local subgroups are solvable. 
Since every nonidentity solvable group contains a nonidentity char­
acteristic ^-subgroup for some prime p, it follows that iV-groups are 
precisely those groups such that the normalizer of every nonidentity 
solvable subgroup is solvable. 

An involution is a group element of order 2. 
A noncyclic group of order 8 with exactly 1 involution is a qua­

ternion group. A noncyclic 2-group with exactly 1 involution is a 
generalized quaternion group. A group which is generated by two dis-
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tinct involutions is a dihedral group. A four-group is a dihedral group 
of order 4. 

The techniques and results of 0 are used freely here. The terminol­
ogy and notation of this paper extend that of 0. 

Artin's notation [4] for simple groups is used. In addition, Sz(q) 
is the group of order q2(q2 + l)(q — l) discovered by Suzuki [37], Mu 
is the Mathieu group of order 7920, and Sw, An denote the symmetric 
group and alternating group on n letters. The group of inner auto­
morphisms of the group X is I(X). 

The number of conjugacy classes of involutions of X is i(%). 
If 2Ï, 93 are permutation groups, 2t 3 93 is the wreath product of 

21 and 93, and if 2Ï, 93 have not been presented as permutation groups, 
21 3 93 is the wreath product of the regular representations of 21, 93. 
This is the regularity convention [24] and will be used on occasion. 

Let © = $/8 be a section of the group X. There is thus a homo-
morphism of N(^)C\N(2) into Aut(@) induced by conjugation. The 
image of N(®)C\N(%) in Aut(@) is denoted 4*03). More generally, 
if Tl is a subgroup of @, Am(<g>) denotes the image of %Jir\N(®)r\N(%) 
in Ae(©). H X is in iV($)niV(S) and S = %K is in ©, then [Z, S] 
denotes 2[X, K], Similarly, if Ï^SW/Sft is a section of 36, if ïfft nor­
malizes both $ and 8, and if [Sft, $ ] £ 8 , then we will view X as a 
group of operators of ©, and we let i4sc(@) =ilç^(@). 

If l = ^oC5rt0C
<ip1C9î1C . . . C$ r Ç9t r = ® is the upper 7r-series 

for the 7r-solvable group ®8 defined via 9î»==0^, (® mod $»), 
^n+i = 0.(® mod ton), w = 0, 1, • • • , we set P£(®) =$„/$«-i, » - l . 
• • • , r, and OJ(@) =$ n /$« , w = 0, • • • , r. Here r-fc(®) is the 

7r-length of ®. As in 0, the major attention is focussed on Pj(®), 
0i(@) and #(©)(«CV(®)). 

If 2Ï is a group of operators of the group 93 and 1 = C«(2ï), we say 
that 2Ï has no fixed points on 93. 

DEFINITION 2.1. The group ® is T-r educed if and only if O *(($>) = 1. 
The subgroup 2Ï of the group ® is ^-reducible if and only if A® (21) is 
7r-reduced. 

DEFINITION 2.2. Rv(®) is the subgroup of ® generated by all the 
normal 7r-reducible 7r-subgroups of ®. 

DEFINITION 2.3. The subgroup 2Ï of the group ® is a 7r-signalizer 
of ® if and only if | 2l| and | ®: iV(2l)| are 7r'-numbers. 

DEFINITION 2.4. A noncyclic £-group *$ is of symplectic type if and 
only if every characteristic abelian subgroup of $ is cyclic. 

8 By a ^--solvable group, we mean a group each of whose cf. is either a £-group for 
some p in w, or a 7r'-group, that is, we adhere to the terminology of [23], not [26]. A 
x-separable group is one for which every cf. is either a 7r-group or a r'-group. 
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REMARK. The groups of symplectic type are classified in [24]. This 
classification is of importance in this paper. If $ is a p-group of 
symplectic type, then $ is the central product of a cyclic group and 
an extra special group, or p « 2 and $ is the central product of an 
extra special group and a group of maximal class, or p =» 2 and $ is of 
maximal class. The explicit nature of the groups of symplectic type 
will be used frequently. 

DEFINITION 2.5. If $ is a £-group of symplectic type, the width of 
$ is the largest integer n such that $ contains an extra special sub­
group § of order p2n+l such that $ = §•<?(§). If $ contains no such 
extra special subgroups, the width of $ is 0. 

DEFINITION 2.6. If 36 is a nilpotent group and 2Ï is a characteristic 
abelian subgroup of 36, CB(36; 2Ï) is the set of all subgroups 38 of X 
such that 

(a) 38 char £ res 

(b) ker(Aut(9Q-*Aut(S8)) is an abelian 7r(36)-group. 
(c) a c z ( « ) . 
(d) [X,»]CZ(«). 
(e) D(8)CZ(«) . 
(f) C»(«) -£(») . 

We set fl&(X)«(B(3E; 1) and observe that <B(3£)2 (B(9£; 21) for every 
characteristic abelian subgroup 21 of 36. 

If 6: 2t = 2lo22ti2 • • • 28» « 1 is a chain, A(e) denotes the sta­
bility group of 6, that is, the group of all automorphisms a such that 
for i = 1, 2, • • • , n, a fixes each coset of 21* in 2li_i. If St is a section of 
36, set A«(e) =*A*W)r\A(G). 

C denotes the field of complex numbers, Fq the field of q elements. 
If K is a field and ® is a group, K® denotes the group algebra of ® 
over K. 

Let K be a field of characteristic £. It is well known that the sub­
group 2t of the group @ is represented trivially on every irreducible 
i£®-module if and only if 21 lies in Op(@). Thus, if 21 is a subgroup of 
® which does not lie in Op(®), we may define ^(21; ®) to be the 
smallest integer r such that ® has an f-dimensional irreducible repre­
sentation over K which does not represent 21 trivially. In particular, 
fjr(9ï; ®) is defined for all fields of characteristic 0, with the conven­
tion that Oo(@) = 1. We also set rfl(2I; ®) =*>«(«; ®). 

DEFINITION 2.7. So/(@) is the set of solvable subgroups of ®, and 
9fllS(®) is the set of maximal elements of So^(®) under inclusion. 
91Z*(®) is the set of all solvable subgroups of ® which are contained 
in precisely one element of 3TCS(®), and if £G9TC*(®), M(§) is the 
unique element of 9fïlS(®) which contains § . 
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We define for each group ©, the following sets of primes: 
TTI(®) = {p\ A Sp-subgroup of © is a nonidentity cyclic group}. 
7r2(@) = \p\ (i) A Sp-subgroup $ of © is noncyclic. (ii) Scn30P) * 

7r3(@) » [p\ (i) If V is a Sp-subgroup of ©, then Scn 8 (^ )^0 . (ii) 
H ©OP) contains a nonidentity subgroup}. 

^T4(©)= {/>! (0 If % is a Sp-subgroup of ©, then »crtz(^)^0. (ii) 
H ©($) contains only 1}. 

As proved in [5], if p is an odd prime in 7T2(®), the structure of the 
Sp-subgroups of © is known. Those 2-groups X with Sot3(20 = 0 are 
as yet undetermined, an awkward situation.4 

If p and q are odd primes, we write p~q if and only if Sô (@) con­
tains an element which contains elementary subgroups of order pz 

and qz, otherwise pn^q. This definition conforms with 0. We wish to 
extend the relation in a useful fashion. This is difficult. We need the 
sets ^(p) explicitly. 

DEFINITION 2.8. Let p^w(&) and $ be a »SV-subgroup of ©. If 
every normal abelian subgroup of $ is cyclic, then 'llOP) =0. If Z(ty) 
is noncyclic, then 11(C) = {3l| %ÇZ($), 21 is of type (p, p)}. If $ con­
tains a noncyclic normal abelian subgroup and Z(^) is cyclic, then 
OlOP) = {2t| 2t< Ç, « is of type (£, ƒ>)}. <U(£) = U«tt($), Ç ranging over 
all the Sp-subgroups of ®. In case we wish to emphasize the depend­
ence on ©, we write ^©(p) for ^(p). 

DEFINITION 2.9. If p is odd, we set 3(p) == {St| 2Ï is a ^-subgroup of 
© and 21 contains a subgroup 33 of type (p, p) such that for each B 
in 23, C®(B) contains an element of %&)} 3(2)= {2Ï| SC is a 2-sub-
group of © and 2Ï contains a noncyclic abelian subgroup of order 8}. 

For a prime q, we write q~2 and 2^2 if and only if there is an ele­
ment of So/(©) which contains elements of 3(g) and 3(2), 

DEFINITION 2.10. S(£) = g©(£) is the set of subgroups (g of © of 
type (p, p) which centralize every element in H ®(S; pf). 

Let £G7r3(®)Ux4(©) and let Ç be a ^-subgroup of ©. The sets 
Ct»($) are relevant. Here, as in 0, 

GiOP)= {211 (i) 21 is a subgroup of $. (ii) 21 contains some ele­
ment of Sctt30P)}. 

Ct*+i($) = {2l| (i) SI is a subgroup of $. (ii) 21 contains a subgroup 
33 of type (p, p) such that Gp(B) €(&*($) for all B in 

53}, i = l , 2, 3. 
Let aPP) = a4(?) and a<Ö0 = Ua,($), a(p)*Uô(Ç), where in both 
unions, $ ranges over all the Sp-subgroups of ©. 

4 The ̂ -subgroups of Janko's simple group of order 604,800 are of this type. 



388 J. G. THOMPSON [May 

If G, .ffE®, we write G~®H if and only if G and H are ©-conju­
gate, and similarly for subsets of ®. If there is no danger of confusion, 
we write G~H. The negation of ~ is oo, We are thus using the sym­
bol ~ in two senses, but since a prime is hardly to be confused with 
an element of a finite group, no confusion is likely. Following Brauer, 
if ^ is a subgroup of ® and G, ü/"G§ satisfy Gn^^H and G~®H, 
we say that G and H are jfased in ®, or that a fusion of G and H 
occurs in ®. 

3. Statement of main theorem and corollaries. 

MAIN THEOREM. Each nonsolvable N-group is isomorphic to a group 
® such that /(©) C ® C Aut(©), where © is one of the following N-
groups : 

(a) L2(q), q>S. 
(b) Sz(q), q = 22n+1, n^l. 
(c) Z.(3). 
(d) Mu. 
(e) 47 . 
(f) EM3). 

COROLLARY 1. Every minimal simple group is isomorphic to one of 
the following minimal simple groups: 

(a) £2(2*), p any prime. 
(b) Z/2(3p), £ aw;y odd prime. 
(c) L2(p), p any prime exceeding 3 swcfe that p2+1^0 (mod 5). 
(d) Sz(2p), p any odd prime. 
(e) £3(3). 

COROLLARY 2. -4 finite group is solvable if and only if every pair of 
its elements generates a solvable group. 

COROLLARY 3. A finite group is solvable if and only if it does not con­
tain three nonidentity elements A, B, C of pairwise coprime orders such 
thatABC=l. 

COROLLARY 4. If ® is a nonsolvable group with |7r(®)| =3 , then 
one of the following groups is involved in ®: £2(4), £2(7), £2(8), Z2(17), 
£s(3). 

COROLLARY 5. If every c.f. of the finite group ® is an N-group and n 
is a divisor of | ® | such that there are exactly n elements in ® of order 
dividing n, they f or m a subgroup. 

COROLLARY 6. If ® is a nonsolvable group, then | 7r(®) | à 3. 
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Corollary 6 of Burnside is well known. The interested reader may 
extract the relevant results from 0 and the present paper to give a 
new proof of Corollary 6. The other five corollaries are probably new. 
The possible existence of Corollary 3 was mentioned in [22]. Corol­
lary 5 is a minuscule contribution to an old problem and sheds no 
light on it. Finally, we state a characterization theorem for £2(3) 
and 54(3). 

THEOREM ES. E%(3) and SA(3) are the only simple groups © such that 
(i) 2, 3 £ T T 4 ( ® ) . 

(ii) If pE {2, 3 } , © p is a *jp- subgroup of © and HEScn3(®„), then 
H (21) is trivial. 

(iii) The normalizer of every nonidentity 3-subgroup of © is solvable. 
(iv) The centralizer of every involution of © is solvable. 
(v) 2 ~ 3 , that is, © has a solvable subgroup containing 

(a) a noncyclic abelian subgroup of order 8, 
(b) an elementary subgroup of type (3, 3) each element of which cen­

tralizes a subgroup in 01(3). 

4. Proofs of corollaries. I t is a consequence of results of Dickson 
[l2] that the groups listed in (a), (b), (c), (e) of Corollary 1 are 
minimal simple groups. Suzuki [37] has shown that the groups in 
(d) are minimal simple groups. By Lemma 5.33, f/3(3)DZ2(7), so 
Corollary 1 follows from the Main Theorem. 

Corollary 2 is an almost trivial consequence of Corollary 1. Explicit 
proofs are available for all the groups listed in Corollary 1 [34]. 

In proving Corollary 3, it suffices to show that for each minimal 
simple group ©, there are elements Af B, C of ® of pairwise coprime 
order with ABC — 1. As the character tables of all the minimal simple 
groups have been determined [12], [37], Corollary 3 may be easily 
verified. We remark that if ® = Sz(q), we may choose A, B, C of 
orders g—1, g — r + l, g + r + 1, where 2q~r2. 

Corollary 4 is a consequence of elementary number theory and 
Corollary 1. 

In proving Corollary 5 for ©, an appeal to a result of Zemlin [46] 
entitles us to assume that © is simple. Rust [3l] has verified Corollary 
5 for Z,2(<?), 1/3(3), Ai and Sz(q). We omit the discussion of Mn and 
Uz{3>), which is not difficult. 

5. Preliminary lemmas. 
S.l. Inequalities and modules. 

LEMMA 5.1. Suppose $ is a p-group and % is a subgroup of $ 
of order p. Let 55 be an abelian subgroup of $ containing 2Ï, and set 
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3) = N($5)r\N(W). Let A be the set of linear characters of 33 which do not 
have 31 in their kernel and let Ai, • • • , A« be the orbits under the action of 
£). Then 

(a) rc (« ; W è m i n f l À x l , • • - , |A.| }. 
(b) r c ( « ; $)è |<A*(e) | where C: 9322131. 

PROOF. Since rc(8t; $ )è fc (2 t ; S)), we may assume that © = $ . 
Let M be an irreducible C^-module on which §1 acts nontrivially, 
and let X be the character afforded by M. By Clifford's theorem, 
X$d = c^Ki, where {X*} is an orbit of linear characters of 33 and c 
is a positive integer. Since SÏ <] *>P, $1 is not in the kernel of any Xt-, 
so {\i} =Ay for some ƒ Hence dim ikf=c|Ay| S>|Ay|, proving (a). 

Let S be the largest subgroup of $ which stabilizes 6. Then 
Ap(C) =i4(s(6), and each A* is a union of orbits under 6. To prove (b), 
it suffices to show that As(6) acts regularly on A. Choose X£A, 
«EAs(<B), a ^ l . Since ce^ l , there is a B in 93 such that Ba~BA, 
where A is a generator for SÏ. Hence, X(-Ba) ^X(B), so XT^X". 

LEMMA 5.2. Suppose § = ^ 0 w^ere | $ | =p is an odd prime and 0 
is a normal q-subgroup such that 0 ' = Co($) , gT^£. Suppose also that 
c l ( 0 ) ^ 2 awd 0 ' = D ( 0 ) . Suppose V is an kQ-module, where k is a 
field of characteristic p and C y ( 0 ) = 0. Let Fo= CVOP). Then dim Fo 
â (dim F) /2 . 

PROOF. We proceed by induction on dim V. Suppose V is not 
irreducible and that W is a proper submodule. Since VQ+W/W is 
contained in the centralizer of $ on V/W, we may apply the lemma 
to W and V/W to complete the proof. Suppose V is irreducible. If 
0 ' = 1, the lemma is trivial, since in this case, F is a free ^ - m o d u l e , 
so suppose 0 ' ^ 1 . 

Let G o = C o ( F ) . Since p5*q, we get 0 ' 0 o / 0 o = Co/o0($) , so 
that our hypotheses are satisfied with § / 0 o in the role of $Q. We may 
therefore assume that 0 acts faithfully on V. Hence, Z(^)) is cyclic, 
so in particular, 0 ' is cyclic, so 0 ' is of order q. Since 0 ' = CoCÇ), 
we get Z(£) = 0 ' . Suppose Z ( 0 ) D 0 ' . Then Z ( 0 ) = 0 ' X 0 i , where 
0 i admits $ and CoxOPHL Since 0 i C Z ( 0 ) , we get 0 i < $ , so 
CV(0i) = 0. Replacing 0 by 0 i , we are reduced to a previous case. 
Hence, we may assume that Z ( 0 ) = 0 ' , so 0 is extra special. 

If *$ acts irreducibly on 0 / 0 ' = 0 , then the proof of (B) implies 
the desired inequality. Suppose ty acts reducibly on 0 / 0 ' and that 
0 i / 0 ' is an irreducible constituent. If 0 i is nonabelian, we are in 
the preceding situation, so suppose that every irreducible constituent 
of $ on 0 / 0 ' corresponds to an abelian subgroup of 0 . We can then 
choose 0 2 so that 0 2 / 0 ' is an irreducible constituent such that 0 1 0 2 is 



1968] NONSOLVABLE FINITE GROUPS 391 

extra special, and we may assume that Q = Q1O2. Choose Qi £ O*- — O ' , 
and set Q^QiQ2. If (93, ^ } = £>, we are done, since CF(O)=*0. 
Suppose <$, <$<*)€$ for all such Q. Then the mapping Q i O ' - ^ & O ' 
can be extended to an isomorphism a of Q i / 0 ' = D i to O 2 / O ' = 0 2 
as ^-modules. Let £t(cr) be the inverse image of {QQff\ Q E O i } in O . 
Thus, 0(<7) admits $ and O C o O / O ' ^ O i / D ' as ^-modules. Since 
0((7) is abelian, it follows that for all QiEQi, [Q1G2, (0iÖ2)p] = l , 
where $ = (P). Hence, [<2i, Q%] = [öf, ft]. Replacing & by ()£, we get 
[Qu Ö22]=[ef» Qf] = [Qi, Q*]t so Qi centralizes $~ p 2 . Since p is 
odd, we get £} ' = 1. This contradiction completes the proof. 

REMARK. There is a group of order 33 • 2 which shows that the odd-
ness assumption in the previous lemma is necessary. 

LEMMA 5.3. Suppose $ is a p-group whose Frattini subgroup is 
elementary and central. For each field F of characteristic 9*p and each 
Fty-module V on which $ acts faithfully, the following hold: 

(a) If p^2f then dim V£tnffl)\F(£): F\. 
(b) Ifp = 2, then dim V£2tn($)/3. 

Here f is a primitive pth root of 1 in an extension field of F. 

PROOF. We assume without loss of generality that $ acts faithfully 
on no proper submodule of V. By complete reducibility, ty has no 
fixed points on V. Suppose V— Vi® F2, where Vi is a proper sub-
module, i = l, 2. Let ^3i=Op(Fi). Since $1 is faithfully represented 
on V% and ^P/^i is faithfully represented on Vi and since m^/tyi) 
+ w ( $ i ) è w ( $ ) , the lemma follows by induction on | $ | in this case. 
We may therefore assume that V is irreducible, and so $ is the central 
product of a cyclic group of order p1+e and an extra special group of 
order p2r+1, where e^ 1. Hence, m($) = 2r+e and dim V^pr\ F(£) : F\. 
The lemma follows. 

REMARK. The central product of a cyclic group of order 4 and a 
quaternion group shows that 2/3 may not be replaced by any larger 
value in (b). 

LEMMA 5.4. Let $ be a p-sub group of the p-solvable group © and let 
%be a subgroup of ty with 2ï£EOp(@). Then for each field F of char­
acteristic p, rF(ïï; ©) = r c ( 2 l ; $ ) . 

PROOF. Let V be an irreducible ^©-module of minimal dimension 
on which 2Ï acts nontrivially. We must show that dim F~Tc(3ï; $ ) . 

Let $ = C @ ( F ) , © = © / § . Thus, $ = Ç $ / $ S * M O $ is a 5 , -
subgroup of © and « = « £ / # 5*1. Since rc(St; Ç)âr c (2 t ; $ ) , we may 
assume that $ = 1. With this normalization, together with char 7?==̂ >, 
we have Op(@) = 1, so *$ acts faithfully on Oy(©). We may therefore 
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choose a ^-admissible special g-subgroup Q of CV(©) on which SI 
acts nontrivially, and such that 0 / D ( 0 ) is a chief factor of $ Q . 

Since 81 C£ 0^(0^5), it follows that when V is viewed as an F&ty-
module, there is a c.f. on which 3Ï acts nontrivially. Hence, dim V 
è ^ ( S Ï ; $ Q ) . This inequality entitles us to assume that © = $ 0 . 

Define the positive integer s by | O : -D(0) | =2*, and let K be the 
algebraic closure of Fq. Then sè/\K:(2t; $ ) , since 21 does not centralize 
K® F g 0 / D ( 0 ) . Since £?*g, it is well known that r x ( » ; Ç) =r c(Sl; $ ) . 
Thus, 5è^c(2l; $ ) . However, if g = 2, we get the stronger inequality 
s^2rc($t; $ ) , as €X/D(d) is not absolutely irreducible for Ç. The 
lemma now follows from Lemma 5.3 with O in the role of $ . 

REMARK. Lemma 5.4 is a typical result for ^-solvable groups, for 
the group O in the lemma appears neither in the hypothesis nor 
conclusion and plays the role of an intermediary, as in (B). 

HYPOTHESIS 5.1. (a) p is an odd prime and $ is a 5p-subgroup of 
the group &. 

(b) 2Ï is a normal elementary subgroup of $ with m(Sl) ^ 3 . 
(c) 2tnzOP) = 3 has order ƒ>. 
(d) Ap(e) = A(e) where C: § 0 3 1 ) 1 . 

LEMMA 5.5. Suppose Hypothesis 5.1 is satisfied. Choose A in $t — S 
and suppose that $ is a p-solvable subgroup of ® which contains C<$(A). 
Then 8ÇOp>,p(Ç>). 

PROOF. Let | 3l| =pw+1, so that w ^ 2 . Let $* be a 5^-subgroup of 
£> which contains C$(A). Note that since 21<l$, it follows that 
| $ : Gp(-4)| <*pw. Since $ is a 5^-subgroup of ®, we see that 

(S.l) | Ç * : 0 * ( i l ) | ^ f , 

Let T7=JS/8 be a chief factor of § with O p ' ( © ) C 8 C * C O ^ , „ ( ^ ) . 
I t suffices to show that S centralizes W. Suppose false. Let 
m^AziW), and let %, 3l0, So be the images of Cy(A), Sï, S in 2», 
respectively. Hence, c3o=3- Since Oa,(9K) = l, there is a ^o-invariant 
special g-subgroup O of M on which So is faithfully represented, and 
such that $o is irreducible on 0 / D ( Q ) . Since O is faithfully repre­
sented on W, there is an irreducible i ^oO-submodu le F of W on 
which O acts nontrivially. 

Let SD?i = Ap0o(F) and let $i , Sïi, Su O i be the images of $o, §ïo, 
3o, O in Tli so that 3 i = 3 o . Since SoQZityo), Si has no fixed points 
on O i / D ( O i ) . Let F 0 = CV(,3i). By Lemma 5.2, we have 

(5.2) dim Fog (dim V)/2. 
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Since O i / D ( O i ) is a FqC<$ (A) -module on which S acts non trivially, 
m(£ii) *zrc(8'> 0$(A)). If q = 2, we get the stronger inequality m(Oi) 
^2rc(£; C<$(A)), since O i / D ( O i ) is not absolutely irreducible in 
this case. By Lemma 5.1, rc(&; Cy(A)) ^ | Acçw)(©)|. By Hypothesis 
5.1(d), it follows that | Ac%u)(V)\ = ^ " 1 . Hence, 

(5.3) w(Qi) è i f " 1 , 

where b = 1 or 2 according as g?**2 or q = 2. 
On the other hand, by Lemma 5.3 we have 

(5.4) d i m F ^ am(Oi), 

where a = l or 2/3 according as q?*2 or q = 2. 
Now F is a submodule of W, so F = $ 0 / 8 for some subgroup $ 0 

of St. Since $ 0 < < ©, $ * n « 0 is a ^„-subgroup of « 0 , so $ 0 = 8 ( $ * n $ 0 ) . 
Let « i = 8(Op(i l )n«o) , and let Fi = $ i / 8 . Since C%(4) centralizes 
3 , we have 

(5.5) F i C F o . 

Since | $* : Op(i4)| g£ w , so also | $ * n $ 0 : Gp( i4)n« 0 | £/>w. Hence, 

(5.6) | « o : « i | ^ r -

Since $ 0 /$ iÊ=$o/8/$i /8 , we have 

(5.7) dîm(F/7i) ^ w. 

Now (5.2), (5.5), and (5.7) yield that dim V^w+dim ViSw 
+ d i m F o â w + ( d i m F) /2 , or 2w^d im V. With (5.3) and (5.4), we 
find that 2w^abpw~1. 

Since p is odd, and a & ^ l , w e 2 , we see that £ = 3, w = 2. Thus, 
2)?iCGZ,(4, 3). This forces g = 2 so that (5.3) yields m(Oi) ^ 6 . On the 
other hand, GL(4, 3) has SV-subgroups of order 29 and of the shape 
T 3 Z2 where T is a S2-subgroup of GZ(2, 3). Thus, 52-subgroups of 
GZ(4, 3) have a subgroup of index 2, every subgroup of which is gen­
erated by four elements. So m ( d i ) ^ 5 . This contradiction completes 
the proof. 

LEMMA 5.6. Suppose the following hold: 
(a) © = @2©3 where ©p is a Sp-subgroup of @, p = 2, 3. 
(b) ©2 is extra special and normal in ©. 
(c) ©3 is abelian, <S 3^1. 
(d) <S is faithfully and irreducibly represented as automorphisms 

of the elementary 3-group (5. 
(e) For each subgroup U of @,f define 3°m = | C<s(3Q : C<g(@8)|. 
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(f) a(2Q Sm(©i /S0 for all subgroups 31 of @3. 
Then ©2 is a quaternion group. 

PROOF. Let | © 2 | = 2 2 n + 1 . Hence, m(d)^2n. Let # = | C<g(©3)|. 
Then m ( ( S ) - / = a « l » , so m(<S)-jf£m(©8), by (f). On the other 
hand, since © is irreducible and faithful on @, we have 03(©) = 1, 
so ©3 is faithfully represented on ©2/©2- Hence, m(@3)gw, so that 
w ( ( g ) - / g w . If f>m(<S)/2, then <@3, ©f) centralizes a nonidentity 
element of E for each S in ©. Since ©3>^ ©, we can choose S in © so 
tha t ©2^(© 3 , ©f). This is impossible, since ©2 inverts (g. Hence, 
f£m(<£)/2, so m((&)/2^m(<i)--f^n, and so 2w"1grc. This implies 
that n^2. If w = 1, we are done by (c), so suppose n = 2. In this case, 
we get 2 ^ m ( © 3 ) , so ©3 is elementary of order 9. Also, ©2 is the 
central product of two quaternion groups Q0» Qi> and if 33»- = C®3(Q«), 
then |SBt-| = 3, i = 0, 1, and ©3 = S30XS3i. Thus JQ0 is faithfully repre­
sented on C<g(S80), so I C®(33o)| = 9 . Hence, | C©(@3)| = 3 . This means 
that a ( ( l ) ) ^ 3 , against (f). The proof is complete. 

LEMMA 5.7. Suppose © is a p-r educed p-solvable group and k is a 
field of characteristic p. Suppose M is a k®-module on which © acts 
faithfully', but that © acts faithfully on no proper submodule of M. Then 
M is completely reducible. 

PROOF. Let N be a maximal submodule of My and let ©0= C®(N). 
By hypothesis, @ 0 T ^ 1 . Since Op(<g>)~l, so also O3,(©0) = l . Let 
§ = O y ( © 0 ) , <r = (rOp) = I ^\^1^HE^H. Since N is a maximal sub-
module of Mf we get N=M<r. Hence, M(l—a) is an irreducible 
submodule of M isomorphic to M/N. Thus, every maximal sub-
module of M is complemented. As M is obviously finitely generated, 
we may write M = Afi© • • • ®Mr®M\ where Mi, • • • , Mr are irre­
ducible, and If ' is either 0 or has no irreducible summands. If ikfVO, 
let N' be a maximal submodule of M'. Then .Mi© • • • ®Mr®N' is 
a maximal submodule of ikf, so has a complement ikTr+i, giving 
M-Mi® • • • ©Afr+iSiV7. Hence, M'^Mr+1®N', against the con­
struction. The proof is complete. 

LEMMA 5.8. Suppose © = ©iX • • • X©«, a^l, where ©t- is a 
dihedral group of order 2pit pi an odd prime. Suppose also that M is an 
Fd&-module on which © acts faithfully and \M\ = 2W with m g 2a. 
Then the following hold: 

(a) m = 2a. 
(b) M is completely reducible. 
(c) M=Mx® • • • ®M8, © = ©(1)X • • • X @00,©(i) centralizes 

Mj, j^i and S(i) acts faithfully and irreducibly on Mu l^i^s. 
(d) j ©(i) I = 6 or 36 for each i. 
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PROOF. Let N be a submodule of M which is minimal subject to 
C®(N) = 1. Let \N\ = 2W. By Lemma 5.7, N**Ni® • • • ®NSi where 
each Ni is irreducible. For each subset / o f {l, • • • , a } , let ©/ 
*= <@y|iG Jr>- L e t ©'*= C®(iVt). Since iV* is irreducible, 02(©/©*) « 1. 
Hence, ©*' = ©/(*•) for some subset J(i) of {l , • • • , a}, so that 
@/©*S©/(»r, where J(i)'*={lt • • • , a} -J{i). 

Let X be the direct product of all the © / © \ If X = (Xu » • • , X8) 
£36, and u — ui+ • • • +w s , &;£iV*, let «.X" = #iJ?i + • • • + « e ^ , 
thereby converting N to a T^X-module. Also, © is isomorphic to a 
subgroup of £, and 36 = & X • • • XÏ&, where 36* is a dihedral 
group of order 2g»-, gt- an odd prime, l^iSb, b*za. Let X* 
==(1, • • • , ©/©*', • • • , 1). By construction, 36* centralizes Nj for 
i ^ 7 and 36* acts faithfully and irreducibly on Nit 

Let |iV"i| =2W», 13Ê*J 2 = 2Ö*. Since Ni is a projective .F^'-module, 
we get fii^O (mod 2a*)- Also, a , ^ 0 , by minimality of N. Hence, 
2aèw^w== Z X i W ^ 2 î . 1 2 l l < è 2 £ î - . i ^ = 26è2o . Thus equality 
holds throughout. We unravel what this means. First, N~M is com­
pletely reducible, and m = 2#, so that (a) and (b) hold. Next © and 36 
are isomorphic by an isomorphism which respects the action of ©, 
£ on M, that is, 0: £->©, and uX*=u(0(X)) for all X&L, w £ ¥ . Let 
©(i)=0(*O, so that ©(*)<]©, © ( i ) n © * = l . Hence © = ©*X©(i), so 
that ©(i)==©/(0'. Hence, © = ©J<D 'X • • • X ©/<•>'• 

Set Mi —Ni, so that (c) holds. Since 2a* = 2a4-, we get a t = l or 2. 
If a*— 1, then | ©(i) | = 6, since w» = 2. Suppose a* = 2. Then | ©(i) | =36 
or 60, since w» = 4. If |©( i ) | =60, then ©(i) ' is of order 15 with 
generator Si. Since a* = 2, some element of ©(Q inverts Si. But the 
characteristic roots of Si on iV* are X, X2, X4, X8 for some primitive 
15th root of 1 in an extension field of F2, so Si is nonreal. Thus, (d) 
holds. 

5.2. w-reducibility and Rr(®). 
The next lemma explores some easy consequences of Definitions 2.1 

and 2.2. 

LEMMA 5.9. (i) RT(®) is w-reduciblefor all T, ®. 
(ii) 2?T(®) is abelianfor all r, ®. 
(iii) For each prime p and group ®, C(RP(®)) = C ( Q I ( J R P ( ® ) ) ) . 

(iv) For each prime p and group ®, Rp(®)QZ(Op(®)). 
(v) For each prime p and group ®, define £n> Sw, 35» recursively, as 

follows: 3 i = S ( 0 , ( @ ) ) , C i = C ( 3 i ) , S ) i=0 , (@ mod &), 3n+i = 8n 
H C ( 3 5 n ) , ( S n + l - C C â n + l ) , 35*-f i=O î >(® m o d Sn+l) , « = 1, • • • . r * « l 
<3i3c322 • • * , wAtfe e iC35iCg 2 C35 2 C . . . . Also, Sn = RP(®) for 
suitably large n. 

(vi) If 0 , ( ® ) * 1 , Mot 2? , (®)*1 . 
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PROOF, (i) It suffices to show that if Sïi, 3Ï2 are normal 7r-reducible 
7T-subgroups of ®, then 2ïi3Ï2 is 7r-reducible. Let (£*=C(3k), 
e=C(2ri3r2). If ©/<£ is a normal x-subgroup of ©/<£, then S)6</<5:< 
SS)/©n(£<SS)/(5:/S)n(5</6 is a normal 7r-subgroup of ®/(£<, so 
£>c;(S*, i = 1, 2. Since S = S i H ^ , we have S)/S== 1, as required. 

(ii) By (i), dt = R„(®) is 7r-reducible, so ®/C(JR) has no non-
identity normal ^-subgroups. Since 9?C(9Î)/C(9î)^9î/Z(9î) is a 
normal 7r-subgroup of ®/C(9t), we have 9î=Z(9t), as required. 

(iii) Let Gi~C(*p(®)), &«C(Oi(U,(®))). Clearly, giCg2 , By a 
well-known property of abelian groups, S2/S1 is a £-group, so 
©2/61 = 1, since ®/Si is ^-reduced. 

(iv) Clearly, RP(®)QOp(®). Also, C(2?p(®))0,(®)/C(l?p(@)) 
öO,(®)/0,(@)nC(2ep(©)) is a normal ^-subgroup of ®/C(*,(@)). 

(v) It is obvious that <3i2c822 • • • » and that Sn£S5n. Since 2)„ 
centralizes 3»+!» w e also have 35n<=Œn+i. Suppose Sn = 3n+i for some 
n. This means that S)n centralizes <3W, that is, 3)n£fën, so $)n = ©n and 
3n is ^-reducible. Furthermore, since &n = <8n+i, we have Sn = fën+i so 
that SDn+i = 3)„ = Sn, which means that £n+i = 3 n + 2 . Let 3 = <3n = <3n+i. 
Then £QRP(®), since 3 is a normal ^-subgroup of ®. On the other 
hand, $1 2 Rp(®), by (iv) and if £r 2 RP(®) for some r, then 
©r^CC-RpC®))5^©, say. Since ©r/(£f is a £-group, so is 3Dr&/& since 
3)rS/S^S) r/2)rn(S:^S) r/e r/S) rnS/S r , so£)rC(£, which implies that 
3,4.1 Z>2?p(®). Hence, £r^.RP(®) for all r. Taking r = n, we conclude 
that <82.Rp(®). As the reverse containment also holds, (v) is proved. 

(vi) This is an immediate consequence of (v), since the center of a 
nonidentity £-group is 5^1. 

LEMMA 5.10. If ® is p-solvable and p'-reduced for some prime p and 
2Ï is a subgroup of ® which is contained in the center of some Sp-subgroup 
of ®, then the normal closure SSI of % in ® is p-reducible. 

PROOF. In any case, 9fcCZ(Op(®)). Let $ be a 5p-subgroup of ® 
with SICZOP). Let 35= Op(® mod 0(91)), so that © = ($n$)C(9t ) . 
The given factorization of 35 shows that 3) centralizes 31, so 3)ö' = 3) 
centralizes %G for all G in ®. Hence, S)/C(9fl) = l, as required. 

LEMMA 5.11. Suppose © is a p-solvable group and 31 is an elementary 
p-subgroup of ©. If C(3Ï) = C($L0) for every subgroup 3t0 of index p in 
21, then 21 centralizes 2?p(©). 

PROOF. Let S = C(/?*(©)). Suppose the lemma is false. Let 
2) = Op/ (© mod (£) so that SI does not centralize 3)/S. Let 3D0 be 
chosen of least order subject to (a) S C3)o££), (b) 35o admits 81, 
(c) [3)o, $ ]$&. Then 3D0/3) is a g-group for some prime qs^p, and 
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31 acts irreducibly and non trivially on $)o/$)i where 3)i = D(3Do mod (£). 
Let 3ïo = OK(5DO/Œ) = Cfc(©o/©i), SO that 121: 3i0| « ƒ>. Let ©0 = 2I0£)o/6 
= 3ïoS/6XS)o/S. Since £)0 /S is represented faithfully on /?*(©), 
Lemma 3.7 of [20] implies that 35o/S is represented faithfully on 
* , ( ® ) n C ( 8 t 0 ) = JB, say. By hypothesis, [31, » ] = 1. Let 8 = (S3ï£)o. 
Then S3t C Cs(33) < 8. By the minimality of SD0, we also get 
£)oC [©o, 3 t ]£C C(SB), so 8 C C(JB). This contradiction completes the 
proof. 

5.3. Groups of symplectic type. 

LEMMA 5.12. If'X if a 2-group of symplectic type and width w, and if 
X is not extra special, then X contains a characteristic subgroup Xo such 
that Xo is the central product of a cyclic group of order 4 and an extra 
special group of width w. If 31 is of odd order > 1 and 31 acts faithfully 
on X, then [X, 2t ] is extra special of width S w. 

PROOF. Let £ = £i£2 , where [Xi, SC2] = 1, Xx is extra special of 
width w and X2 is either cyclic or is of maximal class and order > 8 . 
First, suppose X2 is cyclic. In this case, ^0 = ^2(2) satisfies the de­
mands of the lemma. Suppose X2 is of maximal class. Let Xz~D(X) 
= JD(£2), Xi=C(Xz), Xo = ^2(Xi). Since X* is the central product of 
Xi and a cyclic group, again Xo satisfies the demands of the lemma. 

We next show that 31 centralizes X/Xo. This is clear if X2 is cyclic, 
since S E / î o ^ S V S i ^ ï o is cyclic in this case. We may assume that 
X2 is of maximal class. Let Xz = C(Z(Xo)). Then \X:Xz\ = 2 , and 
XZ/XQ is cyclic. Thus, 31 centralizes X/Xz and Xz/Xo, so 3t centralizes 
£ /£„ , as I «I is odd. 

Let Uo= [Xf 31]. As we have just shown, UoQXo, SO U O = [XO, 31]. 
Since Z(Xo)/Xó is of order 2 in the elementary group £o/£o', there 
is a subgroup U of Xo which contains Xo', admits 31, and such that 
SEo/fco =Z(Xo)/Xo' XU/£ 0 ' . Hence, [£0, 3t]= [U, 31], and U is extra 
special. Since | 311 > 1 and 31 acts faithfully on X, 31 acts faithfully on 
U, and on Uo= [U, 31]. I t is straightforward to check that Uo is extra 
special. 

LEMMA 5.13. Let © be a 2-reduced solvable group, let $ = O2OS) and 
assume that § is of symplectic type and width n>\. Assume also that 
31 is an extra special 2-subgroup of S of width n — 1 and that §P\3ï = 1. 
Then n = 2. 

PROOF. Since 31 is faithfully represented on Qj(©) and since 3Î has 
a unique minimal normal subgroup, there is a g-subgroup O of 
Qj(©) on which 3Ï is faithfully represented. Since the absolutely ir­
reducible faithful representations of 3Ï are of degree 2n~1, we have 
w ( 0 ) ^ 2 w - 1 . 
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On the other hand, C = § Q / ^ for some g-subgroup JQ of © with 
JQ—O. Let ^ = [$ , Q ] . By Lemma 5,12, |> is extra special of width 
* £ n , s o | Q | divides | S2n(2) 12, = (2a — 1) (24 — 1) • • • ( 2 2 * - l ) . Let e 
be the smallest positive even integer with 2 e = l (mod q), and let 
2 < - l = < z V , (g, g') « 1. Hence, 2»~l £ f[2n/e] + [2*/q] 
+ [2n/q2]+ • • • . I t is clear t h a t f ^ e / 2 , and so 2n-l<n+2n/(q-l) 
g2w, which implies w g 3 . Suppose w = 3. The 53-subgroups of 5e(2) 
are Z3 2 Z3, so that w ( O ) ^ 3 . This violates 2 2 ^ m ( 0 ) . Hence, w=*2. 

LEMMA 5.14. Suppose © is a 2'-reduced solvable group and the follow­
ing hold: 

(a) O2OS) = $ is tóe central product of a cyclic group and an extra 
special group of width w. 

(b) If ©2 is a Si-subgroup of @, then ©2/$ is elementary of order 2W. 
(c) 02(©) = » i X • • • X » « , wter« 

(i) I SBi| =£»• is a prime, 1 SiSw, 
(ii) ©2 normalizes 33*, l g i g w , 

r&ew pi = 3, 1 ^i^w. Furthermore, if Ö is a Sv-subgroup of 02,2'(©), 
tóew C # ( 0 ) =Z(^>) awd [ ^ , C l ] is tóe central product of extra special 
groups §1, • • • , § 8 sw& tóa£ §»•/§' is a chief f actor of 0<L& (©)©2. /ƒ* 
Wi is tóe widtó o/ § i , tóew w»*^2. 

PROOF. Let F = § / £ ' , F 0 = Z ( £ ) / £ ' . Thus, | V\ = 22"+«, | F 0 | =2*. 
Let FL be a complement to Vo in F which admits O , and let IF 
— [^» 0 ] = [ F i , Q ] . We assume without loss of generality that 
@ = 0©2 . Thus, © = ##(€>) , so W admits ©, and C@(1F) = £ . Let 
©2 = ©2/^ , an elementary group of order 2W. Let ï » = C@a(Söt-), 
l g i g w , St*=n^<S/ . Thus © / ^ = S3 i î 1 X«2Ï 2 X • • • X®w%w, and 
33»SE* = 35*- is dihedral of order 2pi. By Lemma 5.8, we get m = 2w, so 
that Vi=W. Also, Fi = -X"iX • • • XX8, where X{ is an irreducible 
©-group. Let Xi = ^i/^

f
1 1 g i ^ s . Since Xi is irreducible, S$i is either 

abelian or extra special. Since © / $ acts faithfully on no proper sub-
module of Fi, it follows that neither does O . Let 0 ; = Co(Xt-), 
0 * = ri/?é.- Dy. Thus Q * y i , and O* acts faithfully on ^ and without 
fixed points on &. Hence, §* = [$ , £}*] is extra special by Lemma 
5.12. If iyéj, then Q* centralizes £y , so [§*, £y, Ö*] = [£>/, O ' , $ t ] 
= 1, from which we get [Cl% $<, $ , ] = L Since $ , = [O*, §*], we get 
that §1^2 • • • &8 is the central product of $1, • • •, §*. The remaining 
parts of the lemma follow from Lemma 5.8. 

LEMMA 5.15. Suppose © is a 2'-reduced solvable group and the fol­
lowing hold: 

(a) (M©) = >̂ is the central product of w dihedral groups of order 8. 
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(b) If @2 is a S^subgroup of ©, then ©2/$ is elementary of order 

(c) 02,2<(©)/£ = öxX • • • Xi f t - i , where 
(i) I %$i\ —Pi is a prirne, 1 £i£w — l9 

(ii) ^normalizes S3;, l g ig s* ;—1. 
Then one of the following holds: 

(a) pi —3 for all i. 
(j8) There is exactly one value of i such that pi?* 3, and for this i> 

pi~5. § is the central product of extra special groups $%, * • • , § , such 
that §i<l 02,2'(©)©2, £»•/©' is a chief factor of 02,2'(@) ©2, a#rf 
A%(&i/&) is dihedral of order 10, wftere £ = 02,2'(©)©2. Finally, 
§2 • • • £« w tóe central product of an odd number of quaternion groups. 

PROOF. Let V =$/§'. We may assume that © = © 2 0 , where O 
is a £2 '-subgroup of C?2,2'(©). First, suppose that © / § is represented 
faithfully on some proper submodule Vo of 7. Let W= [7o, ©] . We 
argue that | W\ g22 ( w ,"1 ) , that is, | 7 : W\ ^ 4 , Suppose false. Then 
I V: W\ = 2 , 17= 70 . But VQ =*$/$' for some subgroup $t of $ , and 
| Z ( $ ) | = 4. Thus, Z ( $ ) / # ' = Fx is of order 2 and admits Q . Hence, 
[70f Q ] C F 0 , against T 7 = 7 0 = [ 7 0 , @ ] = [ F 0 , O ] . Hence | W\ 
^22(w~1\ Hence, (a) holds by Lemma 5.8. 

We may assume that © / § acts faithfully on no proper submodule 
of 7. In particular, 7 * [ 7 , O ] . By Lemma S.7, 7 = ViX • • • X 7„ 
where each 7» is an irreducible ©-group. Let 0»-=Co(7»-); O* 
= rijyt Oy. Thus, £ > V 1 , and O* acts faithfully on 7» and without 
fixed points on 7*. Let 7< = $,• /$ ' . Then for i^jf D* centralizes $,•, 
so [$»-, §y] — 1 , §* is extra special and $ is the central product of 
©i> * • • > <!p«. 

Let £ = Afe2(0). Then £ n £ = # ' and £ / $ ' is elementary of order 
2—1. Let dt~OX/§'. 

We may assume that £ r ^ 3 for some i. Let 9$»-= Cto(7*), l ^ i ^ g s , 
and let 3Ê be the direct product of the 9?/$*. We may convert 7 to 
an X-module in the obvious way. Thus, 26 = XiX • • • X£b, where 36»-
is a dihedral group of order 2pi, l^i^bf and b^w — 1. If &>w — 1, 
then by Lemma 5.8, pi = 3 for all i. Hence, & = 7̂  — 1, and so £=~9?. 
This implies that 9Î = 9Ï1X • • • X$% where [9t<, 7 ^ = 1 for *?*/, 
and WVli**WXSti=*f!l. Let [8t*|a = 2a*, | 7j==21". As we have seen 
before, v^2a*. Thus, 2w= 2 X ' è 2Z 2 a < à2 2^a ,= 2 ( w ~ l ) . Suppose 
2ai>2ai for some i. Then 2a»~2a* = 2, as the inequalities show, so 
a» = 3, while for i^j, 2% = 2a*. Since 2a*'>2at-, we get Vj — 2ai for a l l j 
(including j = i). Hence, ^ = 8 . II j-*i, then ^ = 2 or 4, so that W 
is a 2, 3-group. Hence, 8î* is not a 2, 3-group. Since ut = 8 and §»• is 
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extra special, | 9t<| r divides ( 2 2 ~ l ) ( 2 4 - l ) ( 2 6 - l ) ( 2 8 - l ) = 36-52- 7-17. 
If 71 | JR'I, then W does not act irreducibly on 7*. If 17 J | $t*\, then 
O2'0R*) acts irreducibly on 7*, so that 02>(9t*') is necessarily cyclic. 
Hence, we get | 02 ' (9l ') | - 3 - 5 - 1 7 = 2 8 - l , so that O2/(8î0 permutes 
transitively 7<—0. This is not the case, since $i is extra special. 
Hence, 9î* is a 2, 3, 5-group. If 52 | 19t*|, then $t- is the central product 
of § a and §t-2, where § # is the central product of a quaternion group 
and a dihedral group such that # # admits 06(9t*)- O n the one hand, 
Aut(^^y) has no subgroup of order 15, and on the other O3(9î0 
normalizes both § a and §»2. This is impossible, so |$ft*| ==28-32-5. 
Let O 2 , ( ^ 0 = S Ï X « X e , where | « | = | » | = 3 , | S | = 5 . Since 7t- is 
irreducible, S has no fixed points on 7*. We may assume that 0^(31) 
5*1, CV. (« )^1 . Thus, 02 ' (»9/? l acts faithfully on CF,(») = &*/$ ' . 
and >̂f is of width 2. This is impossible, since no extra special 2-
group of width 2 has an automorphism of order 15; so this case does 
not arise. 

We conclude that 2a» = 2at- for all i, so a t = l or 2. By the inequal­
ities, there is i such that Vi>2ai. Since Vi is even, we get i/t~2a» = 2, 
fly = 2% for allj^i. 

Since % = 1 or 2 for all j , and since Vj = 2a> for all j V i , we get that 
8Î* is not a 2, 3-group. 

Suppose ai = 2. Then fl; = 6. As Vi is irreducible, 511 9Î*|, so we may 
assume that |9t*| = 22-3-7. Since Vi is irreducible, Opiffi) has no 
fixed points on 7t-, £ = 3, 7. We may write 7»= 7 a X 7*2, where 7t-y 
admits O7(5R0» J ^ 1 » 2, and | 7</| = 8 . Since O8(9?0 has no fixed 
points on Viy Oz(dt{) does not normalize Va. Since 03(9t*) centralizes 
O7(8î0» we get that Vn and 7*2 are isomorphic 07(9î*)-groups. Hence, 
the elements of OT(9 Î0~" {l} are nonreal in 9î\ This is impossible, 
so this case does not occur. 

Suppose finally that a»-= 1. Then Vi = 4. Since 9t* is not a 2, 3-group, 
we get | 9î*| =10. Hence, § t- is the central product of a quaternion 
group and a dihedral group, so (^>j\j^i) is the central product of an 
odd number of quaternion groups, by (a). The lemma follows after 
a suitable relabeling. 

5.4. p-groups, psolvability and F(@). 

LEMMA 5.16. Let © be a p-solvable, p'-reduced group. Let 3t be a p-
subgroup of © and O an element of H (31; p') satisfying [31, O ] =» Q?* 1. 

ze* $-o,(©). rfo» [$, a, a]*i. 
PROOF. We assume without loss of generality that § is elementary. 

Let # i = [ § , O ] , so that £ i = [§i, 0 ] ^ 1 . Suppose that [£i, 3t, O ] 
= 1. As §x is normalized by 31 and as O has no fixed points on # i , 
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we have [§i, 2ï] = l. Thus, 21 and so [2Ï, O ] centralize #1. But 
[2Ï, 0 ] = 0 . This contradiction completes the proof. 

LEMMA S.17. Suppose § = $ 0 wZ r̂e O is a normal 2-subgroup of 
$, $ w a p-group, p an odd prime, and 0 = [$, 0 ] ^ 1 . Suppose 
furthermore that ty centralizes every characteristic subgroup of O. Then 
O is special. 

PROOF. Let c = cl(O). If c ^ 3, then Cc-i(0) is abelian, so 
[Co-i(O), $ ] = 1. This implies that [$, O, Cc-i(0)] = l, by the 
three subgroups lemma. Hence, Cc-i(Q)C7(Q), since 0 = [$, O ] . 
This is not the case, so eg2. Hence, c = 2, since O is obviously non-
abelian. Hence, 0'&2T(0), so 0 /==2T(0), since $ has no fixed points 
on O / O ' . If O / O ' is elementary, we are done. Otherwise, let 
Qo = Û2 (O mod O') so that Oo/O ' is of exponent 4. Since O is of 
class 2, it follows that if X, FGOo, then 1= [X\ F] = [X\ F2] so 
that JD(Oo) is abelian. This is impossible, since 0 = D P , O ] . The 
proof is complete. 

LEMMA 5.18. If X is nilpotent and 31 is a characteristic abelian sub­
group of X, then (B(£; %)^0. (See Definition 2.6.) 

The proof of this lemma is given in Lemma 0.8.2. 

LEMMA 5.19. Suppose § is a S ̂ subgroup of the solvable group © and 
that 2, 3GTT'. If 2lGScn(F(§)), then C(9Ï) = 2IX£) where 2) is a T'-

group. 

PROOF. Proceeding by induction on | © | , we may assume that 
0^(©) = 1. Hence, F(®)QF(§), so [F(©), 2Ï, 81]-1. Let C:F(©) 
= ©oD(SO • • • D(&fc = l be part of a chief series of ©, and let 
Fi: = St/St'+i, Ft- a £»-group, i = 0, • • • , fe — 1. Then the Sw>-subgroup 
of 3Ï centralizes F* and the 5prsubgroup ST* of St satisfies [Vif %iy Sït] 
= 1. Since V{ is irreducible in 5, it follows from (B) and pi^5 that 
§ICC(Ft-). As is well known, n?r0

x C(F t)=F(@), so 21ÇF(©), 
§lGScn(F(@)). Suppose CG C(3l) and Ow = 1 for some £ in TT. We will 
show that C£2t. In any case, C stabilizes F(©)3§IQ1, so C central­
izes each Vif so CGF(@). Since 2tGScn(F(©)), we get CG2I. Since 
3Ï contains every 7r-element of C(2ï), the lemma follows. 

LEMMA 5.20. Suppose 9W is a normal elementary 2-subgroup of the 
solvable group ©, and the following hold: 

(a) © contains an elementary subgroup of order pz for some odd 
prime p. 

(b) © contains a cyclic 3-subgroup O with the f allowing properties: 
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(i) 0*00) centralizes Stt. 
(ii) [O, 3ÏI] is a four-group. 

Then © contains an elementary subgroup % of order pz for some odd 
prime p such that C$([0, 9K]) is noncyclic. 

PROOF. Let § be a 2'-subgroup of © which contains O and is 
minimal subject to containing an elementary subgroup of order q* for 
some prime q. We suppose without loss of generality that p̂ acts 
irreducibly on $)?. Suppose § is a 3-group. Then ^ = §oO, where 
§ o O ^ , ®o is elementary and |$o| = 33. Thus, Ö permutes transi­
tively the Wedderburn components of §o on SEXÎ. Since \{Q0\ is odd, 
(b)(ii) implies that there is only 1 Wedderburn component. Hence, 
C#0(9ft) is noncyclic and we are done. We may therefore suppose 
that © has no elementary subgroup of order 33. Thus, § is a 3, p-
group for some prime p. Since p*z5, it follows from Lemma 0.8.S 
that § is ^-closed; ^ = ^ 0 where § p is the 5^-subgroup of § . 
Minimality of £ forces &p to be of exponent p and | §p ' | Sp2. As 
above, the irreducible ^-subgroups of SD? are pairwise isomorphic. If 
I C£P(2J01 > A we are done, so suppose | C$P(9D?) | g p. Hence, 
&P/ C$p($ft) = $p is extra special. Clearly, O does not centralize $p. 
Since [3)î, Q ] is a four-group, we get that p = 7. Thus, § 7 contains a 
noncentral subgroup $ of order 7 such that | [$, 9W]| —23. This is 
not the case, since SDÎ is a free /^-module. The proof is complete. 

LEMMA 5.21. Suppose the following hold: 
(i) 9M is a solvable group. 
(ii) % is a noncyclic normal elementary 2-subgroup of ÎUI and one of 

the following holds: 
(a) % is 2-reducible in SDÎ. 
(b) % contains a subgroup go of order 2 which is central in SW and 

g/go is 2-reducible in 9M. 
(iii) I is an involution of 9W with | g: C%(I)\ ==2. 
(iv) There is at least one odd prime p such that SD? contains an ele­

mentary subgroup of order pz. 
Let g* = [g, ƒ ]. Then there are an odd prime q and an elementary sub­

group O of Wl of order qz such that Co(g*) is noncyclic. 

PROOF. If g is 2-reducible in SDÎ, set fÇ0 = 1, otherwise, let go be the 
subgroup given in (ii)(b). Let F=g/g 0 , &=Cm(V). If JG£, then 
[g> I] — go and the lemma is clear. We may assume that I ££(£. Hence, 
I inverts an element M of 9K of odd prime power order r n > l , such 
that Afre(S, Af (£<S. Since CV(I) is of index 2 in V, it follows that 
r = 3. Thus, this lemma follows from Lemma 5,20. 
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LEMMA 5.22. Suppose p is an odd prime, @ is a p'-reduced p-solvable 
group, @P is a Sp-subgroup of © and 31 is a normal cyclic subgroup of 

©. r*e»«co,(©). 
PROOF. Suppose false. Since every subgroup of St is normal in ©p, 

we may assume that | St: «nO p (@)| =*p. Since [Op(@), St, St] = l, it 
follows that p = 3. Proceeding by induction on | ©|, we may assume 
that 03(©) is elementary and that © = 03,3'(©)St. Thus, ©* = Op(©)St 
and St is cyclic of order 9. Since [St, 03(©)] = Qi(3t), it follows that 
03l3'(©) = 03(©)D, where O is a quaternion group. Minimality of © 
forces | 03(©)| =9. Hence, ©= 03(©)-iV(D) and tf(G)no8(®) = l. 
This implies that ©3 has exponent 3, against the presence of St. The 
proof is complete. 

LEMMA 5.23. Suppose St is a normal subgroup of the p-group $ and 
S3 is an abelian subgroup of St which is normal in ty. Then there is an 
element S of Scn(St) which contains S3 and is normal in ty. 

PROOF. Let & be maximal subject to (a) <£<$, (b) S3C(£ÇSt, 
(c) (£' = 1. If &CC2t(&), then there is a subgroup SD of St such that 
£><!$, SCS)£C2r((S), |35i(£| =£. Thus, © is abelian against the 
maximality of <£. Hence, <£ = Cto(<E)€$cn(2l). 

LEMMA 5.24. Suppose p is an odd prime, © is a p-solvable group, and 
© has no elementary subgroup of order pz. Then each chief p-factor of 
© is of order p or p2. 

PROOF. Let ®P be a Sp-subgroup of ®. We assume without loss of 
generality that CV(®) = 1. Let &~Op(G). First, suppose p^5. In 
this case, the structure of ®p is given in 0.3.4 and the lemma follows. 
So suppose p = 3. 

Choose S3£(B(£), and let 3t = Qi(S3). Let Q be a S3>-subgroup of 
®. Thus, O is represented faithfully on §, so by definition of S3, O 
is represented faithfully on S3. By 0.3.6, Q is represented faithfully 
on St. 

By definition of S3, cl(S3) ̂  2, so St is of exponent 3. Hence, m(3t) g 2 
since © has no elementary subgroup of order 27. Hence, O is iso­
morphic to a subgroup of GL(2, 3), so O is a 2-group. Furthermore, 
since ©3/$ is represented faithfully on C>3,2(®)/$ it follows that 
I ©3: $ | ^ 3 . 

Let 6 be a part of a chief series of © from 1 to ^ passing through 
St and through $0"*8C«>(«). If |St| =3 , then S3 is cyclic, and § is 
metacyclic, and the lemma is clear. Suppose |St| =9. Here we get 
I § : §o| ^ 3 . Also, $0 has just 4 subgroups of order 3, each of which 
is central. As is well known [5], $0 is metacyclic, and we are done. 
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Suppose |2t| =27. Here we get | § : § 0 | ^ 3 , and $ 0 is the central 
product of 3t and a cyclic group. Again the lemma follows since the 
chief factors of ® between 21 and §o are of order 3. 

LEMMA 5.25. Suppose (g is a p-solvable group, p an odd prime, and 
95 is a subgroup of <&oftype r(p, p) such that for some B0 in S3, S3 = Öi($), 
where $ is a Sp-subgroup of C(B0). Then every element of V\ (S3; pf) is 
contained in Op/(©). 

PROOF. We may assume that 0P'(@) = 1 and try to show that 1 is 
the only element of M (S3; p'). Suppose §)GH (S3; p'), gH 1. We may 
assume that §) is an elementary g-group for some prime q^p, and 
that S3 acts irreducibly on g). Let £ = Op(@). Thus, g) acts faithfully 
on §.#We may assume that <3 = |)g)S3 and that §) centralizes D(|>), 
and that §D has no fixed points on §/!)($). Hence, £ is of exponent 
p, by Lemma 0.8.7 and 0.3.6. This implies that S3 is a Sp-subgroup 
of C(S3), so by Theorem 2 of [41 ], we have g)CCV(©). The proof is 
complete. 

5.5. Groups of low order. 

LEMMA 5.26. Suppose § = $ D , $ = £' , | $ | = 64, | £l | = 5 and Z($) 
is a four-group. Then § is isomorphic to the centralizer of an involution 
of tf,(4). 

PROOF. AS is well known [36], the centralizers of involutions of 
J78(4) satisfy the hypotheses. Thus, it suffices to show that the 
hypotheses determine § . 

Since $ = § ' , it follows that $ is special. Let P be an element of $ 
of order 4. Thus, $ = (P°) so we can choose a generator Q of O such 
that [P, P«] s* 1. Let P< = P«', * = 0, 1, 2, 3. Thus, P? = Pf 
=P0PiP2PzZ, where ZGZ(Ç). If XE% then 

px-Vx = (p[P> x])<2^ = (p<[p, X])* = P<[P,, X][P, X]. 

For i = 0, 1, 2, 3, set Pi = Px~lQix, and 

p x - W _ j>f ^ _ ^ f V X Œ ( p 8 [ p 3 ) X ] ) Q x = (PoPlp2pzz[ph X])x 

= PoP1P2P3[P3, X][P0PiP2P3, X]Z = r W * A [ P t , X]Z. 

We can choose X in $ such that [P3, X ] = Z and replacing Q by 
X-iQX, we may assume at the outset that 

(*) P8
Q = P0P1P2P3, Pi - P < * - 0,1,2,3. 

Let Z i=[P , pe ]=[P 0 , Pi]5*1. Since O centralizes Z(Ç), we get 
Zi=[Pi , P i ]« [P t , P i ] - [Pa , PoPiPt], so that 1 = [P8, P0P1]. If 
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[Pi, P O ] £ < Z I > , we get that [Pu Ç]ç<Zi>, against [Plt Ç ] - Z ( Ç ) . 
Hence [P3, P^—Zt €£(Zi). Hence [Pi, P 3 ]=Z2 and conjugation by 
Q - 1 gives [Po, Pi[=Zi. Thus, the commutation relations in % are 

[P„, Pi] = Z l f [Pi, P,] - Zi, 

(**) [Po, Pi] = Z„ [Pi, P8] = Z„ 

[Po, P8) = Z„ [P„ Ps] - Z,. 

Again, since O centralizes Z(^JJ), we get 

Po = P\ - P2 = Ps = (PoPiPsPs)* = P O ' P Î P J P I I I [P.", Pi] - 2iZ2 

and so 

(***) P\ = Zi22 , 0 ^ i g 3. 

Now (*), (**), (***) determine $ . 

LEMMA 5.27. Suppose X is a metacyclic 2-group and Aut(2) is not a 
2-group. Then X is either a quaternion group or is abelian of type 
(2n, 2W). 

PROOF. We may assume that X is nonabelian. 
Suppose |SE' |>2. Then X/£li(X') is a nonabelian metacyclic 2-

group, so by induction on | X\, it follows that X/Qi(X') is a quaternion 
group. Hence, X is a group of maximal class and order 16, so AutÇE) 
is a 2-group. This is not so, by assumption, so \Xf\ = 2 , and X/Xf is of 
type (2n, 2n). If n£2, then Z{X) is of type (2n~1, 2W), so Z(£) is 
centralized by every automorphism of X of odd order. Hence, Ï /SI 
is nonabelian for some subgroup 31 of Z(X) of order 2, so that X/% 
is a quaternion group. This is not the case, since \X\ è2 6 . We con­
clude that n = l. This implies that X is a quaternion group, since a 
dihedral group of order 8 has no nontrivial automorphisms of odd 
order. 

LEMMA 5.28. Let Xbe a nonabelian 2-group with Scn3(£) ~0. Sup-
pose %is a group of automorphisms of X of odd order and [2Ï, X] = £ . 
Then X is isomorphic to one of the following groups: 

(i) A quaternion group. 
(ii) A special group of order 64 with exactly 3 involutions, each of 

which is central. 
(iii) The central product of a quaternion group and a dihedral group of 

order 8. 
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PROOF. First, suppose that X is of symplectic type. Since [SÏ, X] 
=SE, X is extra special, by Lemma 5.12. Since Sett* (£) = 0 , (i) and (iii) 
are the only possibilities. 

Let S3 be a noncyclic characteristic abelian subgroup of X of largest 
order. Notice that Z(X) C93. Let <S = «2(93), £) = fli(93). Thus, £) is a 
four-group and Cst(S)) is normalized by 2Ï. Since \X: Csc(S))| ^ 2 , it 
follows that X)QZ(X). 

Suppose §1 centralizes 93. In this case, S centralizes X/C%($8), so 
that 93 = Z(£) . Let c = cl(£). If c > 2 , then Z(£)Cc_i(£) is a noncyclic 
characteristic abelian subgroup of Xy against the maximality of 53. 
Hence, c = 2. Since £ 'c;33, it follows that X contains exactly 3 in­
volutions. If S is of type (4, 4), then by a result of Alperin [ l ] , X is 
metacyclic, so by Lemma 5.27, X is abelian, contrary to hypothesis. 
Hence 93 is of type (2, 2"), w = l . Since 2 = [2Ï, £ ] , it follows that 
93=2 ' . Suppose n^2. Then S / O 1 ^ ' ) contains exactly 3 involutions, 
so by induction on \X\, £/C1(5C/) is special of order 64. But in this 
case, X' is of exponent 2, against 93=X'. Hence, w = l. Since $8 = X' 
= Z ( £ ) , it follows that D(X)QZ(X), so that £ is special. 

Let | X: X'\ = 2m. Since 2 / » D(X), it follows that every linear char­
acter of X lies in the rational field. By a result of Schur-Frobenius 
[15], we get 4 = 2w+]5£€xX(l.)> where x ranges over all the nonlinear 
characters of X. If x is a nonlinear irreducible character of X, then 
Z ( £ ) n k e r x is of order 2, since Z(X)=*X' and Z(X) is a four-group, 
while Z(£ /ker x) is cyclic. Let 3?i, 3k» 3a be the subgroups of Z(X) 
of order 2, and let #» = 23€xX(l)> where x ranges over all the nonlinear 
irreducible characters of X with Z Ç £ ) n k e r x = <3*> i = l , 2, 3. Thus, 
4 = 2 w + a i + a 2 + a 3 . 

Since !£ admits SI, we get m ^ 3 . Hence, we may assume that nota­
tion is chosen so that S\a%. Let S = £/ ,3i . Then | Z>(S) | = 2 . If Z(8) 
is not elementary, then no nonlinear irreducible character of 8 is real, 
so that a% = 0. This is not the case, so Z(8) is elementary. This implies 
that 8 = £o X8i, where So is elementary and ?i is extra special of order 
22Z+1. Hence # i= ± | 2 o | -2*, since 8i has just 1 nonlinear irreducible 
character whose degree is 2l. Since 8\ai, we get 1^2. Suppose 1 = 2. 
Then 8o = l and so \X\ =64. Suppose Z = l. In this case |?o| ^ 2 , so 
| !E |S32 . Thus | ï | =32 or 64. 

If | X\ =32 , then since $ > [X, 2t], it follows that 7| | 2t|. However, 
Ï is special and no nonabelian special group of order 32 has an auto­
morphism of order 7. Hence | SC| =64. 

Suppose % does not centralize 93. Then 93 is of type (2n, 2n), n*£l. 
Suppose « ^ 2 . Then © is of type (4, 4), and by the above mentioned 
result of Alperin, Csc(S) = 93. Since X stabilizes S D S O l , it follows 
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that £/93 is elementary of order 4 or 16. It now follows easily that 
| 311 =3 , and that 3t has no fixed points on X. Hence, cl(£) = 2, and 
the lemma follows. If # = 1, the lemma also follows, since in this case 
S8=Z(£)=3; /. 

LEMMA 5.29. Suppose © = £ Q , where \x\ =64 and | C | =5. Let 
$ = C?2(©) and assume that $ = F(@) is the central product of a qua­
ternion group and a dihedral group of order 8. Suppose T is an involu­
tion ofX—& and C$(T) contains a four-group. Then C$(T) is a four-
group. 

PROOF. Let I be an involution of C$(T) — § ' ; 2" is available since 
| § ' | =2. We can assume without loss of generality that T inverts O. 
As O acts irreducibly on %/X' and as IÇ£Z(!Q), we may then choose 
Q such that [/, /<?]=Z^1. 

Let Ii = I, l2 = IQ, h = IQ\ 74 = /Q8. Since Q5 = l, it follows that 
I$ = I4Izl2liZa = ZaI1l2lzU Since [lh h]=Z, transformation by Q 
yields [72, Iz] = [J3, J 4 ]=Z. Now / J = if'=ifL = hhhhZ% / J - i f ' 
= / f = 74. Thus, J3I4 is of order 4 and </i, IZI*)/$'= C$/&(T$'). 
Since (IzIt)

T~IJz?*IzIh it follows that C$(r) = (i*i, 2), a four-
group. 

LEMMA 5.30. Suppose © w a 3-solvable group, |@: 03'(©)| =3 , 
©3 is a Sz-subgroup of © and Os'(©) = [C>3'(©), ©3]. Suppose also that 
© is faithfully represented as automorphisms of an elementary 3-group 
V and that \ V: CV(@3)| =3 . Then Oz>(&) is a quaternion group. 

PROOF. Let V= Vi® • • • © Vr, where each Vi is an indecompos­
able ©-module. We may assume that ©3 does not centralize Vi. Since 
I V: CV(©8)| - 3 , we get | [V, ©8]| =3 , so that [Fi,©3]= [F,©3]. This 
implies that ©3centralizes F2© • • • © Fr. Since 03'(©) = [03'(©),©3], 
it follows that 03'(@) also centralizes V2® • • • ®Vr. Thus, © is 
faithfully represented on Vi, so we may assume that V= Vi is inde­
composable. 

By (B), it follows that |03 '(©): 03 ' (©)nC(®a) | is a power of 2. 
Let X be a 52-subgroup of © which is normalized by ©3. Thus, 
[£, ©3]3*1. Suppose [£, ©8]<03'(©). Then by induction on | © | , 
we get that [$£, ©3] is a quaternion group. Hence, j Os'(©): Os'(©) 
AC(© 3 ) |=4 . 

Let 5 = n5€® 03 '(@)nC(©3)s. Thus, @ = 03>(©)/g has a faithful 
permutation representation on 4 letters, and % <d ©. Since [©3, ©]=*©, 
and since 3| |@| • it follows that © is a four-group. Now 5£C(@3), 
and Gg>($) < ©, so that C@(&) contains [03'(@), ©3] = CM©). Hence, 
$££(©) . Since Fis indecomposable, § is cyclic. Also, g5*1, by (B). 
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Finally, no nonidentity subgroup of % has nontrivial fixed points on 
V. Since % normalizes [V, ©3], a group of order 3, we get | g| g2, so 
I g j = 2 and 03'(©) = [£, ©3], against our assumption. 

We may now assume that [X, ©3] = 03'(©), so that 03'(©) is a 
2-group. By (B), ©3 centralizes every characteristic abelian subgroup 
of 03 '(©). Hence, 03'(©) is special by Lemma 5.17. Since V is inde­
composable, 03'(©) is extra special. It follows from the proof of (B) 
that 03'(©) is a quaternion group. 

LEMMA 5.31. Suppose $ = |hX$2, where £4~^U, i = l, 2. Z,e/ X be 
the S^subgroup of § and let Xi = XC\^u i = l,2. Let £ibea Sz-subgroup 
of $ and let O t = Q P \ § ; , i = l , 2. Ze£ O3, O4 be the remaining sub­
groups of O of order 3, and let 33 &£ aw;y subgroup of X of order 4. Then 
one of the following holds: 

(i) ssr\Xi^if 
(ii) 93n£2^l, 
(iii) 03CiV(33), 
(iv) O4CWOB). 

PROOF. Suppose neither (i) nor (ii) holds. Then 33 = (II', JJf), 
where J, 7G£f, I', / 'G2* , and I?* J, V?*J'. Since Oi permutes X\ 
transitively by conjugation, we may choose a generator Q\ of Oi with 
IQi*=J; since O2 permutes 2 | transitively, we may choose a gen­
erator Q2 of 0 2 with ƒ'«* = ƒ'. Let Q = QiQ2, so that 11'® = J J'. Since 
Ca:((2) = l, it follows that ^+«+^=1 for all T in X. Hence, Q nor­
malizes 33. Since (Q) = O3 or O4, either (iii) or (iv) holds. 

LEMMA 5.32. Suppose © = 3ÏSE where 3l< ©, §1 w elementary of order 9 
awd SI = C(3t). Suppose also that X is a dihedral group of order 8. Let M 
be an irreducible F2&-module on which © acts faithfully. Then \M\ =16 
and X contains exactly one four-subgroup 33 such that M is a free F29$-
module. 

PROOF. Let £=(Z \ , T2), where T%, T2 are involutions, and let 
Z=( r x r 2 ) 2 . Let 33*=<7\-, Z), so that 33i, 332 are the only four-sub­
groups of 33. 

L e t 3 = {Th TiZ, T2, T2Z) and for each J in 3 , let 31(7) = C%(I). 
Since no element of 3 inverts St, it follows that 131(7) | =3 for each I 
in $. If 31(1) =31(7), then (J, J) centralizes 31 (J). Since Z inverts St, 
we get I~J. Thus, as I ranges over 3 , 3ÏC0 ranges over all subgroups 
of 3t of order 3. 

Since 3Î is elementary of order 9, there is A in 3Ï# such that M0 

= 0 ^ ( 4 ) ^ 0 . Changing notation if necessary, we may assume that 
(A) = %(Ti). Thus, 33i normalizes (4) and Z inverts A, so that M0 



1968] NONSOLVABLE FINITE GROUPS 409 

admits 3t33i = 0 . Let Mi be an irreducible D-submodule of M0. 
Since © acts faithfully on the irreducible module M, we get CM(31) = 0. 
Since 7\ inverts 8 / ( 4 >, TXZ centralizes 31/(A), so TiZ£Oj(£i/(A)). 
Thus, T\Z centralizes M\% so we may view M\ as a i^O-module, 
where Q = 0/<i4 , TiZ). Thus, | Mt\ = 4. Since A f i + A f ^ admits ©, 
we get Jlfi©Jlfir2 = Af, and so | Af | =16. Since 7\Z centralizes M± 
and since AfiZi admits 7\Z, it follows that | CM(T\Z)\ = 8 . Hence, Af 
is not a free F233i-module. 

Choose rnE.M\—CMl(Z). Then ( i»7 | FE332) contains Mi and 
MiT2f so coincides with AT. Hence, ikf is a free F2932-module, and we 
are done. 

LEMMA 5.33. J/3(3)D£2(7). 

PROOF. AS is well known [12], L2(7) has an irreducible complex 
matrix representation p of degree 3 whose character lies in Q((—7)1/2). 
The restriction of p to a subgroup $ of order 21 is absolutely irre­
ducible and so we may assume that p# lies in Q((—7)1/2). This already 
forces p to lie in Q(( — 7)1/2), so we may assume at the outset that p 
lies in (?(( —7)1/2) and has ̂ -integral entries where p is a divisor of 3 in 
the ring of integers of (?(( —7)1/2). Reading (mod p) gives an abso­
lutely irreducible matrix representation cr of £2(7) in 5L(3, 9) with 
character <j>, say. Let <r*(X) = f [^(X""1)]"", where ~ denotes the map 
induced by the generator of Aut F9. Thus, <r* and a have the same 
character. Since p̂ has just 2 irreducible representations of degree 3 
in F9 and since both lie in f/3(3), we may assume at the outset that 
<r* and <r agree on $ . This forces a = cr*i so o*(i2(7))C^3(3), as 
required. 

5.6. 2-groups, involutions and 2-length. The next lemma plays a 
basic role in this work. 

LEMMA 5.34. Suppose the subgroup % of the solvable group © is 
elementary of order 2W>1, and | F (©) | is odd. Then F(@) contains a 
subgroup 3t with the properties 

(a) 3I=3TiX3t2X • • • X3t«, where »< w of prime order, 
(b) 3Ï* w %-invarianty l^i^n, 

(c) cs(sr) = i, 
(d) if SE< = fl*tf Gc(Sly), awd $)i = 3ï»£t, /Jiö» £)»• w a dihedral group 

andZM^QiX • • • XSD». 
PROOF. By hypothesis and 0.3.3, Ca;(F(©)) = l. Let SI be a SE-

invariant subgroup of F(©) minimal subject to (c). Since 31 is nil-
potent, we may choose a ^-invariant subgroup Si of prime index in 3t. 
Choose I in Csc(Si)#. Then 3ti = [31, / ] is a ^-invariant normal sub-
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group of SÏ, and [31, i", / ] « [3Ï, ƒ]. The second equality implies that 
«««iXft i . Let 2x«Ck(»i). Since Aut(&) is cyclic, £ = £iX<I>, 
so if we set 35i=<«x, />, Sbx«<SCi, &>. we get ST3I = SDi X S5X. Hence, 
we are done by induction. 

LEMMA 5.35. Let ÏBflbe a subgroup of the group © such that 
(a) | 2)21 w ez>£̂ . 
(b) 90? contains the centralizer of each of its involutions. 
(c) f)se<B $Jl8 is of odd order. 

Then i(<g>) = l. 
Let Xbe a S%-subgroup of 9W and let I be an involution in Z(£) . If in 

addition to (a), (b), (c) we also have 
(d) N(X)QWl, 

then 
(i) *(2ft) = l, 
(ii) 9M contains a subgroup SD?o of odd order such that $Jl = WloCm(I)* 

PROOF. Let J be a fixed involution of SDÎ, and let K be any involu­
tion of © which is not conjugate to ƒ. Then JK is of even order, so J 
and K commute with an involution Z. Applying (b) successively to 
/ and L, we have i££9D?. Thus, SDÎ contains the normal closure of K 
in ©, contrary to (c). 

Suppose now that (a)-(d) all hold and J is an involution of 99?. 
Then J=S~lIS for some S in ©, so £*caK, XS~ZM, M in Wt, so 
SAf^GJV(£)cg», so 5G39Î, that is, *(2») = 1. 

Let S= Cm(I)S be a coset of Caw(7) with 5$9K.e Suppose / , K are 
distinct involutions in (£. Let M=JK. Thus, ilf27^1 and If cen­
tralizes I. Also, 7£C*(ilf), so that I and ƒ are not conjugate in 
C*(M). Hence, IJ is of even order, so that I and / commute with a 
common involution I*. Applying (b) successively to / and /*, we get 
JÇzffll, against S£|:2ft. Hence, each coset of Cm(I) in © —SDÎ contains 
at most one involution. Notice that (a) and (c) imply that 3D?C@. 
Since 2ft contains exactly m = | 9JÎ: Cm(I) \ involutions and © contains 
exactly | ©: Qm(J)| involutions, it follows that each coset WIS of M 
in © — ÉI contains exactly m involutions 7i, • • • , 7m. If m = l, then 
9K=C$w(J) and we may take 9Wo = l. Suppose m>\. Let SDîo-SD? 
n( J i , • • • , Im) so that 9Wo is normalized by fi, and 1, hl^ • • • , ij/m 
is a set of representatives for the cosets of Cm{I) in 3Ji. Hence, 
H)? = 2)?oCaw(7"). Clearly, |$D?0| is odd, since Ji commutes with no 
involution of SDÎ. The proof is complete. 

6 The argument here appeared in Feit [ i l ] . 
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LEMMA 5.36. Let © be a 2''-reduced solvable group and let J be an 
involution of © — CM®). Then there is an element Q of © of odd prime 
order which is inverted by J. 

Lemma 5.36 is a special case of Corollary 1 of [39], and will be 
used very often in this work. 

LEMMA 5.37. If H is a 2-group and 3Ê' is elementary and central then 
Q2OO is of exponent 4 and ker(Aut(30£!gAut(Û2(30)) is a 2-group. 

PROOF. The first assertion follows from the fact that [X2, Y] 
= [X, F]2 = 1 for all X, Y in 36, and the second from Lemma 5.17. 

LEMMA 5.38. (a) Suppose © is a finite group of even order with no 
subgroup of index 2. 

(i) Let ®2 be a Sv-subgroup of © and let SSRbe a maximal subgroup 
of ©2. Then for each involution I of ®, there is an element G in © 
such that I°EWl. 

(ii) For each U in <U(2) and each involution I of ®, some conjugate 
of I centralizes U (see Definition 2.8). 

(b) Suppose X is an elementary 2-group and SI is a group of odd order 
which normalizes X and has no fixed points on X. Suppose ISX 
and Xo is of index 2 in X. Then there is an element A in A with IASXo-

PROOF. (a)(i). Let t be the transfer of © into ®2/9K. Thus, t(I) 
-2R/2K. Since | @: ©2| is odd, the number of cosets 6=@2G of ©2 

in © which satisfy S I = S is also odd. Since t(I) = 9 K H Ö GIG"1 where 
G ranges over a set of representatives of the cosets fixed by I, we can 
find G in © with GIG"1 EM, as required. 

Both (a)(ii) and (b) are consequences of (a)(i). 

LEMMA 5.39. Suppose p is an odd primet $ is a p-group and X is an 
elementary subgroup of A u t ^ ) of order 8. Let X— {T\ TÇz%?t C%(T) 
is noncyclic). Suppose that X contains a proper subgroup Xo which is 
disjoint from X and such that TT'EXafor all T, T'EX* Then 

(a) $ is abelian. 
(b) m($) = 3. 
(c) | £ | =3and(±) = X. 
(d) £o={rr|r, r e t } . 
PROOF. Clearly, m(<$)*£3, since GL(2f p) contains no elementary 

subgroup of order 8. Our hypotheses guarantee that if T, T'SXt 
then TT'(£X. 

We first treat the case $ ' « 1 . Let $ # = {Th • • • , T7}, let $0 

«OiOP), let m(P)=m, and define a< via ƒ>«« | C%(Ti) |. If Op(SC)^ 1, 
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then !£ U {1} contains a four-subgroup of X and so Xo does not exist. 
Hence, Cy(X) = 1. By Satz 2.3 of [44] applied to X acting on $0, we 
have l=£-6»H-22at-, s o that $m== ]£#,•. Clearly, a* g 3 for all i since 
X ̂  {1} contains no four-subgroup. Assume by way of contradiction 
that m à 4. Suppose ai = 3. Then each involution of £/(Ti) cen­
tralizes a subgroup of C<$0(Ti) of order £. Let $0= C%(Ti)Xty*, 
where $* admits X. Let $ be a ^-subgroup of $* of order £ and let 
£ = Gt(3$). Then £ C ±\J {1} and X is a four-subgroup of X. This is 
impossible, so that a^l, i=l, 2, • • • , 7. Since £ is contained in a 
coset of 2To it follows that | £ | ^ | £0 | ^ 4 . Thus, ] [> i = 4-2+3<3w, 
against the preceding equality. Hence m = 3 so that (b) holds. 

Let 3̂ = ^1X^2X^3, where $* is an indecomposable 2-group. Let 
\i be the character of X on $*, and let Xi= Csc^), and set Xy 
= Xir\X^ If *Vj, then £*7 is of order 2; 5E<y= <2\y>. Also, 2», r23, r3 i 

all lie in 2; and are distinct since ÏCAutCîP). If <r is any permutation 
of {l, 2, 3}, then Tffii)<T(2) inverts %,$) and centralizes Ĵ«r(i)X <̂r(2). 
Also, rtf(1)̂ (8)rtf(2)«r(8) centralizes $,(2) and inverts both ^ ( D and $,(3), 
while ri2r23r3i inverts $. Thus, (c) and (d) also hold. 

We may now assume that ty'?* 1. We apply the portion of the proof 
already completed to $ /$ ' . Let Xi, X2, X3 be the characters of X on 
$ / $ ' defined previously. We may assume that $ ' is of order p. Then 
QiOP) is of exponent p. If jfli^)! =£4, then we may assume by 
induction on | ty\ that $ = 01 (̂ 3), since by 0.3.6, X is faithfully repre­
sented on OiOP). In this case, $ is the direct product of a group of 
order p and a nonabelian group of order pB and it is straightforward 
to verify that Xo does not exist. Hence, £2i($) is of order pz and is 
elementary. Hence, ^'CoK^P) so that the character of X on $ ' is 
one of Xi, X2, X3, say Xi, so that Xi=X2X3. This implies that T%z cen­
tralizes $, against our hypothesis. The proof is complete. 

LEMMA 5.40. Assume the following: 
(i) © is a solvable group. 
(ii) i(@) = l-
(iii) A S^-subgroup X of & contains more than one involution. Then 

© has 2-length 1. 

PROOF. We assume without loss of generality that 02'(©) = 1. Let 
£o = 02(©). We must show that £0 = £. 

Let 9tt=Qi(Z(£o)). Since i(©) = l, 9ft contains all the involutions 
of ©. Let I M\ =g = 2»S and set C= C(9ft). 

Let Q be a S2>-subgroup of © and let D 0 = C>nO2,2>(©). We 
assume by way of contradiction that Xo QX. Then iV(Oo) contains 
an involution since © = S£oiV"(Oo). Since all involutions of © are in 
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9W, Carc(Oo) s* 1. Since Gro(Qo) < ©, it follows that Oo centralizes SDÎ. 
Hence O o centralizes every abelian subgroup of Xo which O o nor­
malizes. By Lemma S.17, Xi= [Oo, £o] is special. Since Xi<]©, it 
follows that Z(Xi) = m. 

We argue that | ï i | =qn for some n^2. Namely, if W&$!ft? and 
there are exactly r solutions to the equation X 2 = W with X in £i , 
then r does not depend on W, so j SCi| =r(g —l )+g . Hence, g —1 
divides | ï i | — 1 , which implies the assertion. 

Let A be the q — 1 by # — 1 matrix whose rows are indexed by the 
elements of SDî# and whose columns are indexed by the hyperplanes 
of 2)?, and where the (iy j) entry is 1 if i is contained in j and is 0 
otherwise. Then %AA ~xI+yN, where N is the matrix with 1 in each 
entry, x+y — q/2 — l, y = q/& — 1. Since N has rank 1 and q — 1 is the 
only nonzero characteristic root of N$ it follows that %AA is non-
singular. Hence, A is nonsingular. We view © as a permutation group 
on the elements of 9W#, and as a permutation group on the hyper­
planes of 3W. By a result of Brauer (0.3.12), both representations of 
© are transitive. 

We next argue that n = 3. Namely, q = ]C€xX(l)> where % ranges 
over the irreducible characters of Xi and ex = 0, 1 or —1 [15]. We 
have ex = 1 for all the qn-~l linear characters of Xi. Let U be a hyper-
plane of 9W and £ i = £i/U. Since Oo centralizes 99?,jQ0 acts on 3?i. 
Since Xi= [Xi, Oo] , so also Xi= [5|i, O 0 ] . Now | 2{| = 2 , and £ j 
= C ^ O o ) . Since Oo normalizes Z(Xi), it follows that Z(Xi) is ele­
mentary of order 2qot say, this condition being the definition of q0. 
Thus, Xi is the direct product of an elementary group of order q0 and 
an extra special group of order 2a2, this condition being the definition 
of a. I t follows that e = €x = ex>9*0 for all the nonlinear irreducible 
characters x, x ' oî Sti, of which there are q0. Since © permutes transi­
tively the hyperplanes of 2)?, we getg = grn""1+€go(<Z--l)a. Here we also 
have qoa2 = qn~l= \ Xi' £ i | . This already shows that e= — 1, and so 
q = qoa2 — qo(q — l)a = qoa(a--q + l). Since a—q+1 is odd, and q is a 
power of 2, we get g = a, qo = l, n = 3. 

Suppose £ i C £ o . Let X*/Xi be a chief factor of © with î ^ î o . 
Then Oo centralizes Xt/Xi so £2==£iCa;2(Oo). Let Xz/Wl 
= Csti/anCCx^Oo)). Then Cg;2(Oo) centralizes £3, by the three sub­
groups lemma and the equality Xz~ [Xz, Oo]» Also, SCs<l©. Choose 
r e O c ^ Q o î - ï i . Then T2G9W#, so T2 = Tf for some Tz in £3. Hence, 
TTs is an involution of Xo — 9W. This is impossible, so £ i = !£o. 

Let \X0: $o| = 2* so that l = 2m. Let ikf=SC0/StJ so that M is a 
i^O-module. Let N be an irreducible submodule of M. Suppose 
NQM. Let |iV| =q*. If q*<q, then O has a subgroup O * of index 
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< 2 - 1 such that CN(&*) 9*0. Hence, Cs0(Q*) ^ 1, so that CM«?*) ^ 1. 
This implies that Q is not transitive on 9K#. We conclude that q**£q. 
Since this inequality holds for every irreducible submodule N of M, 
we get M=N®N', where |iV| = |i\T'| =5. 

Let fe be the algebraic closure of F$, and let M**=k® M. Since 1 0 | 
is odd, it follows that the irreducible submodules of M* have odd 
dimension. By the previous paragraph, we get that every irreducible 
submodule of M* has a dimension which is a proper divisor of 2m, 
so has dimension gm. 

Since | d | is odd, a result of Ito [28] implies that for each p>tn, 
O has a normal abelian ^-subgroup. Since Co(Oo) ~Z(Q,0), it 
follows that Oo contains all the normal abelian S-subgroups of O. 
Hence, since Q0C®, it follows that all the prime divisors of | ©: S| 
are ^m. By an elementary number theoretic result [4], we get in**6. 
Hence |@: (g| is a {2, 3, S}-number, against 2 8 - l=3 2 -7 . The proof 
is complete. 

LEMMA 5.41. Suppose the following hold: 
(a) © is a solvable group. 
(b) 02,(@) = 1. 
(c) © contains a noncyclic abelian subgroup of order 8. 
(d) If $ is any proper subgroup of © of index a power of 2, then $ 

contains no noncyclic abelian subgroup of order 8. 
Let £ be a Si-subgroup of ©. Then X<\ © emi ewe (?ƒ /fee following 

holds: 

a) r-i . 
(ii) X is extra special of width at least 2. 
(iii) £ contains a quaternion subgroup Xo of index 2 and SE 

-SEoCtdo). 
(iv) £ is special and Z(X) is a four-group. 

PROOF. If £ ' = 1, the lemma follows from the containment 
C(02(©))C02(@). 

Let £0 = 02(©). First, suppose that Xo contains a noncyclic abelian 
subgroup of order 8. By (d), Zo = S. 

Let c = cl(2;), and assume that c^3 . Then Cc-i(£) is abelian so is 
of order 4 or is cyclic. But then (d) is violated in C@(Cc-.i(20). Thus 
£ = 2. 

Case 1. \Z(Z)\ =2. Since | z (£ ) | =2, 2>(!E)CZ(!E), so £>(£)=£(£). 
Thus, 2 is extra special. Clearly, the width of £ is at least 2, so (ii) 
holds. 

Case 2. £(£) is cyclic of order at least 4. 
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Clearly, T/Z(X) is a chief factor of ©, so \Z'\ = 2. Hence Q2(£) 
is of exponent 4, so £=ü2(2:). Thus, Z(%)/V is a direct factor of 
£ / £ ' , so £/$r=Z(£)/STX2:i/£' , with £i<|©. Hence, £i contains 
no noncyclic abelian subgroup of order 8 and SEi/2/ is a chief factor 
of ©. It follows that Xi is a quaternion group, so (iii) holds. 

Case 3. Z(X) is noncyclic. 
Since Z(X) is noncyclic, £(£) is a four-group. Hence, S£/Z(£) is a 

chief factor of ©. If Z(3T) = J ' , then £ is special and (iv) holds. We 
may assume that \V\ = 2. Hence, Z(£) =£(©). Also, Z(Z)/T' is a 
direct factor of £ /£ ' , so SE/SE' =Z(£ ) /£ ' X £ i /£ ' , with S& < ©. Hence, 
ï i is a quaternion group, so that (iii) holds. 

Finally, suppose that 02(©) contains no noncyclic abelian sub­
group of order 8. If 02(©) contains no four-subgroup, then 02(©) is 
necessarily a quaternion group, so © contains no noncyclic abelian 
subgroup of order 8. Let 31 be a four-subgroup of 02(©). Clearly, 5ft 
is self-centralizing in 02(©), so 02(©) is either of maximal class or 
02(©)=9t. Since the only 2-group of maximal class which admits a 
nonidentity automorphism of odd order is the quaternion group, we 
get 02(©)=$ft. But then © contains no noncyclic abelian subgroup 
of order 8. The proof is complete. 

LEMMA 5.42. Suppose the following hold: 
(a) © is a solvable group which is faithfully represented as auto­

morphisms of the elementary 3-group (g. 
(b) 0 , (@)- l . 
(c) S is a subgroup of © of order 3 such that S = @o X @i where S 

centralizes (Si, | S0| =27, and @0 is an indecomposable 8-module. 
(d) S normalizes but does not centralize the four-subgroup Ö of ©. 
(e) S is the center of a Sz-subgroup of ©. 

Then [03'(©), S] is either a four-group or is the central product of two 
quaternion groups. Also, @ = S*X(2* where (&* is centralized by 
[03'(©), B] and S* is an irreducible faithful .F3[03'(©), $>]-module. 

PROOF. By (e), <8£03',3(©), so QC08 ' (@). We assume therefore 
without loss of generality that 03>(©) = [03>(©), <8]> ©«Os'CSXB-

Let § be the normal closure of O in © and set $ = 03'(©). For each 
prime qt let $q be a 5fl-subgroup of $ normalized by 3- If <Z 2̂ and 
ff5^13, it follows immediately from (B) that <8 centralizes $3. Since 
$ ~ [$, 8] and since $ is solvable, it follows that $ is a 2, 13-group. 
Since [$i3, £] is of order at most 13, it follows that $2 < $. Thus, $ is 
a 2-group. 

Suppose [$13, «8]^1. Then [$13, 3 ] = ! is of order 13 and [f, <g] 
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is of order 27. This implies that $ centralizes $2. Hence, Q centralizes 
S, against (a). Hence, 3 centralizes $13, so $ is a 2-group. 

Case 1. St contains a noncyclic characteristic elementary abelian 
subgroup SI. 

Let 2ïo = 2tnz($). We may assume that Sto=Öi(Z(t)). 
First, suppose that [3Io, <8]^L Then §ïi~ [§to> S] îs a four-group 

and [(S, 2Ii] is of order 27 and is normalized by $ 3 , while C<g(3ïi) is 
centralized by $ 3 - Hence, $ ' centralizes @, so $ ' = 1. Hence, $ is 
a four-group and the lemma holds. 

Next, suppose that 3 centralizes Sto. Let © = JlfiX • * • XAf4, 
where ilff- is the join of all the irreducible $-submodules of (g which 
are isomorphic to one of its irreducible constituents. Then 3 permutes 
the Mi. If 3 permutes Mi, M%, M% transitively, then | M\\ =3 , and 3 
centralizes M4X • • • XM8. In this case, $t' centralizes (g, so $ ' = 1, 
against [Sïo, 31 — L Hence, 3 normalizes each Mi. Hence, we may 
assume that 3 centralizes .M2X • • • XM8 and so © has a faithful 
irreducible representation. Hence, Sïo is cyclic, so Z($) is cyclic. 

Since 3 has no fixed points on $ / $ ' , it follows that 3 has no fixed 
points on 2inz2($)/§ïo. Hence, %C\Z%(®) is elementary of order 8. Let 
g « Ca(§mz2($)). Then S < ©, and D((S) centralizes [«n&(« ) , 3 , Œ]. 
Hence, D(S) = 1, since D((S) <3 ©. Since $/(£ is a four-group, and since 
Z($) is cyclic, it follows that <5 = 8r\2&($). Thus, | $ | = 2 5 and 
$ '=Z($) is of order 2. In this case, $ is the central product of two 
quaternion groups and we are done. 

Case 2. Every characteristic abelian subgroup of $ is cyclic. 
Since $ = [$, 3]» Lemma 5.12 implies that $ is extra special. The 

width of $ is at least 2 since O exists. It follows that the width of $ 
is two. Since (O, $') is elementary of order 8, $ is the central product 
of 2 quaternion groups. The proof is complete. 

LEMMA 5.43. Suppose ® is a group with no subgroup of index 2, X is 
a Srsubgroup of ® and 91 = N(X). 

(a) (Z ( Î )HÎ ' , Qi(2r(!E))>»(Z(!E)n!E/)X8fl wter* $ < 9 t a*4 
gnz(%) = i. 

(b) Suppose X is isomorphic to a subgroup of GX(3, q), q is an odd 
prime power and X contains an elementary subgroup of order 8. Then 
£ ' - 1 . 

PROOF, (a) If tii(Z(X))QX', the lemma is trivial, so suppose 
Qi(Z(X))QX'. By complete reducibility of S2i(Z(3r)), it follows that 
Qi(ZCO) = (Qi(Z(X))r\V) X 8f, where % < 9t. Thus, it suffices to show 
that gnz(9t) = 1. Suppose false, and I is an involution of gnZ(9t). 
Let Xo be a subgroup of X which contains X' and is maximal subject 
to 7$£o. Thus, X/Xo is cyclic and every involution of £—!£o lies in 
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ÜEo-f. Let I=Iif • • • , Im be all the involutions of %—%o which are 
©-conjugate to I. Suppose IiÇzZ(%). Then I and /»• are conjugate in 
9t, so /=/»-. Hence, m is odd. It follows that if t is the transfer of © 
into X/%o, then t(I) =£ 0 I , against 2 | | ®: ®'|. 

(b) Let V be the underlying space on which GL(3, q) acts, and 
assume without loss of generality that %QGL(3, g). If w(ZÇ£))è3, 
then V is the direct sum of 1-dimensional £-subspaces and so SE'« 1. 
We may assume that m(Z(X)) =£2. Let $ be an elementary subgroup 
of £ of order 8. Hence, % contains an element which inverts V. Thus, 
Qi(Z(&))(£%'. Thus, by (a), Z(£) contains a four-group 91 with 
gtr\V = l. Since £ V 1 , w(Z(£))^3. The proof of (b) is complete. 

REMARK. The group U*(3) shows that with ©= Z73(3), % % as in 
Lemma 5.43, we cannot conclude that Sft has no fixed points on 
Z(£) /Z(£)n£ ' , since Z(£) is cyclic of order 4 and Z{Z)C\Zf is of 
order 2. 

LEMMA 5.44. Suppose £) = g£(A r | Z > = r 2 = l, TDT^D"1) is a 
dihedral group of order In with n odd, n>l, and that SD is represented 
as automorphisms of an abelian 2-group 2Ï. Suppose also that 2ÏH C(D) 
= 1. Let Sto = SinC(r) . Then 2l = 2IoX2t?. 

PROOF. Set «- (Ho, 21?). If ^GSÏ0nSl?, then both T and D^PD 
centralize A, so that TD~~lTD~D2 centralizes A, As Z>2 is also a 
generator for <£>>, we get .4 = 1. Thus, S3 = 2ïoX2r?. Let Söi = Stf""1 

X2t?. For each A in 2T0, we get AD"1ADEUo; so «<,£»!. Hence, 
2ï?C§r0X2t£\ so that S3 admits SD. For each 4 in 2t, we have 4 r 

= A^TA-\ and .41+!re2to. Thus, P inverts 21/33. This implies that 
2) centralizes 2Ï/33, and so 2Ï = 33, as required. 

LEMMA 5.45. Suppose V is an elementary abelian 2-group and <§5is a 
solvable subgroup of Aut(F) with O2OS) = 1. Let P be an element of © 
of order 4, and assume that the minimal polynomial of P on V divides 
(x — l)8. Let V— Fi©F2© • • • © Vu where each Vi is an indecom­
posable (P)-module, and let \ Vi\ ~2di

9 l£i£*t, notation being chosen 
so that di^d^ • • • ètdf Thend%~3. 

PROOF. Suppose false. Since P M l , it follows that d i ^3 . Thus, our 
hypothesis guarantees that di = 3, <2»^2, 2^i^L 

We proceed by induction on | ©| . We get that @ = 0 ( P ) , where O 
is a special 5-group and where P 2 inverts O / O ' and P 2 centralizes O'. 
Since P is an exceptional element in the sense of Hall-Higman [26], 
it follows that O is nonabelian, and that q = 3. Since we are proceed­
ing by way of contradiction, we may also assume that V is an irre­
ducible 5-module. 
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Since P2 is an involution, we have Q = 3 0 ' , where 3f is the set of 
elements of O which are inverted by P2. Since O is nonabelian, we 
may choose Qi, Q% in 3 such that Qi and Q% do not commute. 

Since di = 3, d4^2 for *»2, • • • , /, it follows that CV(P2) is a 
hyperplane of V. Since <P2, &, Q*) = {P%> QilP*Qx, QïlP2Qù, it fol­
lows that (Qi, Q%) centralizes a subgroup W of index 8 in V. Since the 
^-subgroups of Aut( V/W) are abelian, it follows that [Qu Q2] central­
izes V/W and W, so centralizes F. The proof is complete. 

LEMMA 5.46. Suppose © is a solvable {2, p, q}-group where p, q are 
distinct odd primes. Let {©2, ©#, @fl} be a Sylow system for © and as­
sume the following: 

(a) © p is a minimal normal subgroup of © of order p or p2. 
(b) J ©fl| =£ and ©p = [©*, © J . 
(c) 02(©) = 1. 

Ze/ E be an irreducible F^-module on which ©p acts faithfully. Let 
£0= CJB(©2). TTiett <we of the following holds: 

(i) |£o| £8 . 
(ii) j £o| =4 and ©a does not normalize EQ. 

PROOF. Let E = £i© • • • ©E„ where the £»• are the Wedderburn 
components of E as ©^-module. 

First, suppose | ©p | =p. Then ©2©g is cyclic and © is a Frobenius 
group. Since g è 3 , we get that (i) holds. 

We may now assume that | ©j>| =p2. Here s> 1 and ©2©fl permutes 
{j5i, • • • , E8} transitively. 

Case 1. 5 is a power of 2. 
Let 2i be the stabilizer of Ei in ©,jso that q\ | 8<|, | ©: 8<| «5. We 

choose notation so that © aC£i. Let ©2 = ©2n?i, so that | ©2: ©2I =*$. 
Let X be a transversal to @2 in ©2. 

If [C^(@2)|â8, let eif e2l e% be linearly independent elements of 
Csfê*). Let ef = ]£*es; «<*• Then linearly independent 
elements of E0l so (i) holds. We may assume that | €^(©2)! ^ 4 . By 
induction, we get | (^(©2)! =4 and ©a does not normalize (^(©2). 
Hence, @2 -jd ©2©fl, and in particular, ©2©3 is nonabelian. On the 
other hand, 2i acts reducibly on ©p, since C<sp(Ei) is of order p and 
is normal in Si. Hence, Si centralizes ©p. This is not the case since 
3 P =F(©) . 

Case 2. 5 is not a power of 2. 
Since ©pCSi, it follows that |©:8i | =2ag for some a^O. Let 

0i, • • • , Or be the orbits of {£1, • • • , E8) under ©2. Let £*= ®Ei$ 

where jBy ranges over 0t-. Thus, E^E1® • • • ©£ r as ©2-module. If 
r ^ 3 , then (i) holds. Hence, we may assume that r = 2. If | C^(©2)| 
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à 4 for some i, then again (i) holds, so we may assume that | CV(©2) | 
= 2, i= 1, 2, so that £ 0 = CV(©2) 0 CÜ?2(©2) is of order 4. 

Let So = fii«i 8», so that ©/So acts faithfully as a permutation group 
on {Ei, • • • , £ , } . Since S* is a g'-group, it follows that ©«,8o/So is 
represented regularly. Since r = 2, ©2 has 2 orbits, of size 2° and 
2a(q — 1). Hence, ©/80 is represented as a primitive group on 
{Eit • • • , E8} since every set of primitivity has a multiple of q ele­
ments. Hence, a = 0, since © is solvable. So ©/So is a Frobenius 
group of order g(g — l ) . Since | © p | =*/>2, we get 2 = 3. 

Since s = q, @2 normalizes C@p(£i). Hence, ©2 acts reducibly on 
©p, so ©2 is abelian. Hence ©3 < ©2©3, since ©2©3 is isomorphic to 
a subgroup of GL(2, p). Since ®/So= 2^3, ©2©3 is not 2-closed. Let 
©2 = 02(©2©3), so that ©2®3/^2^ 2^8. By Lemma 5.7 of [20], ©8 is 
represented faithfully on C^(@2). Let E = [Cj&(©2), ©3]^0 , and let 
F be a minimal ©2©3-submodule of Ê. Thus, | F\ « 4 , | C F ( © 2 ) | = 2 . 
Hence, (ii) holds. 

REMARK, (i) need not hold. There is a group of order 23»3-52 for 
which a module E exists violating (i). We may take | E\ =2 1 2 . 

LEMMA 5.47. Suppose © = ©iX • • • X© a , a ^ l , <wd ©»• is a di­
hedral group of order 2pi, where pi is an odd prime, 1 g i g a . Suppose 
also that Mis a k^-rnodule, 21 is an Si-subgroup of ©, k is of character-
istic 2, and C M ( © / ) = 0 for l r g i g a . Then M is a free kW-rnodule. If 
w ( l - - 4 ) ( l - 5 ) = 0 for all mEM and all A, 5G2I , then a = l. 

PROOF. We assume without loss of generality that k is algebraically 
closed. Let (7 = | © ' h 1 ! ^ © ' 5. Then M*=M<r+M(l~-<r), so that 
lf==iyr(l— cr), since ©' centralizes .Mir, while ^ ( © O — O. We may 
further assume that I f is irreducible. Let M^Mi® • • • @M8, where 
Mi is an irreducible ^©'-module. Let xt be the character of @' 
afforded by Mi. Let U»=ker x», and let 21» be the stabilizer of xi m 2t. 
Then 21,- normalizes U»- and [©', 21»]CU^. Suppose 81*7*1. Then 
[©', 21»] 5*1, so that U»- contains some © / . This is not the case, since 
Ut- centralizes M^ while C M ( © / ) = 0 . Hence, 21» = 1. Thus, 2Ï permutes 
transitively and regularly the Mi, so M is a free &2t-module. If 
m(l-A)(l-B)*=Q for all A, BE%, then a = l by the freeness of M. 

The next two lemmas deal with the following delicate situation: 
© is a group, 1 C © 0 C © X C © is a chain of normal subgroups of © 
such that 

(a) ©0 is an elementary 2-group. 
(b) ©i/©o is a 3-group. 
(c) J ©: ©i| » 2 and X is an involution of © — ©1. 

Furthermore, M is an /^©-module and N is a submodule of M such 
that 
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(a) @0 stabilizes MDNDO. 
08) © centralizes N. 
(y) \M:CM(X)\-V. 
(ô) Mo is a subgroup of M of index 2 which contains CM{X). 

00 | ^ | S4. 
Let Û be the set of all min M such that some element of © of order 
3 centralizes w. 

LEMMA 5.48. Suppose ©i/©o & elementary of order 27. Tfo» /&0 
following hold: 

(a) Iff£2,thenM(l~X)ÇÊ. 
(b) JEf/-3, *to» A f 0 ( l ~ X ) n ^ * 0 . 

PROOF. Let $ be an 53-subgroup of ©. If $ does not act faithfully 
on ikf, both (a) and (b) are clear, since S*=M. So we may assume 
that $ acts faithfully on M. 

Case I. [©i, X]C©0 . 
Here (©o, -ST) is a normal S2-subgroup of ©, so that N+M(l— X) 

admits $. Since the order of N+M(1~X) is at most 32, some ele­
ment of <$* centralizes N+M(l-X), so N+M(l-X)QÊf and we 
are done. 

Case 2. [©i, *]$©<>. 
By Lemma 5.36, there is an element R of © of order 3 which is 

inverted by X. Let © « {S| S € © , 5 is of order 3, 5 is inverted by X}. 
Suppose there is 5 in © such that M(l — S) has order >4. Let 
A? = Af( l -S) . Thus, J? is a free F2(X>module, so | S\ = 2 ^ , with 
/ o ^ 3 . Thus, /o = 2 or 3. Since $ centralizes N, we get that ii?fW=0. 
Let Ê » C®(5). Then Sn@ 0 normalizes A/", so centralizes S, as ©0 

stabilizes i lOAOO. Thus, A${S) is 3-closed. If | S\ =24, then some 
element of © of order 3 centralizes S. If ƒ =2, then M'DM(l—X)t 

and we are done. If ƒ « 3 , then SC\M0(1—X)^0, and we are done. 
We may assume that | S\ =26. In this case, ƒ =3, and we may as­
sume that $C<S and that $ acts faithfully on S. Furthermore, S 
contains if(l— X). Hence, S= S\®S%@S%, where Si is an ir­
reducible i^-module. Since X permutes Si, S%, Ss, we may assume 
that X normalizes S%. Since S is a free F%(X)-module9 and Si is a 
summand, Si is also free. Let U~ Jfo(l — X)t so that | U\ =4. Since 
X centralizes Z7,weget C / C i S - ^ l - Z J e # 2 8 ^ 3 . Hence, J7n£ieJfifi 
5^0. Since S*(BSiQ&, we are done. 

We may now assume that for each S in ©, M(1 —X) is of order 4. 
Suppose X inverts a subgroup 8Î0 of order 9. Then [M, 9t0] is of order 
16 (as usual, we use commutation notation as well as additive nota­
tion), and [M, 9îo] admits a .Si-subgroup of ©. Since [M, 9lo]QÊt 
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we again are done. We may now assume that X inverts no subgroup 
of © of order 9. In this case, .Ss-subgroups of [©i, X] are of order 3, 
by Lemma 5.36. Let £=<©o, X), ©* = i\fe(r), so that | © : © * | = 3 . 
Also, ©* normalizes M(l—X)+N. Since ©* centralizes Nt there is 
a subgroup ©Î of ©* of order 3 such that | CC©*^ (M(1 - X) +N) : N\ 
^ 4 . Hence, ©f centralizes Af(l— X)+N, a group of order g 32. The 
proof is complete. 

LEMMA 5.49. If | ©i: ©0| >27, then the following hold: 
(a) Iff£2,thenM(l-X)C&. 
(b) 7 / / = 3 , then Mo(l-X)nE?£0. 

PROOF. By Lemma 5.48, we may assume that © has no elementary 
subgroup ^ of order 27 such that ©<$3 admits X. Since @/©0 is super-
solvable, we may assume that | ©i: ©o| — 3*. Let $ be a S8-subgroup 
of ©, so that © ^ © o ^ . Again, since ©/©o is supersolvable, we may 
assume that ScttsOP) ~0. 

First, suppose that X centralizes a subgroup £/©o of ©i/©o of 
order 9. Then £ normalizes N+M(l —-XT), so a 58-subgroup of § does 
not act faithfully on N+M(\— X), since ƒ ̂ 3 and § centralizes N. 
We may assume that | Gs^iX) \ S 3. 

We assume without loss of generality that $ acts faithfully on Jlf. 
If X inverts ©i/©o, then since | $ | =34 , we get ƒ *£ 4. Hence, we may 
assume that | C@1/@0(-X')| =3 . 

We next argue that X inverts a subgroup 8/©o of order 9. Namely, 
©/©o is supersolvable, so ©i/©o contains an abelian subgroup of 
order 27 which admits X. The existence of 8 follows. 

Since X inverts 8/©o, there is a subgroup O of 8 of order 9 which 
is inverted by -X". Hence, C®(0) contains a subgroup of order 27, and 
1V@(0) contains X. Also, [M, O ] admits iV(O). If | [M, 0 ] | £2\ 
then | [My d ] | =24 and so [M, OJCJIÎ, from which the lemma fol­
lows. We may therefore assume that | [M, Q ] | — 26, ƒ =3 . By our 
construction of 8/©o> we get that 271 | G s ( 0 ) | . If O is cyclic, then 
since GL(6, 2) has no abelian subgroup of order 27 and exponent 9, 
we get that [M, d ] C j(2\ So suppose O is elementary of order 9. Let 
8*/@o be an abelian subgroup of ©i/©o of order 27 which admits X 
with 8C8*. Since Scn8C>P) = 0 , 87©o is of type (3, 9). Since GX(6, 2) 
has no abelian subgroup of order 27 and exponent 9, we get [M, O ] 
QÊ, and we are done. 

LEMMA 5.50. Suppose ©=££} is a solvable group, where SE is a 
Si-subgroup of © and 0 « S f J is a Frobenius group with the following 
properties: 
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(a) The Frobenius kernel g of Q is of odd prime order q and is per* 
mutable with £ . 

(b) The complement (§ of % in O, is of odd prime order p and is per* 
mutable with £ . 

Then one of the following holds: 
(i) 3S<I©. 
(ii) g«@. 
(iii) Cst(S) contains a four-group. 
(iv) Z(©) contains a unique involution. 

PROOF. Suppose (iii) does not hold, and |<Z(©)| is even. Let 3 be 
the S2-subgroup of Z(@), so that &5>*1. Since (iii) fails, 3 *s cyclic, 
so (iv) holds. Thus, proceeding by way of contradiction we may as­
sume that (i), (ii), (iii) fail and that |Z(©) | is odd. 

Let § = 0 2 ( © ) . Since O is a Frobenius group with kernel %, it 
follows that § » Og '(@). Since g is a S^-subgroup of @, § 5 < ©• Since 
(ii) fails, g ^ £ $ . Hence, £ = F ( © ) . 

Since (i) does not hold, § C Ï . Since ©' centralizes the chief factor 
$&/#» while (5 does not, we have ©'fMg= 1. Hence £ $ < ©. 

Let | ©: § | =*2apq, so that © / § is a Frobenius group with kernel 
§ § / § • Since (i) fails, a ^ l . Since (iii) fails, C$(@) is either cyclic or 
generalized quaternion, so every section of C$((§) is generated by 2 
elements. 

Let §o = [#, 5 ] . Thus, § and N(%) normalize $ 0 . Since © « $ • iV($), 
§o<!©. Let ©o/^i888 F be a chief factor of ©. Thus, F is a faithful 
i?2©/C )-module, so if ? is a complement to &$/& in © / | ) which con­
tains (S# /£ , then F i s a free F28-module. In particular, | V\ = 2«,2*p 

for some positive integer c, and | CV(@) | = 2°'^. By a previous remark, 
we get c = a = l. 

Now C^(C) < Q>0(@), and C ^ ^ / C ^ ^ S ) is of order 4, being in­
cident to CF(@). Since (iii) fails, it follows that C$x(($) is cyclic. 

Suppose !QZQ!Q2Ç:$U and § 2 / ^ 3 = Wadmits iV($) as an irreducible 
group of operators. If [$2, 3]Ç£®3, then dr((S) contains a four-group, 
against the cyclicity of C^X((S). Hence [§ 2 , § ] £ $ s , and so [§1, § ] = 1. 

Since § 0 = [$o, $ ] and § o / $ i is a chief factor, we get $I~D($Q). 
By Lemma 0.8.7, D(£o) QZ($o). By Lemma 5.17, § 0 is special. (Note 
that the hypotheses of Lemma S.17 hold since (iii) fails and a = 1.) 

Since §0 /^1 is a chief factor of ©, we get [ $ , § Q ] £ $ I - By the 3 
subgroups lemma, § centralizes § 0 ' =.D(eo). 

Since CV(fë) is a four-group, C$0((g) is a quaternion group. Thus, 
#(£>o)nC(fê) is of order 2, and is centralized by § , g and iV((g). Since 
© = $gW(@), (iv) holds. 
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5.7, Factorizations* 

LEMMA S.S1. Let ®p be a Sp-subgroup of the group ® and let pt q be 
distinct primes. Suppose the following hold: 

(a) A®(!Q) is p-solvablefor every p-subgroup $ of ®. 
(b) q\ | A®($)\ for some p-subgroup $ of ®. 
(c) {p,q}*{2,3}. 

Then &p contains a normal subgroup IQ such that q\ \ A®($) | . 

PROOF. Let 3C={§ 
Choose § in X so that 

1$ is a ^-subgroup of ® and q\ |<A®(§)| }. 
I N(lQ)r\®p\ is maximal, and with this restric­

tion maximize | $ | . Then ^ossN(^)r\®p is a 5p-subgroup of N($). 
Among all subgroups of N($) which cover iV(§)/C(^)), let $ be 
minimal. Then flHC(§) is nilpotent, so $ is ^-solvable. Let £ = $ § . 
Then 8 contains &Q for some N in N((Q), SO we may assume that 
SO^o. Let O be a Sa-subgroup of 2 permutable with §0 . Let © = ̂ poO, 
and set £}o = Og(@). Then © = 0§o /Qo satisfies the hypotheses of 
Theorem 1 of [39], so either C@(Z(^0)) or i\fe(/(®o)) has no normal 
^-complement. Maximality of § 0 forces $ 0 = ®j>, as desired. 

LEMMA S.S2. Suppose the following hold: 
(a) © = ©2@3, wftere ©p is a Sp-subgroup of ©, £ = 2, 3. 
(b) 02(©) = 1. 
(c) ©2 w exJra special of width at least 2. 
(d) 03(©)©2<@. 
(e) © contains a minimal normal subgroup (S s#cA /fea/ C©2((£) =* 1. 

2TA*n ƒ(©,)«©. 

PROOF. The lemma will follow from the containment ƒ (©3) £ OaC©), 
which we will establish. 

By (e), C(S) is a 3-group, so 03(©) = C((g). For any subset 8 of ©, 
let 8 be the image of £ in Ag>(@). 

Let d = max ra(3ï)> 31 ranging over all the abelian subgroups of ©3, 
and choose an abelian subgroup 21 of £3 with m(3t) = d. We must show 
that SIC03(©). Suppose false. 

Let $==2Î©2, and in Lemma 5.6, let $ play the role of ©, 31 the 
role of ©3, ©2 the role of ©2. Thus, (a)-(d) of Lemma 5.6 hold; (e) is 
simply definition, so it suffices to verify (f) to complete the proof of 
this lemma. 

Let 2lo be any subgroup of 2Ï. Then (3I0, C<g(3Io)) = $ is abelian, so 
m(g)-m(3Io)+m(Ce(2ro))-m(3r0r\C(g(3lo))S^, or m(C<5(3lo))-m(2to 
nC(g(3to))^d-m(2r0)Sm(3I/3ïo). Since ï0nCé(!Io)CC«(![), we have 
m(Ce(Ho))~m(C<g(20);gw(C^^ 
(f) holds. 
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LEMMA 5.53. Suppose ©2 is a Si-subgroup of the solvable group ©. 
Assume also that © is a {3, 5}''-group and that 02'(©)asl. Let Sfti 
= C(Z(©2)), % = iV(/o(@o)), VU-N(Z(Ji(&%))). Here we have set 
d = max w(2I), SI ranging over all the abelian subgroups of ©2, and 
Ji(®%) ={331 93C©2, 93' = 1, w(93) è d - i } . Then for each permutation 
a of {1 ,2 ,3} , e-9fc,(w9l,<». 

PROOF. By Lemma 0.7.7, we may assume that © « © 2 0 , where O 
is a g-group for some odd prime g, and that /2(©)=s2. Here we are 
also using Lemma 0.7.3 to conclude that 02'(©) = 1 whenever 
© 2 £ © c © . 

By Theorem 1 of [43], we have ®»9ti9t2»9h9ti* In particular, 
SîsC^x^, 9t8£%5fti. By Lemma 0.8.6, it suffices to show that 
5 f t i C 9 ^ 3 n M 2 , and that WfCfoifonilWta Proceeding by induc­
tion, we may assume that © == 9Î* for some i £ {1, 2}. 

Let Q/ = Qn$fty. Thus, 9fy = © 2 € W = l , 2, 3. Set $ = 02(©), and 
let O* be a subgroup of O such that $ Q / $ Ö * is a chief factor of ©. 
By induction, we get 0 * C 0,(1)0,(2) for all permutations <r of 
{l, 2, 3}. If Oy<£Q*, then since ©2Qi is a group and & 0 / & 0 * is 
a chief factor we get O = OyO* = Q*Oy. 

Suppose i = 1. In this case, we must show that O = O2O3. Suppose 
false. By the previous paragraph we get C ^ ^ O a ö a . Our induction 
hypothesis implies that 0 * = D(Q). In particular, /o(@2)!Ï$. Let §1 
be an abelian subgroup of ©2 with m(2t) = d, 2l<£§. We assume with­
out loss of generality that Sï = Ce8(SÏ). Thus, Z(7i(@j))C«. L e t p 
be a subgroup of O such that (a) SÏ normalizes $ © , (b) [21, Ö ] 
C£$0*, (c) Ö is minimal subject to (a) and (b). The minimality of 
Q implies that % acts nontrivially and irreducibly on $>Ö/$.D0Q). 
Let Ho-CÉ($Ö/$) f so that ST/STo is cyclic. Let ©* = # € $ . Since 
&C©*, it follows that 02,(©*) = 1. Let £* = 02(©*). Thus, 2ToC£* 
and 2ïn§*=3ïo. Let $ be the subgroup of #* generated by all the 
abelian subgroups 93 of Q* with m(93) erf — 1. Hence, 2 ïo£$£$*C© 2 . 
Let£= C©*($) <©*.Since02>(©*) - l,soalso02'(£) = l.LetCo- 0%(<5). 
For each C in S0, we get that (2Io, C) is abelian, since 3ïo£$, CGC($). 
Since m«8J0, C » 2 t f - 1 , it follows that Z(7i(@i))CZ(<S0). 

Since QÇEO*, by (b), it follows that © does not normalize 
Z(7i(©2)). Hence, D does not centralize Z(S0), so Ö does not cen­
tralize 2R«Qi(Z((£o)). On the other hand, if 2»o « WWo, and 
I S»: SD?o| = 2", then <Sf0, 3R> is an abelian group with w«ST0, 2tt» 
= m(2Io)+wèd — l+w. Hence, w g l . Thus, 2)?o is of index at most 2 
in 3DÎ. Since 9Dîo£2ïo£2ï, 91 centralizes a hyperplane of SDÎ. Since g«ê 7, 
and since ^ Ö - ^ D Ö , 81], it follows that Ö centralizes SDÎ. This con­
tradiction shows that i^l. 
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Suppose î = 2. Here we must show that © = % % . Suppose false. 
Then Os^QiOs, and Q*COiQ 8 . Since $ Q / # 0 * is a chief factor 
of S, we get O* = O1O3. Our induction hypothesis forces O* = «D(O). 
In particular, 7i(©2)£E§. Let St be an abelian subgroup of @2 with 
m(A)^d—1 and with St<ï$. Let Ô be a subgroup of © such that 
(a) 31 normalizes $ © , (b) [St, OJ<£$0*, (c) © is minimal subject to 
(a) and (b). The minimality of © implies that St acts non trivially and 
irreducibly on £©/&2>(©). Let Sto = Ot ( £ © / § ) , so that Sl/Sto is 
cyclic, m(3lo)èd-2.Let©*«§pSt ,©* = 02(©*),<3==^(^*)2^(©2). 
Since ©££©*, it follows that © does not centralize £(©2), so does 
not centralize 3 , so does not centralize 2ft=Oi(<8)« Let 2Jî0 = SftHSto, 
19DÎ: 3fto| = 2". Then (Sto, 9W> is an abelian group with m((3to, Stt» 
~m(yto)+w'iàd-~2+w. Hence, w£2. Thus, St centralizes a subgroup 
of 2W of index 4. Since 2^7 , it follows that © centralizes 2)?. The 
proof is complete. 

We can salvage something for the small primes. 

LEMMA 5.54. Suppose © = £ $ is a solvable group, Ov(®) — lt 

X is a Srsubgroup of S and ty is a cyclic p-group of order pa>5, p odd. 
L e m = C ( Z ( £ ) ) , % = #(ƒ(£)), Wz~N(Z(MZ))),andlet O - 0 l ( $ ) . 
Then f or each permutation <r of {l, 2, 3}, © = © H 92,(1) *©r\ 91,(2). 

PROOF. Let § = 02(©), so that %/§ is cyclic of order dividing p — 1. 
If 7iC£) £®» then © = 9Ï2 = Sts and we are done. We may assume that 
7i(£)!£©. Let d = max m (St), where St ranges over all the abelian 
subgroups of £ and let 83 be an abelian subgroup of X with m (S3) 
è i - 1 , 83Ç££. We will show that O centralizes 9fe«0i(Z($)). Let 
9to = $ftP\83. Since m(83H§) ê ^ - 2 , it follows that 191:5ft0| â4 . Thus, 
the involution of S£/$ centralizes Sfto. Since [9t, $ ] is a free F 2 £/§-
module, it follows that | [5ft, $ ] | ^2 4 , so O centralizes [9t, $ ] , and so 
centralizes Sft. Hence, © centralizes Z(§), and so centralizes its sub­
group Z(X). 

To complete the proof, it suffices to show that O « 0 0 % • © H %. 
Suppose false. Then ƒ(£)<£$, and we may assume that 83 is an 
abelian subgroup of £ with 83 <£$, m(83) = d. Let 830 = 83P\$ so that 
m(8 0)£<*-l , »oC/!(2) . Let ©0== <©|©'= 1, <£C$, m(Œ)fcd-l>, 
so that §0QJi(Z), §o<©. Let ©i = <S$($o), so that Z ( / i ( ï ) )C^ i . 
Since 02 '(£) = 1, so also 0 * ( # i ) « l . Let §2 = 02(§i)- Thus, for each 
H in #2, w((iï, 83o))èd-~l, so that Z(Ji(X)) centralizes (H, 83o). 
Hence, Z( / i ( î ) )CZ(©t)<« . Let 2tt=0i(Z($i)). Since (SOÎ, 830> is 
abelian, it follows that |2tt: 9ftP\83o| g2 , so the involution of 83/83o 
centralizes a hyperplane of 9W. This implies that if SK = Sfto5le9KO 
• • • D9tt» = l is part of a chief series for ©, then O centralizes 
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each 9W*/2)?.-+i, so Q centralizes 9JÎ, so centralizes Z($2), so central­
izes Z(J\(Z)). The proof is complete. 

5.8. Miscellaneous, We need a generalization of Lemma 0.8.11. 

LEMMA 5.SS. Suppose 21 is a w-group, 33 is a it'-group and 2t wor-
mafees » . Tfen [33, 21, 21] - [33, 21]. 

PROOF.6 Choose A in 21,5 in 33, and set C~ [5, ̂ 4 ], so that BA***BC. 
For each w = l, 2, • • • , define Xn by BA*~BCnXn, so that -Xi«l. 
Suppose XnG [33, 21, 21] for some *. Then B^l~BC*Cn> [O, A]Xt 
so that Xn+iG [93, 2t, « ] . Taking n « | « | shows that C»G [33, 21, 2tj. 
Since (C) = (CW), we get CG [33, 21, 21], and so [33, 2l]c[33, 21, « j 
C [33, 21], as required* 

LEMMA S.S6. Let ®p be a Sp-subgroup of the finite group ®. Let 
$ = @ , n < W ® ) . 9t = N($), SD«Op,(@). 

(a) If Y is a p-element of % D £2), and YDE % then D = DiD2 where 
D1eC®(Y) and D2eC$>($). 

(b) Elements of ®p are (^-conjugate only if they are SSI-conjugate. 

PROOF, (a) For each i = 0, 1, • • - , let £>»•« [Y*9 £>]« F^-Z^F^D. 
Since Y and YD are in % so also DiÇESfl, for all i. Since D»G3L), we 
get Z)<e©nSW*C©(©). Since F normalizes §, we get -D/'GCSDCCO 

for all i, j . Let J)0==<AF'K j = 0, 1, • • • >. Then, 3 ) 0 £ G D ( $ ) and SD0 

admits F. Since Y-^oD^Y^^oY^D^Y^^D^ it follows that F 
centralizes some element Df1 of ©o-D"*1. Thus, Dr1~D2D'~1 with 
fl2GSo. Hence, D — D\D%y as required. 

(b) Suppose Z, FG®P, GG® and X^YG. Notice that ®pC9t. 
By the Frattini argument, we have G~DNt DGS), NGSft. Hence, 
XN~X = FD. Thus, F is a ^-element of SSt and F2* G SR. Hence, £> = DxDt, 
DtECiY), Z>«eC©($), by (a). Hence, X " ~ W ^ = F ^ , so that 
X = F 0 ^ with DtNeW. 

The following lemma involves easy consequences of 0. 

LEMMA 5.57. Suppose © is a ir-separable group. Then 
(a) © satisfies Dv. 
(b) Lé?* ®, Je a S „-subgroup of ®, crG {TT, TT' }. TTœ» N(®v)r\ N(®t,) 

covers every central factor of ®. 

PROOF. Suppose $, $ are maximal 7r-subgroups of ®. If 50? is a 
minimal normal subgroup of ®, we may assume that §9M/9ft and 
$2Jî/9ft a r e contained in 5T-subgroups of ®/2)? and that ®/SD? satis­
fies Dv. If 90? is a 7r-group, we get that $ and $ are conjugate. Suppose 
SDÎ is not a x-group, so is a ^r'-group. By the Schur-Zassenhaus the-

6 The proof has been supplied by N. Blackburn. 
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orem, © satisfies Ev. Let 8 be a *S>subgroup of ®. We assume without 
loss of generality that ( § , $)C82ft, so we may assume that 89Ji = ®. 
Since one of 8, 9J? is solvable, ® satisfies C*. Let 8o~§9f tn8 , so that 
p̂ and 8o are S,r-subgroups of $9M. Since §3M satisfies CV, we get that 

$ = 8^ for some M in 9ft, so § C 8 M . By maximality of § , we have 
§ = 8M. By symmetry, $ = 8M ' for some M' in 9K. This completes a 
proof of (a), and of course, we also get that ® satisfies D^. 

Let § / $ be a central factor of ®. Let \$: $t\ ~p. By symmetry, 
we may assume that pGn. Let 9? = ^>®T', ©«^©Tr'. Since § n ® T , 
= $ n ® ^ , we have 19Î: ©| = £, © < SR. Since © satisfies D ^ , it follows 
that $ = ©9^, where $ft = i\fa(®*0, so that 91=*®% as 312®, ' . Since 
® = ©„.,©„, it follows that 9î = ®x'8,where8 = ®,n5ft. Hence 3î = $$ft 
= $8®*' = $®*' . Hence, 8 ^ $ ® * ' . Choose Z, in 8 - « © ^ . Thus, 
L = Z,iZ,2, where Z,i£^p, £2£®7r', -£1$$. Since Z, and L% normalize 
®TT', we get LiÇzN(®v>). Since L i G § — ^ , the order of L\ is a multiple 
of p. Let L\*=*K\Ki — KrfL\i where K± is a ^-element, i?2 is a £'-
element. Then K\ is a power of i i , so J£i£iV(®*r')- Since 2̂ 2 € $ , 
we get X i G ^ — ^î. Now (i£i) and ®*r\((Ki)($r>) are S^-subgroups of 
(Xi)®*/, so we may choose F i n ®x/, such that Y~"lKxYÇ,®vt Since $ 
and $ are normal in ©, we have Z = Y^KxYCi^ — St. Since (K^G^ 
normalizes 0 , , , we get that X€N(®*)r\®wÇN(®+)r\N(<&w)9 so 
(b) holds. 

LEMMA 5.58. Suppose p, q are distinct primes and © = $ 0 , where $ 
is a normal Sp-subgroup of © and Q is elementary of order q*. Let 
{&, • • • , &} fre the set of all subgroups of O of order q which have 
nontrivial fixed points on $ . If r = 2, then ^P==Cty(&)XGp(#2). 

PROOF. We proceed by induction on | Ç | . Let 9? be a minimal nor­
mal subgroup of ©. (Notice that C%(Q) = 1, since r~2<q+l, and 
g + 1 is the number of subgroups of O of order q.) Hence, 5RCZ(^), 
and yi is an irreducible O-group. We may assume notation is chosen 
so that 9lCC(3£i). Since r = 2, it follows that O acts faithfully on $ . 
Hence, SftC^, and & acts faithfully on $/$R. If % centralizes $5rt, 
then 0$(&) is a complement to Sft in $ , so that $ = 9ÎX C%(X2). Since 
C $ ( 0 ) = 1, we get $1 = C^(ïi), and we are done. We may assume that 
% acts faithfully on $/5K. 

If Z G O # and 0 » / » ( * ) * l , then C $ ( Z ) ^ 1 , so X E & U & . Thus, 
by our induction hypothesis, ty/Sfl is the direct product of C$/9*(&) 
and C /̂9fi(3e2). In particular, C%(&)<|$. Since $ « < 0 » ( & ) , 0»(&)> 
= C*(Xi)C%(&), it suffices to show that [0»(&), O p ( & ) ] « l . No­
tice that Gp^ ) 8 8 5 [C%(&), 36i]. By our induction hypothesis, 
[<*(&), C^(ï i )JSSl , so [Gp(&), <*(&). &] = 1. Since [C*(&), &] 
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= 1, we also get [C%(&), &, C$(^2)] = l. By the three subgroups 
lemma, we get [&, Gp(&), C%(&)] = 1, and since [&, Op (£2)] 
= C$(&), the proof is complete. 

LEMMA 5.59. Suppose O is 0 p'-group contained in the p-solvable 
group ® and p\ | -A@(ö) | . Then O 0̂£S w<?/ normalize any Spsubgroup 
of®. 

PROOF. Let $ be a Sp-subgroup of iV(O). By hypothesis, [$, Q] 5̂  1. 
Suppose by way of contradiction that ®p is a S^-subgroup of ® which 
O normalizes. We assume without loss of generality that O = [$, ©] . 

Let 3K be a minimal normal subgroup of ®. Thus, ®P9W/9W is a 
5p-subgroup of ®/9W normalized by Offll/ffll. By induction on | ©|, 
we conclude that A®/m(Q$l/ffll) is a £'-group. Hence, [O, $]C99Ï. 
Since 0 = [D, $ ] , we get OCSDÎ. Since 1?*0, and SD? is a minimal 
normal subgroup of ®, we conclude that S)î is a £'-group, by the 
^-solvability of ®. Hence, [Q, ® p ] c® p n9M- l . Hence, | C ( 0 ) | * 
= j ®I p, so that J N(Q) : C(Q) | p = 1, against £| 12t®(0) |. The proof 
is complete. 

6. A transitivity theorem. 
LEMMA 6.1. Suppose ® is a finite group, 53 &i®(p), p is a prime, and 

5£93# . TTtew the following hold: 
(a) /ƒ C(5) is p-solvable, then %QOp>tP(C(B)). 
(b) /ƒ C(B) is p-solvable and 0^(C(J3)) = 1 for all B in 93#, then 

SB centralizes every element of H ©(S3; £')• 

PROOF. We restrict our attention to the proof of (a), since (b) is an 
immediate consequence of (a). Let (S=C(J5) and let ®p be a Sp­
subgroup of i\T(S8). Since $8&c\L(p), &P is a ^-subgroup of ®. Let 
ty—Coù^B), and let $* be a 5p-subgroup of S which contains $. 
Suppose 93<$*. Then S3/(5)CZ($*/(JB» and since Op.,*(<£) 
= CV,p((5 mod (5)), the lemma follows. We may therefore assume that 
« 5 ^ * . In particular, $ ( !$* , so 93£Z(®„). By definition of V,(p)9 

it follows that Z(®p) is cyclic. 
Now OCÎ2x(Z(^)), so if £ = 2, the cyclicity of Z(®p) forces © 

= öi(Z($)), so that S3 char $ < $ * , against the previous argument. 
Hence, p^2. Up£5, then since [$*, S3, 93]c[$, 58] = 1, the lemma 
follows from (b). Hence, £ = 3. Since 93^$*, it follows that % 
= Qi(ZCip)) is elementary of order 27, and of course 93C§. 

Since ^C®„, it follows that 93 = (JS)X(Z), where (Z) = ai(Z(®p)). 
Thus, Z^Os'.aCS). Let O be a 52-subgroup of (£ permutable with $*. 
By (B), we get that Z££08',a0P*O). In particular, Z does not cen-
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tralize $*no,S i (Ç-*0)»$o. Hence, $* = ^ since | $ * : $ | =3 . 
This means that Z03,,3($*<P) e2XO,^($*C)$*/Oi'.i($*0)). Hence 
[J$($*0), (Z)] = Oo is normalized by Ç*. Since ^ W O ) , and 
since Cty0(Z) = $ 0 n $ is of index 3 in ^30, it follows from Lemma 5.30 
that^Qo is a quaternion group. Let 0 = C^*(OO). Thus, $* = $<Z) 
and ^ n ( Z ) = 1. In particular, Z is not in the Frattini subgroup of $*. 
All the more so, Z&Dty). On the other hand, D(Ç) <\ &p and Z lies 
in every nonidentity normal subgroup of ®p since Z(Q$P) is cyclic. 
Hence, Z>($) «= 1, so Ç = g is of order 27, while ®P~Z8%Z3. 

We are now in a position to play off tyo against gf. Namely, 3̂o is 
a nonabelian group of order 27 and exponent 3, and since Oo is a 
quaternion group, it follows from Lemma 5.57 that iV($*) contains 
a 2-element T which neither inverts nor centralizes $. But § char $*, 
so T normalizes g. Let $l = A®(%) and let 3ïo be the subgroup of 3Ï 
whose elements have determinant 1 on gf. Then |3ï: 3fo| =1 or 2 and 
2T-2r0iV2t«^» =2ïoiVk(93). 

A S3-subgroup 3Ï3 of 31 is of order 3 and acts indecomposably on 8?. 
On the other hand, we argue that 131 1311. Suppose false. Then 31 is a 
2,3-group, hence is solvable. (Clearly, we do not need Burnside here.) 
Since ®p and $* both normalize g, 31 is not 3-closed. Since 3t3 is 
indecomposable on gf, it follows that O3'(3ïo) is a four-group which is a 
chief factor of 3Ï. Let O3>(3ïo)=8/C(g) under the natural projection. 
Then clearly, N(%)=W(®P)Qm((Z)). Hence, we can choose L in 
g so that BL = Z±l, since <5)=Î21(<3($*)), <Z) = Qi(Z(®p)). Since 
L2EC(%), L normalizes <£, £*<> = 93. This implies that 23<ÜV($), 
since 03/(3Io) is a chief factor of 31. But this means that O3'(3t0) 
normalizes 33, which is not the case, since Aut(S3) contains no sub­
group isomorphic to A4. Hence, 13J |3l|. Thus, |3l| =13-3-2" with 
a g 5. By Sylow's theorem, 31 is 13-closed. Since the 13-elements of 
GL(3, 3) are nonreal, it follows that a = 0 or 1. In any case, every 
involution of 3Ï inverts g. This violates the existence of T and com­
pletes the proof of the lemma. 

HYPOTHESIS 6.1. (a) 31 is a x-subgroup of ® and qEn'-
(b) If 33 is any minimal normal subgroup of 31, then C(S3) is 

7r-solvable. 
(c) If D is any nonidentity element of M (3t; q), then N(O) is 

7r-solvable. 
(d) If D£H(3Ï; q) and © is a x-solvable subgroup of © which 

contains 03Ï, then iDCOff'(S). 

LEMMA 6.2. Under Hypothesis 6.1, let O, Oi be maximal elements 
of H (31; q). If Q and Di are not conjugate by any element of C(3l), 
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then for each minimal normal subgroup 93 of SI, either Co (S3) — 1 or 
C0l(93) = l. 

PROOF. Suppose false. Let &=Co(93), (Ex«Co,(SB). By Hy­
pothesis 6.1, (C, Ci>CO,,(C(«)). Since 0^(C(S3)) char C(93) < 2V(93), 
we may therefore choose C in C(^4) so that (S?, ©) is a g-group. We 
assume without loss of generality that among all triples (O, Oi, SI) 
which violate the lemma, OPiOi is maximal. By the preceding argu­
ment O n O i = O o ^ l . By Hypothesis 6.1, (iVh(Qo), Afe^Oo)) 
COT/(iV(Qo)), and we may therefore choose D in C(3I) so that 
(JVo(Oo), iVoifOo)^) is a g-group, violating the maximality of 
Q n Q i and completing the proof. 

HYPOTHESIS 6.2. (a) 2Ï is a nilpotent 7r-subgroup of ®, 7r=*r(SI), 
QET'. 

(b) C(SI) « Z(SI) XS), where 3) is a TT'-group. 
(c) For each p in w and r in w-{p}, the 5p-subgroup SI* of SI cen­

tralizes every element of H (Sïp; r). 
(d) CF is a set of normal subgroups of SI with the following proper­

ties: 
(i) If gG<F, then every element of MN&M; q) is in Or>(N(%)). 
(ii) For each p in 7r, & contains a nonidentity ^-subgroup. 

(e) One of the following holds: 
(j) M £2. 
(ii) There is a noncyclic abelian subgroup U of SI such that 

every nonidentity subgroup of U is in 3\ 

LEMMA 6.3. Assume that Hypothesis 6.2 is satisfied and that (w, q, 31) 
satisfies conditions (a), (b), (c) of Hypothesis 6.1. Then (TT, qf 81) 
satisfies Hypothesis 6.1. 

PROOF. For each O in M (SI; q), let S = S(0) be the set of 7r-solvable 
subgroups ©of © which contain OSI and satisfy 0<jÉO,*(©). We 
must show that S is empty for all O. Suppose false and D is of mini­
mal order subject to $(O)T*0. Choose © in S(O). 

Let Q 0 = Q n O ^ ( ® ) . By minimality of Q, D/£>0 is a chief D3I-
factor. Let Slo = Cfc(0/Oo). Since Co(SIo) covers O/Oo, minimality 
of O implies that Slo centralizes Q. Since Q does not centralize 
0»/iir(@)/0^(©)«=8 and since 8 is solvable, O does not centralize 
F(2). Thus, there is a prime £ such that OSI normalizes the p-sub-
group 93 of 8 and [O, ö ] 5^1. We assume that 93 is minimal with this 
property. Since (|3l|, | CV(©)|) = 1, there is a ^-subgroup $ of 
0,r'fT(©) which is incident with 93 and is normalized by SI. By con­
struction, p G7T, and by Hypothesis 6.2(c), the 5^-subgroup of 31 
centralizes $, so centralizes 93, so centralizes O. Minimality of 93 
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and the three subgroups lemma implies that Ho centralizes 23, so 
centralizes $. Suppose 3ïo contains an element g of 3\ Then (O, $, 3Ï) 
CiV(g), so &ÇOr>(N(%)), by Hypothesis 6.2(d). Hence, [O, $ ] 
CO^CJVC^JPiO^^C©), a Tr'-group. But this means that O cen­
tralizes 23, against our construction. Hence, 3Io contains no element 
of 5\ In particular, SI is a £-group. 

Since 3Î is a £-group, Hypothesis 6.2(e)(ii) holds. Since U is a non-
cyclic abelian group, UHSto = 110^1. But then UoG^, against the 
preceding argument. The proof is complete. 

THEOREM 6.1 (TRANSITIVITY THEOREM). Suppose ® is an N-group, 
®p is a Sp-subgroup of ®, p and q are distinct primes, and SI is a normal 
subgroup of ©p with the following properties: 

(0 C@P(SI)=Z(SQ. 
(ii) Z(3Ï) contains an element 23 of ̂ (©p). 

Then 
(a) for each pair of maximal elements O, d of \A (3(; q) which are 

not conjugate under C(3l) and each Z in Z(3ï)#> either Cc(Z) = l or 
Cat(Z) = l. 

(b) C(SI) permutes transitively by conjugation the maximal elements 
of M (SI; q) provided w(Z(3Q) £ 3 . 

PROOF. Clearly, (b) is a consequence of (a), so we restrict attention 
to (a). It suffices to show that (p, q, SI) satisfies Hypothesis 6.1. Since 
® is an iV-group, conditions (a), (b), (c) are satisfied. Thus, it suffices 
to show that with # the set of nonidentity subgroups of S3 Hypothesis 
6.2 is satisfied. It is clear that all parts of Hypothesis 6.2 are satisfied 
except possibly (d)(i). 

Choose SoESF and let O be any element of H (St; q) centralized by 
230. Let £ = iV(23o). By Lemma 6.1, SCCV,„($). Hence [ £ , » ] 
£Op'(§) . Thus, it suffices to show that C<Q(e)COp'($). By Lemma 
0.7.8, we may assume that 23o = 23. In this case, (S)PQ$>. Let s^0 

= C W £ ) n ® P . Hence, [ ( W £ ) , St]c[Ç0, H]CV($)C?((V($). 
Hence [Pj($), 3Ï, 0 ] = 1. By Lemma 5.16, we get [C, 3(]cO^(§) . 
Thus, we may assume that 3Ï centralizes O. But in this case, we get 
O C O y ( § ) by Lemma 3.7 of [20]. The proof is complete. 

COROLLARY 6.1. Let %bea Sp-subgroup of ®, p&irii®), SlGScnaOP). 
If (P> <1> 31) satisfies Hypothesis 6.1, then H (SI; q) is trivial. 

PROOF. Let O be a maximal element of M (31; g), and let NQN(%), 
Then £iN is a maximal element of M (SI; q). As ra(3I) à 3, there is an 
element A of 31 of order p such that C ( i ) H O V l , C ( i ) H 0 ^ 1 , 
Thus, Lemma 6.1 implies that 0 = 0 ^ for some C in C(3t). Hence, 



432 J. G. THOMPSON [May 

N(9) = (i\T(Sl)niV(0)) • C(2Q, so that N(0) contains a ^-subgroup 
of &. Since £Gfl"4(®), we have Q = l, as required. 

HYPOTHESIS 6.3. (a) (p, qf 2Ï) satisfies Hypothesis 6.1, p is an odd 
prime. 

(b) STGScttsOP) and $ is a ^-subgroup of ®. 
(c) H (21; q) is not trivial, and O is a maximal element of H (SI; g) 

which is* normalized by $. 
(d) $ = F(ccl@(2Q;$). 
(e) The normalizer of every nonidentity ^-subgroup of © is p-

solvable. 
(f) If § is any ^-solvable subgroup of © and §p is a Sp-subgroup 

of § , then every element of Scn(&p) is contained in 0P'%P($Q). 

COROLLARY 6.2. Suppose Hypothesis 6.3 is satisfied. Then Lemmas 
0.17.n hold, l g # ^ 4 . ƒƒ tóe word "proper" in Lemmas 0.17.5 and 
0.17.6 is replaced by "p-solvable," these lemmas hold, too. 

PROOF. Hypothesis 6.3 guarantees that the relevant subgroups are 
^-solvable. Thus, (f) is sufficient to carry out the proofs of the desig­
nated lemmas. 

HYPOTHESIS 6.4. (a) § p is a 5p-subgroup of ®, SlGScn(^p), 
q£.7r(®)fq?*p. 

(b) U is a normal elementary subgroup of &p, UC9Ï. 
(c) U centralizes every element of M (21; q). 
(d) If O is a nonidentity element of M (St; q), then iV(Q) is p-

solvable. 
(e) If lCSloCSÏ, then C(St0) is ^-solvable. 

LEMMA 6.4. Suppose Hypothesis 6.4 is satisfied and 33 is a normal 
elementary subgroup of $p of order p2 with 33CSI. Suppose also that 
{p> 2} ̂  {2, 3}. Then UnSS centralizes every element of V\ (33 ; <?) 

PROOF. If false, we may choose V in S3# so that UH33 does not 
centralize every element of M <s(23; g), where (£= C(F). Let O be an 
element of M <s(33; g) which is not centralized by UH33. We may 
assume that 0 = [O, 53]. If OCO^(S) , then UHS3 centralizes no 
Sfl-subgroup of (V((£), while some Sa-subgroup of CV((£) is in 
tf (St; q). This is impossible so Q C O ^ ( g ) . Hence, 33n(Vl3,(@) » <7>. 

Since S3 centralizes a subgroup of P£((£) of index £, it follows from 
(B) that {p, q} = {2, 3}. The proof is complete. 

HYPOTHESIS 6.5. (a) $ is a 5p,rsubgroup of ®, 7r = {p, g} =7r($) 
^ { 2 , 3 } . 

(b) * - 0 , ( $ ) * l , 8 - O f ( $ ) * l . 
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(c) $ contains an elementary subgroup U of order p2 which is 
normal in some Sp-subgroup of $ . 

(d) The normalizer of every nonidentity x-subgroup of ® is 7r-
solvable. 

LEMMA 6.5. Under Hypothesis 6.5, $t centralizes every element of 
M(«;2). 

PROOF. Enlarge <U, Qi(Z($))) = U* to an element St of Scn(§p), 
§p being a 5p-subgroup of iV$(U). 

We will show that Hypothesis 6.2 is satisfied with our present % 
in the role of §1, with p in the role of 7r, and with q in the role of q, 
where we let $ be the set of nonidentity subgroups of U. 

Since 5lESm(&p) and since § p is a Sp-subgroup of ©, Hypothesis 
6.2(b) holds. Hypothesis 6.2(c) holds vacuously. Thus, it suffices to 
verify Hypothesis 6.2(d). 

By Lemma 0.7.4, S is a maximal element of M $(2t, q). Since 
&QN(2) and since N(%) is ^-solvable, 8 is a maximal element of 
M «(«; q). 

Let Uo be a subgroup of U of order p, and let 9t = iV(Uo). Let O be 
an element of Mw(8; <?)• We must show that OCO^(SÎ). Suppose 
false and O is minimal with this property. Let Oo — O H C V ^ ) . 
Then O/Oo is a chief Q2t-factor. Let 3I0= Cto(Q/Q0). Minimality 
of O forces Sto to centralize O. Suppose §PP\9Î is a Sp-subgroup of 9Î. 
Then another application of Lemma 0.7.4 yields OQOp>(yi). Thus, 
§pn$ft is of index p in a Sp-subgroup 91, of 9Î. By Lemma 0.7.8, 
Q<£CV(C(2Io)). Suppose SIo contains an element Z of Z($py. Then 
C(SIo)ÇC(Z), so o i o P ' ( C ( Z ) ) . However, £ p is a Sp-subgroup of 
C(Z), so Lemma 0.7.4 is violated. Hence, no such Z is available. As 
Sl/2lo is cyclic, it follows that Z(§p) is cyclic and Qi(Z(§p))£2t0. 
Since Z($p) is cyclic, U G ^ ^ p ) . By Lemma 6.1, we get UCOp/,p(9?). 
Hence, [O, U]COP'(9t). But by minimality of Q, we also have 

o-[o,u]. 
We have shown that Hypothesis 6.2 is satisfied. Hence, Hypothesis 

6.1 is satisfied. Let^O* be any maximal element of M (2Ï; q). We can 
then choose U in W such that Co* (U) 9*1. Since U centralizes 8, 
it follows that Q* = 8C for some C in C(3t), by Lemma 6.2. Hence, 
%r\® centralizes every element of M (21; <?). 

It remains to show that $ centralizes every element of H ($ ; q). 
Suppose Q 6 M ( f ; g ) . By Lemma 6.4, U centralizes O. We will show 
that Qi(Z($)) centralizes Q. Since OCJV(U), Lemma 5.16 implies 
that [O, ni(Z(^))]COp.(iV(U)). Since SI normalizes some ^-sub­
group of 0P'(N(VL))t and since Qi(Z($)) centralizes every element of 
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H (8Ï; <Ü> it follows that Qi(Z($t)) centralizes every ç-subgroup of 
CV(JV(U)) which it normalizes. Hence, [O, Qi(Z(®))] is centralized 
by Qi(Z(St))9 so O is centralized by Qi(Z(St)). Since Q £#(&(£(«)) ) , 
and since § is a Sp^-subgroup of N(fli(Z(®))), $ centralizes O by 
Lemma 0.7.5. The proof is complete. 

The following lemma is a careful rephrasing of the argument in 
Lemma 0.20.3. 

LEMMA 6.6. Suppose ® is a finite group, p} q are distinct primes and 
N{%) is p, q-solvablefor every nonidentity p, q-subgroup 31 of ®. Let !Q 
be a maximal p, q-subgroup of ® with Sylow system {$P) !Qq}. Let 
ftp = Op(£), ft«, = Otf(§). Suppose that ftp 5*1 and ft«5*l. Let $ be a 
Sp-subgroup of ® which contains &p. Then 

(i) SQP is a Sp-subgroup of every p, q-subgroup of ® which contains 
§p%q-

(ii) One of the following holds: 
(a) Ĵ is faithfully represented on some element of M ($; g). 
(b) &p contains no element of 'HOP) and \%p\ ~p. 
(c) $ , - * . 
(d) £Gin(©). 

(iii) jy p = 2, /taw owe o/ /ta following holds: 
(a) 2£TT 4(®). 

(b) J®:®'] www. 
PROOF, (i) Since © is a maximal p, g-subgroup of ®, £ is a Sp,q-

subgroup of the normalizer of every nonidentity normal subgroup of 
§ . Let $ be a p, g-subgroup of ® which contains §pfta with Sylow 
system {$èp, $tq} where &PQ ®p} %qQ $fl. We must show that &p = ®p. 

i*ta,«o,(«), a«-o,(«). 
We first show that %PQ&P. Namely, Cstp(ftp) is a ^-subgroup of 

N(%p) which admits fta. As fta centralizes all the ^-subgroups of 
H2V(8p)(ft«)> it follows that %q centralizes CKP($P). Hence %q cen­
tralizes 2Tp, by Lemma 3.7 of [20]. Thus, SÏ^C^, since 2ïp§p is a 
^-subgroup of iV^ftJ. 

Since ftp centralizes Csra(fta), it follows that ft«§I«6kltf(Çp)(ê;p; g). 
Since § is a maximal p, g-subgroup of ®, it follows that ft^-ftg, 
that is, %qQ%q. 

Since SlgCft̂  and fta centralizes 3t„, it follows that Z{%q)QZ{Uq). 
Let Œ-C«(Z(a«))<«. Since Z(ft«)çz(§Itf), it follows that 
<£C C(Z(5«)). Thus, S is a £, g-subgroup of 2V(Z(ft,j)) which contains 
ftp. By Lemma 0.7.5, SJpÇO^S). Since 0,(S) char &<$ , it follows 
that ftpCSÏp. Now let ®~ Ca(§tp)<$. Then ©CiV(ftp), so ft, 
COgCD). Hence, ft5CStff. Since we already have the reverse contain­
ment it follows that %q — ft3< $, so §p == ®p as required. 
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(ii) We assume by way of contradiction that (a)-(d) all fail. Obvi­
ously, $ is noncyclic, since (c) fails. Since (d) fails, we have pCzftzi®) 
UTT4(®). Let Srescn3(?) and let 8Io = « n $ , . If 3to=2I, then by the 
transitivity theorem, §p==<ip. Hence, §l0C2L If S t o P ^ ^ l , then 
ytor\%pr\Z($P)?*lt so (i) is violated in C(«ong/\Z(#, , ) ) . Hence, 

Suppose S3 is an element of ll^P) with S Ç § P , We assume without 
loss of generality that SBC80. Then SBngp=l, so © n z ( $ ) does 
not centralize gff. Choose Z in 33P\Z($)#. As $8ngp = l, we can 
choose B in SQ# such that Z does not centralize §8nC(B). Let $* 
be a Sp-subgroup of C(J3) which contains C$(B). Thus, SÏS^*. Let 
O* be a 5fl-subgroup of C(B) which is permutable with $*. By 

Lemma 6.1(a), $8QOP',p(C(B))t and so Z does not centralize 
Oa(^P*0*). Let £i(Z) be any maximal element of H (Sî; g) which 
contains OgOP*D*). Then Z does not centralize O(Z). 

On the other hand, if Z0 is any element of Z(ty) of order £ and 
ZoC(Z), then (Z, Z0>G 11(C) and (Z, Z 0 )C§ P . Hence, for each Z 
in Qi(Z((î|3))#, there is a maximal element Q(Z) of H (§t; g) such that 
[O(Z), Z]?^l. By Lemma 6.2, all these Q(Z) are conjugate under 
C(2Q. Hence, Z($) is faithfully represented on each Q(Z). 
Let Q be a fixed maximal element of kl (21; q). Then iV(2l) = 
(i\r(St)ni\T(Q)) • C(»), so that there is JD in C(A) such that Ç* normal­
izes D. Since Z i ^ - Z f l ^ - Z f l S ) , it follows that $ is faithfully 
represented on O0-"1, so (a) holds. This is not the case, so § p contains 
no element of *U(̂ 3). Since (b) fails, | %p\ >p. 

Let S3Gca(P), «o = «n2ïo, so that S3o = Öi(Z(<iP)) is of order p 
and 33 normalizes $ , . If g , n C ( « ) ^ l , then è / ^ C ( » ) n Z ( $ , ) * l , 
so (i) is violated. Hence, g p n C ( 8 ) = l. This is not the case, since 
| ^5: 0»(SB) j =*p and | gp | >£ . This completes the proof of (ii). 

(iii) Suppose (a) and (b) fail. Since 2£fl-4(®), (ii) (a) fails, as do 
(c) and (d). Thus, (ii)(b) holds. Since | ©: ®'| is odd, it follows from 
Lemma 5.38(a)(ii) that .#($2) contains an element U of 01(2). Since 
2E?T4(®), Lemmas 6.1 and 6.2 imply that U centralizes every element 
of H (U; q). This is impossible since $2/8:2 is faithfully represented 
on §fl. The proof is complete. 

BIBLIOGRAPHY 
1. J. Alperin, Centralizers of abelian normal subgroups of p-groups, J. Algebra (2) 

1(1964), 110-113. 
2. 1 Sylow intersections and fusion, J. Algebra 6 (1967), 222-241. 
3. J. Alperin and D. Gorenstein, Transfer and fusion infinite groups, J. Algebra 

6 (1967), 242-255. 
4. E. Artin, The orders of the classical simple groups, Comm. Pure. Appl. Math, 

8 (1955), 455-472. 



436 J. G. THOMPSON [May 

5. N. Blackburn, Generalizations of certain elementary theorems on p-groups, Proc. 
London Math. Soc. (3) 11 (1961), 1-22, 

6. , On prime-power groups with 2 generators, Proc. Cambridge Philos. Soc. 
(54) 3(1958), 327-337. 

7. R. Brauer, On the structure of groups of finite order, Proc. Internat. Congress 
Math., vol. I, 1954, Noordhoff, Groningen and North-Holland, Amsterdam, 1957, 
pp. 209-217. 

8. , On finite Desarguesian planes. I, II, Math. Z. 90(1965), 117-123 and 
91(1966), 124-151. 

9. , Some applications of the theory of blocks of characters of finite groups. II, 
J. Algebra (1) 4(1964), 307-334. 

10. R. Brauer and M. Suzuki, On finite groups of even order whose 2-Sylow subgroup 
is a quaternion group, Proc. Nat. Acad. Sci. U.S.A. (12) 45 1757-1759. 

11. R. Brauer and P. Fong, A characterization of the Mathieu group Mw, Trans. 
Amer. Math. Soc. 122(1966), 18-47. 

12. L. E. Dickson, Linear groups, Dover, New York, 1958. 
13. W. Feit, A characterization of the simple groups SL(2, 2°), Amer. J. Math. (2) 

82(1960), 281-300. 
14. P. Fong, Some Sylow subgroups of order 32 and a characterization of 27(3, 3), 

J. Algebra 6(1967), 65-76. 
15. G. Frobenius and I. Schur, Ueber die reelen Darstellungen der endlichen Grup-

pen, Berliner Sitz. (1906), 186-208. 
16. G. Glauberman, Central elements of core-free groups, J. Algebra 4(1966), 403-

420. 
17. , A characteristic subgroup of a p-stable group, Canad. J. Math, (to 

appear). 
18. 1 £ characterization of Suzuki groups, Illinois J. Math, (to appear). 
19. D. Gorenstein and J. Walter, The characterization of finite groups with dihedral 

Sylow 2-groups, J. Algebra (2) (1965), 85-151, 218-270, 354-393. 
20. , On the maximal subgroups of finite simple groups, J. Algebra (2) 

1(1964), 168-213. 
21. M. Hall, Jr., The theory of groups, Macmillan, New York, 1959. 
22. P. Hall, A characteristic property of soluble groups, J. London Math. Soc. 

12(1937), 198-200. 
23. , Theorems like Sylow's, Proc. London Math. Soc. (3), 6(1956), 286-304. 
24. , Lecture Notes (unpublished). 
25. , On a theorem of Frobenius, Proc. London Math. Soc. 40(1935), 468-

501. 
26. P. Hall and G. Higman, The p-length of a p-soluble group and reduction theorems 

for Burnside's problem, Proc. London Math. Soc. (3) 7(1956), 1-42. 
27. G. Higman, Suzuki 2-groups, Illinois J. Math. 7(1963), 79-95. 
28. N. Ito, On a theorem ofH. F. Blichfeldt, Nagoya Math. J. 5(1954), 75-77. 
29. B. H. Neumann, Groups with automorphisms that leave only the neutral element 

fixed, Archiv. Math. 7 (1956), 1-5. 
30. R. Ree, A family of simple groups associated with the simple Lie algebra of type 

(G2), Amer. J. Math. 83(1961), 432-462. 
31. J. Rust, On a conjecture of Frobenius, Ph.D. Thesis, University of Chicago, 

1966. 
32. I. Schur, Zur Theorie der vertauschbaren Matrizen, J. Reine Angew. Math. 130 

(1905), 66-76. 



i968] NONSOLVABLE FINITE GROUPS 437 

33. C. Sîms, Graphs and finite permutation groups, (to appear). 
34. R. Steinberg, Generators f or simple groups, Canad. J. Math. 14 (1962), 277-283. 
35. M. Suzuki, Finite groups with nilpotent centralizers, Trans. Amer. Math. Soc. 

99(1961), 425-470. 
35# 1 Finite groups of even order whose Sylow 2-subgroups are independent, 

Ann. of Math (80) 1 (1964), 56-77. 
37. , On a class of doubly transitive groups, Ann. of Math. (2) 75(1962), 

105-145. 
38. , Characterizations of linear groups. III, Nagoya Math. J. 21 (1962), 

159-183. 
39. , Finite groups in which the centralizer of any element of order 2 is 2-closed, 

Ann. of Math. (2) 82 (1965), 191-212. 
40. J. Tits, Theorie des groupes—théorème de Bruhat et sous-groupes paraboliques, 

C. R. Acad. Sci. Paris 254 (1962), 2910-2912. 
41. J. Thompson, Fixed points of p-groups acting on p-groups, Math. Z. 86 (1964), 

12-13. 
42. f Normal p-complementsforfinite groups, J. Algebra (1) 1 (1964), 43-46. 
43# 1 Factorizations of p-solvable groups, Pacific J. Math. (16) 2 (1966), 

371-372. 
44. H. Wielandt, Beziehungen zwischen den Fixpunktzahlen von Automorphismen-

gruppen einer endlicher Gruppe, Math. Z. 73 (1960), 146-158. 
45. W. Wong, On finite groups whose 2-Sylow subgroups have cyclic subgroups of 

index 2, J. Austral. Math. Soc. 4 (1964), 90-112. 
46. R. Zemlin, On a conjecture arising from a theorem of Frobenius, Ph.D. Thesis, 

Ohio State University, 1954 (unpublished). 


