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This derivation of Theorem 2 from Theorem 1 was shown to us by 
C. T. C. Wall. 
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1. Limits of convolution powers and stable measures. Let M(R) 
denote the Banach algebra of all complex-valued regular finite mea­
sures defined on the Borel sets of the real Une R, where multiplication 
is defined by convolution, and 

y = suP E \üRd\9 

the supremum being taken over all finite collections of pairwise dis­
joint sets Ri whose union is i?. Let B(R) be the set of all Fourier trans­
forms of measures in M(R). 

In [l], we characterized all possible limits 

lim (P(t/Bn))
n exp (UAn) « #(/) for all t ^ 0, 

n-+oo 

where An(~R, Bn>0, P> fl^B(R). This is a generalization of an old 
problem in probability theory (see e.g. [4]). One can show that a 
measure /x appears as a limit if and only if it is stable, i.e. has the fol­
lowing property: For all a>0 , b>0 there exist c>0 and 7GJ? such 
that 

(1) K*t)p,(bf) = fi(ct) exp (iyt) for all / G R. 

1 Sponsored by the Mathematics Research Center, United States Army, Madi­
son, Wisconsin, under Contract No. DA-31-124-ARO-D-462. 
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In other words, a stable measure convolved with itself reproduces 
itself after being properly shifted and scaled. Consequently, stable 
measures may be considered as a substitute for idempotent measures, 
which except for degenerate ones do not exist on the real line. 

Besides the degenerate measure # = 0 and M = S# (unit mass at x=/3), 
a measure is a solution of (1) if and only if its Fourier transform is of 
the form 

fi(t) = exp ( - c | 11« + (fit) for t à 0, 

= exp (-d\t\a + ipt) for t < 0, 
or 

fi(t) = exp (-<?| t\ + m log | t\ ) for / ^ 0, 

« exp (-<* | /1 + ifit log | * | ) for t < 0, 

where /3£i?, a £ i ^ , a ^ O ; c and d are complex constants with Re(c) > 0, 
Re(d)>0, For a > 0 the corresponding measure n is absolutely con­
tinuous; for a < 0 the measure Ô/3—/x is absolutely continuous. 

2. Symmetric real-valued stable measures. By (1), 

(2) ||M **|| - Ml 
for every stable measure. Therefore, either ||JU||==0 or | |/X||<>1. The 
stable probability measures clearly have ||/x|| = 1. One sees easily that 
\\fx\\ > 1 for every stable measure which is not a probability measure. 
For a < 0 we even have ||/x|| > 2 . 

In this section we confine ourselves to 

fia(t) - exp ( - | /1«), a G R, a * 0. 

Clearly ||/*«|| is equal to 1 for 0 < a ^ 2, is bigger than 1 for a> 2, and is 
bigger than 2 for a < 0 . 

Our tool will be an approximation of fia by a function whose norm 
can be calculated, and the repeated use of 

LEMMA 1 (BEURLING [2]). (i) Let <f> be absolutely continuous and 0, 
<l>'ÇîL2(R). Then<f> = fi£:B(R), /x is absolutely continuous, and 

a oo / • oo \ 1/4 

1*0) NJ U'oNJ • 
(ii) 4̂w even function <f> is in B(R) if<f>(t)~:>0 (/—>oo) and if the inte­

gral below is convergent. Then, putting <p~fi, 

y g f "<|<v(o|. 
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THEOREM 1. (i) Fora<0, 

2 < ||ju«|| S 2 + ((2«(a - l))1 '2 - a) exp (1/a - 1). 

(ii) Ifaf3>0 then 

||ju«~M*|| ^ | j S - a | * ( « , £ ) , 

u/Aeri JK" is locally bounded. 

PROOF, (i) The inflection points of p,a are ± h where to = ((OJ — l)/ce)1/a. 
Approximate 1—#« by 

*«(0 = 1 -#«( ' ) for | / | > /o, 
= 1 + fXa (-to)(t + to) ~ fia(-to) for -t0 g t < 0 , 

= 1 + fia (t0)(t - /o) - j&«(*o) for 0 g * S /o. 

The function g« is even and concave in (0, oo), and therefore by 
Polya's criterion is positive definite. Thus ga — Pa where \\va\\ =g«(0) 
= 1 —exp(1/a — 1). For the remainder Pa — (1 — j&«), we find by Lemma 
KO 

II*. - (*o - M«)|| â (2«(« - l))1'2 exp (1/a - 1). 

(ii) Lemma 1 (ii) yields 

HA.-A0II ^ f"<|A/ ,W-A-"(0|*. 
•J 0 

By the mean value theorem applied to the variable a, 

dp."y(t) 
ftf'(0-A."(O-G9-«)-

#7 

O<0<1. An elementary calculation yields 

dpTyV) 

V=a+(0—a)e> 

ƒ. 0 I #7 
J/ g K(a,0), 

where i£ is locally bounded. 

COROLLARY 1. (i) lim^-o ||/x«|| ~2 . 
(ii) The function a—>/*« mapping R — {o} iw/0 ikf(i?) is continuous 

with respect to the norm topology in M(R). 

It should be mentioned that if we define ixo^er^o, then ju« is con­
tinuous at a = 0 in the weak* topology of M(R). 

3. Asymptotic behavior of ||/x«||. 
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THEOREM 2. As \ a\ —>oo, 

IÎ H -(4/ir>)log | a | + 0 ( l ) . 

For the proof of this fact we need the following 

LEMMA 2. Consider the trapezoid-shaped function 

Path(t) = 0 for \t\^ b9 

= (l /a)(ft- | / | ) >f ft- a g | t | <b, 

= 1 /or | * | < ft - a, 

wfore b>a>0. Then, for b/a-*oo, 

IkJ I - (4A2) log (b/a) + 0(1). 

For the proof write Patb=: ài+&2t where 

*i(0 - Z !»(< + *») 
l*l*[&/a]-l 

and 

0(*) = 1 - | * | A for | /1 ^ a, 
= 0 f or | * | > a. 

Lemma 1 (i) applied to <T% — vaj>—<r\ yields ||<r2|| g2 . Furthermore, by 
direct calculation using Poisson's summation formula, we obtain 

IWI = (1A) I I D[bM-i(x) | ^ , 

where Z)n is the Dirichlet kernel. 
PROOF OF THEOREM 2. Assume ce^l. Approximate #« by a trape­

zoid #« so that its sides coincide with the tangents at the inflection 
points of j&«. This leads to b/a = aexp(l/a~-l), and by the above 
lemma for a—* oo, 

IWI = (4A 2 ) l oga + 0(l). 

Again by Lemma 1 (i), | ||^«||—||M«|| I =0(1). We proceed similarly 
for a > 0 . 

In the same way we can show that ||jua+/x_a|| =0(1). Although 
11 Mall"-* °° we have for the densities ga of ixa 

ga(%) —> (sin X)/TX as a —> oo 

in the norm of L^{R), as Parseval's equation shows. 
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COROLLARY 2. For every e > 0 there is a /i£ikf(i?) such that ||p|| = 1, 
but ||/X*M|| <€. 

To see this, choose JU« such that ||/*a|| >€~1. Now take M—Ma/IWI 
and use (2). 

Corollary 2 is true also in M(G), where G is the circle group or any 
compact connected abelian group, since in such a group there exist 
idempotent measures with arbitrarily large norm. See Cohen [3]. 

4. A skew case. Consider the stable measures ixe,a corresponding to 

&,«(*) = exp (-c\ t\a) for / è 0, 

* exp ( - | t\«) tort < 0, 

where aÇjî (0, 1) and c£:R. 

THEOREM 3. For c-* <*>, 

2 log <? + 0(1) g H/1,,.11 g 21 2a exp ( l / « — 1) — 11 log c + 0(1). 

A technique similar to the one used in Theorem 2 leads to the con­
jugate Fejér kernel rather than to the Dirichlet kernel. 
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