
A MATHEMATICAL THEORY OF OPTIMAL 
ECONOMIC DEVELOPMENT1 

BY DAVID GALE 

1. Introduction. The general aim of this article is two-fold; first, to 
show by means of examples the kinds of mathematical problems 
which arise from economic situations, and second, to illustrate the 
principal methods by which these problems can be attacked. I have 
endeavored to present this material in a manner appropriate both 
for the general mathematician and the mathematically oriented 
economist. For the former whose interest is probably mainly one of 
curiosity, I have tried to convey the general flavor of the subject—a 
sort of answer to the question "what is mathematical economics?'' 
For the latter I hope that these examples will provide useful illustra­
tions of the power of modern optimization theory in attacking eco­
nomic problems. 

For achieving the above purposes the subject of economic develop­
ment seems a particularly suitable vehicle. The problems are easily 
described and can be formulated mathematically in a variety of ways. 
An economy consists of various "goods" which can be used for two 
purposes: they can either be "invested" in which case they produce 
more of themselves, or they can be "consumed" in which case they 
provide satisfaction or "utility." The entire structure of the economy 
is given by specifying how these two operations can be carried on. 
The specification of how goods can be transformed into each other is 
called the technology of the model and the specification of how goods 
are transformed to satisfaction is called the utility function. Given this 
structure and some initial bundle of goods, the problem of optimal 
development is to decide at each point of time how much to invest 
and how much to consume in order to maximize utility summed over 
time in some suitable way. 

Having arrived at a definition of an optimal development program 
one proceeds to ask the usual questions. Are there any such programs? 
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If so, are they unique? What are their qualitative properties, e.g. are 
they monotonie, with utility getting greater each day, or are there 
situations in which things have to get worse before they can get better 
and so on? The bulk of this exposition is concerned with such ques­
tions, but the emphasis will be less on the specific answers obtained 
than on the technique used in obtaining them. The technique in ques­
tion is the method of price systems, and it is the exploitation of this 
concept which constitutes the heart of the present exposition. It may 
be helpful in conclusion to describe roughly what this method is. 

Note, first, that in our description of an economy, the notion of 
money, prices, profits, interest rates and the like do not appear. The 
formulation is entirely in terms of "real" economic quantities, namely, 
goods and utility. The remarkable and somewhat surprising fact is, 
however, that in order to answer questions dealing only with real 
quantities it has been found necessary to introduce the ideas of 
money, prices and profits. As an example, the only way I know for 
proving the existence of certain classes of optimal programs involves 
showing first that there exist programs which are profit maximizing 
under a suitable price system and then showing that such profit maxi­
mizing programs must be optimal. I emphasize again that the prices 
are not part of the model to begin with but are brought in for pur­
poses of mathematical analysis. Of course, the theorems about prices 
which one proves are of considerable economic interest in themselves, 
for they show, roughly speaking, that if prices are chosen correctly 
then optimal welfare is achieved by having each productive facility 
maximize its own profits. This idea, I hasten to add, is far from new. 
On the contrary, the proposition that proper pricing can bring about 
optimal allocation of resources may well be the central idea in all of 
economic theory. Modern global optimization theory, developed 
largely since the end of World War II, has only served to emphasize 
and reenforce this proposition, sometimes in quite spectacular ways. 
The sections to follow are intended to illustrate this phenomenon in 
the context of economic development. 

2. Goods, utility, technologies and programs. We consider an econ­
omy in which there are m goods. A nonnegative w-vector x 
= (xu • * # » %m) is called a goods bundle in which Xi is the amount of 
the ith good in the bundle x. 

Goods can be used for two purposes. They can either be consumed 
thus providing satisfaction or utility to consumers, or they can be 
invested, in which case they produce more of themselves in some 
specified way. This is made precise as follows: 
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There is a utility function defined on all goods bundles, which may 
vary with time. We write ut(x) and interpret this as the satisfaction 
to society of consuming the bundle x at time t. It is assumed in this 
model that the bundle x disappears in the act of being consumed. 
There is some difficulty with this formulation. Many things people do 
for satisfaction do not seem to use anything up. Looking at pictures 
in a museum, for example, does not cause the pictures to disappear. 
The goods that get consumed in this case are not the pictures but the 
viewer's leisure time which in this formulation must itself be consid­
ered a good. This seems somewhat awkward and we will later propose 
an alternative formulation which gets around this problem, 

A technology 5 is a set of pairs of goods bundles (x, y). The inter­
pretation is that starting with the bundle x it is possible to produce 
from it the bundle y one time period later. We will refer to the pair 
(x, y) as a productive activity and call x and y the input and output 
of the activity. 

In considering the question of development, it will be assumed that 
at the present time (/ = 0) there is on hand a bundle s called the 
initial stocks. It is now quite clear what one should mean by a de­
velopment program. 

DEFINITION 1. A program with initial stocks s is a, sequence of ac­
tivities (xu yt), / = 0, 1, • • • (finite or infinite), where 

(1.1) (xt9 yt) 6 3, xoS s, xt g y#_i, t à 1. 

The consumption ct in period t is defined by 

(2.1) CQ = s — XQ9 ct = y«- i — xt. 

The sequence (ut(ct)) is called the utility sequence of the program 
(xt, xt). 

Conditions (1.1) state that input in period / cannot exceed output 
of period t — 1. Condition (2.1) defines the difference of these to be 
consumption. (It may be that some of the goods in ct are not con­
sumed in the literal sense but merely thrown away, but there is no 
reason why one cannot attach utility (or disutility) to this act as well 
as that of, say, eating.) 

If a program is finite, say, 2 = 0, 1, • • • , T, then the bundle yr is 
called the bundle of final stocks. A T-period program with final stocks 
yT = s' will be called a program from s to s'. The optimality concept 
now enters in a natural way. 

DEFINITION 2. A T-period program from 5 to s' is called optimal 
if it maximizes ]CT=o ut(ct) among all such programs. 
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Although the main subjects in development theory are the infinite 
programs it is necessary first to look briefly at finite programs which 
we do in the next section. 

3. Prices and competitive programs. We now introduce the main 
concept of this paper. 

DEFINITION 3. A program (xt, yt) is called competitive if there exists 
a sequence of m-vectors pt, called prices, such that for all t 

(A) pt+iy~ptxSpt+iyt~ptXt for all (x, y) in 3, 
(B) Ut(c)—ptC^ut(ct)—ptCt for all c*z0. 
The economic interpretation of these conditions is important. The 

vector pt gives the prices of the m goods in period /• Thus in (A) the 
term ptx is the cost of the input x in period t and pt+iy is the value of 
the output y in period t+1. Their difference is, of course, the profit 
obtained from the activity (x, y) and condition (A) states that the 
activity (xt, yt) maximizes profits at prices pt and pt+i among all 
possible pairs in 3. Briefly, producers maximize profits. 

Condition (B) is the consumption condition and it says that con­
sumers maximize utility, subject to their budgetary constraints, the 
constraint being that they may spend no more than the amount ptCu 
This follows because if there were a bundle c' which cost at most ptct 

and gave a higher value of u we would have u(c')~-ptc'>u(ct)--ptCt 
contrary to (B). Further it is reasonable to limit consumption ex­
penditure to ptCt for by definition Ct = yt~.i—Xt} so ptCt = ptyt-i—ptXt. 
The term on the right represents the value of yesterday's output 
minus the value of what is to be invested today and the difference 
is what is available for today's consumption. 

The following simple result is the starting point for our theory. 

THEOREM 1. If a T-period program from s to s' is competitive, it is 
optimal. 

PROOF. Let (xl, y I ) be any other program from 5 to s' and let (pt) 
be the competitive prices. Then from (B) 

u(d) — u(c0) ^ po(cQ' — Co) = p0(s ~ xl) — p(s — x0) = poXo — poXo', 

u(d) - u(ct) S pt{ct - ct) = ptiyLi - xl) - pt(yt-i - xt) 

for 1 ^ * ^ T, 

0 = pT+x(sr — s') = pT+iyr ~ pT+iyr» 

Summing from 0 to T and rearranging gives 
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T T T 

]C u{cl) - X w(c*) ^ ] C [(pt+iyl - M # ) - (Pt+iyt - £«*«)], 
i =0 <=0 *=0 

but from (A) every term on the right is nonpositive, hence 
T T 

and (xt, yt) is optimal. 
The next objective is to obtain a converse of this theorem. For this 

purpose some mathematical preliminaries are needed. 

4. The Kuhn-Tucker Theorem and existence of competitive pro­
grams. From now on we will assume that the following two conditions 
are satisfied. 

I. The technology 3 is a convex subset of 2m-space. 
IL The utility ut is continuous concave in c for all t. 
These conditions are in many cases economically reasonable. For 

the technology if (x, y) and (#', y') represent feasible activities then 
if one could carry them both on at the same time one would also have 
the activity (x+x', y+y'). However, these activities might require 
certain resources which were only available in limited amounts (e.g. 
labor). Assuming these resources were "infinitely divisible" one could 
allocate some fraction X of them to the first activity and (1 —X) to the 
second thus obtaining the activity (X#+(l— X)#', Xy + (1— X)y'). As 
for the utility function, it is at least from a realistic point of view 
somewhat arbitrary to begin with. The assumption of concavity 
reflects first the notion of diminishing returns—consuming 100 pota­
toes is not 100 times as enjoyable as consuming a single potato—and 
second the idea that diversity is desirable; if people on the average 
are indifferent between apples and oranges then having some of each 
is at least as desirable as having all of either one. (This applies only 
to the whole society. An individual might prefer either an apple or 
an orange to one half an apple and one half an orange.) 

Assumptions I and II are needed so that one can make use of the 
Kuhn-Tucker Theorem which is not only the key mathematical result 
needed for the present theory but quite likely the most important 
single result in modern optimization theory. We shall give a version 
here which is most convenient for the present application. The the­
orem is concerned with maximizing a concave function u over a con­
vex set X in n-space where x in X is also required to satisfy a set of 
linear equations, Ax = b, where A is an mXn matrix and b is an n-
vector. 
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KUHN-TUCKER THEOREM. Suppose x in X maximizes u(x) subject 
to the constraints Ax = b. Suppose also 

(4.1) The set of solutions ofAx = b meets the interior of X, 

Then there is an m-vector p such that the function u(x) —pAx achieves 
its maximum at %. 

This theorem looks very much like the ordinary theorems about 
Lagrange multipliers, for the components of p are precisely such 
multipliers and the function u(x)~pAx is the usual Lagrangian. 
There are two important differences however. 

(I) The usual theory only refers to interior maxima while this 
theorem is equally valid for maxima which occur on the boundary of 
X which will often be the case in applications. 

(II) In the usual Lagrange theory one can only say that if x satis­
fies the constrained maximum problem then the Lagrangian has a 
critical point at x. Indeed, the significance of the Kuhn-Tucker The­
orem is that it transforms a constrained maximum problem for the 
function u(x) into an unconstrained maximum problem for the func­
tion u{x)—pAx. 

The proof of the theorem is quite simple depending only on the 
well-known fact that a concave function cj> on an open convex set B 
is the minimum of all linear functions p on B such that p^<j>. Thus, 
for any b in B there exists a vector p such that p • (b' — b) *t<j>(bf) —0(ô). 
We call p a support of u at the point b. The interested reader can con­
struct his own proof, as follows: First, let B be the set of all vectors V 
such that the set Ax = bf satisfies (4), and show that B is open and 
convex. Then let 4>Q)f) = maxAX=bf u{x) and show that 4>Q)f) is concave. 
Finally, let p be a support of <j> at &. Then for any x' in X letting 
Ax' = b' we get 

u(x') - pAx' = u{x') - pb' ^ 4>(b') - pb' g <l>(b) - pb = u(&) - pA$ 

which is the conclusion of the Kuhn-Tucker Theorem. 
Condition (4.1) is not necessary. An alternative condition which is 

often useful is that X be a polyhedral set. The proof in this case is a 
little more difficult. Some condition, however, on the set X is needed 
as the following example shows. 

Let X= {(xi, X2)\x2^xl}, u(xit afcO—tfi and let us try to maximize 
u subject to the condition #2 — 0, Obviously the solution must be 
x=(0, 0). However, the Lagrangian L(x) is given by L(x)~ Xi—px^ 
and for p^Q, L has no maximum, while for £>0 , L attains a maxi­
mum of l/4p a,tx=(l/2p, l/4^2). 
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There are other conditions on X which assure the validity of the 
Kuhn-Tucker Theorem, but this is a somewhat technical matter 
which we will not get into here. I t will be assumed for our applications 
that the technology 3 satisfies these very mild restrictions (for details 
see [l]) so that the Kuhn-Tucker Theorem is applicable. Returning 
now to the development problem we have 

THEOREM 2. If (xti yt) is an optimal T-period program from s to $' 
then it is competitive. 

PROOF. By definition, (xt, yt) maximizes XXo ut(ct) subject to the 
constraints 

%o + CQ = s, xt + ct = yt-u (t = 1, • • • , T), $' = yT 

where (xt, yt) is in 5 and ct is nonnegative. 
From the Kuhn-Tucker Theorem there exist numbers pt, 

t = 0, • • , r + 1 such that 

T T 

(4.2) X u(ct) - po(x0 + Co) - X Pt(xt + ct- yt-i) + pT+iyr 

is maximized at (#*, j?*, £*). But rearranging (4.2) gives 
T 

(4.3) 2 [(ut(ct) - ptct) + (pt+iyt - ptxt)] 

and the IT terms in (4.3) are independent, so the sum will be a maxi­
mum if and only if each term is a maximum, i.e. 

pt+iyt ~ ptXt is maximized at (%h yd, and 

u(ct) — ptCt is maximized at Ct. 

But these are precisely the competitive conditions. 
Having established the equivalence of optimal and competitive 

programs we shall devote the rest of this paper to illustrating how the 
competitive conditions can be used to analyze properties of develop­
ment programs. 

S. A model with a single good. For purposes of economic analysis 
it is sometimes useful to construct highly idealized economic models, 
one might call them animated cartoons of a real economy, which 
illustrate some particular aspect of an economy in order to gain rough 
qualitative information on how a real economy might behave. In this 
section we shall look briefly at such a model. I t will involve only one 
good which can either be consumed to gain utility, or invested in 
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which case investing the input x in period t gives rise to an output 
f(x) in period / + 1. The function ƒ, called the production function, is 
assumed to be concave. The technology in this case is given by 

3 = {(*,y)|y â/(*)} 

and since ƒ is concave, 3 will be convex. 
We further assume that the model is productive, that is, increasing 

the inputs by an amount h increases outputs by more than ht so that 

(5.1) ƒ(* + h) - f(x) > h for all x â 0, h > 0. 

Finally we shall assume that the utility function u is independent 
of time and an increasing function of c. This means that any optimal 
program (xtt yt) must be of the form (xt,f(xt)) since one will always 
produce the maximum output possible from any given input so that 
Ct=f(xt-i)—Xt. We now give a theorem on the qualitative nature of 
optimal programs whose statement does not involve the notion of 
prices but whose proof seems to require their use. 

THEOREM 3. Let (xtif(xt)) be an optimal T-period program from s to 
s'. Then 

(a) Consumption c% and utility u(ct) are nondect'easing functions of t. 
(b) Inputs xt are increasing up to some time to and decreasing there-

after. 

PROOF. Since (xt, ƒ(#*)) is optimal it is competitive, hence there 
exist prices pt such that from (A) 

(5.2) pt+if(x) ~ ptoc ^ pt+if(xt) - ptxt for all x ^ 0. 

In order to prove (a) and (b) we must first prove 
(c) The prices pt are strictly decreasing in t. 
This follows from (5.2) for we have 

pt/pHi è (f(%) — f(xt))/(x - xt) for x > xh 

but from (5.1) the term on the right exceeds 1. 
Next from competitive condition (B) 

u(ct) — u(ct+i) à pt(ct ~ ct+i), 

u(ct+i) - u(ct) è pt+i(ct+i - ct) 

and adding gives (pt+i—pi)(ct+\—Ct) SsO hence since pt+i <pt it follows 
that Ct+is^Ct which proves (a). 

To prove (b) it suffices to show that if xt<xt-i then Xt+\<xt. Now 
since ƒ is increasing we have ƒ (xt) </(#*_i), and from (a) — ct+iè —Ct, 
and adding these inequalities gives 
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Xt+i = f(xt) — Ct+x < f(Xt-l) ~ Ct = Xt> 

as asserted. 

6. Infinite programs. Finite programs as discussed in the preceding 
section are not of great interest in economic development, for one is 
not usually given the desired final stocks s'. On the contrary, the 
central problem in development theory is to decide on the best rate 
for building up stocks, the so-called capital accumulation problem. 
To attack this problem one must consider infinite programs, and the 
first problem is to define a suitable notion of optimality. It obviously 
will not do to simply maximize the infinite series 2 t l 0 Mt(ct) since 
this series will in general diverge. There does turn out, however, to be 
a natural notion of optimality based on the following partial ordering 
of programs. 

DEFINITION. The program (xti yt) will be said to overtake the pro­
gram (x'u y't) if there exists a time T such that 

2»/ J»/ 

Z <ct) > £ u(ci) for all V è T. 

The program (xt, yt) catches up to (x't, y
f
t) (at infinity) if 

T 

lim inf £ («(<?/) - «(«<)) ^ 0. 
r-»« t=o 

A program is called optimal (strongly optimal) if it catches up to 
(overtakes) every other program. 

Note that this definition includes as a special case the situation in 
which the series ^2ut(ct) does converge (as may occur, for instance, if 
future utilities are suitably discounted). However, as we shall see, the 
definition applies as well to situations in which the series definitely 
does not converge. Of course, for a given technology and utility func­
tion it may happen that there are no optimal programs. Here is a 
simple example for the single good model. 

Suppose u(c) = c, and from x units of goods we can produce 2x units. 
The claim is that there can be no optimal program, for let {xti 2xt) be 
any program and suppose CT = 2XT-I—XT > 0 for some T. We construct 
the overtaking program (xl, 2x{ ) by letting it agree with (xt, 2xt) 
except for / = T and T+1 where we define 

CT = 0 and XT = 2XT~U CT+I — 2XT — #r+i« 

Then CT +CT+I=:4XT-I-- XT+I while 
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CT + CT+I =* 2%T~I — %T + 2XT —* %T+I == 2^r-i + #r — #r+i> 

and subtracting gives 

CT + cr+i --* CT — CT+I — 1%T—\ — %T = CT >• 0, 

hence (#/ , y/ ) overtakes (x*, y*). 
The above is a very special case of a general result which can be 

obtained using prices. We ask the reader to accept the fact that infi­
nite optimal programs are competitive. This is proved by a passage 
to the limit from the finite case but involves a rather delicate point of 
showing that the prices one gets are uniformly bounded. 

THEOREM 4. In the one good model if ƒ is productive and u is un* 
bounded then no optimal program exists. 

PROOF. Suppose (xtf f(xt)) was optimal, hence competitive. Then 
from condition (B), 

u(ci) - u(co) S po(ci - Co) = po(f(x0) - #i) - pQ(s ~ *o), 

U{Ct+l) ~ U(ct) S pt(ct+! ~ Ct) = pt(f(Xt) - %t+l) — pt(K%t-l) - Xt). 

Summing from t = 0 to T gives 

u(cT+i) — u(c0) S pT(xT — xT+i) 
T 

(6.1) + X) [ptf(xt) - pt-ixt) - (ptf(xt-i) - pi_i*#-i)] 
t=l 

+ po(f(x0) - s). 

Now if the function u is unbounded then in any optimal program, 
clearly, (ct) is unbounded, hence (xt) is unbounded and hence, from 
Theorem 3, (xt) is monotone increasing. This means the first term on 
the right-hand side of (6.1) is negative. Further, by condition (A) all 
terms in the summation are negative so (6.1) becomes U(CT+X) 
Su(co)+po(f(xo)—s), but this means that u(ct) remains bounded, as 
asserted. 

I t is interesting to note that the converse of Theorem 4 is true. If u 
is bounded then an optimal program does exist. The proof, which is 
somewhat lengthy, proceeds by first showing that an infinite competi­
tive program exists which has a certain additional property called 
efficiency, and from this it follows that the program is optimal. The 
interested reader is referred to [2], Thus, boundedness of u is seen to 
be necessary and sufficient for the existence of optimal programs (this 
was first proved by McFadden for the case when ƒ is a linear function 
[3]). We shall return to the general existence question later. 
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7. Multi-commodity models. The von Neumann technology. We 
turn now to models with many goods. For this purpose a somewhat 
different formulation based on some work of von Neumann [4] is 
convenient. The model involves, first of all, a finite set of n activities, 
represented by the input-output pairs (#/, bj), j « 1, • • • , n. Each 
activity can be operated at various levels; thus if (ay, bj) is an activity 
and Vj is a nonnegative number then (*>,#/, vfij) is also an activity. 
Further, the different activities may be operated simultaneously. I t is 
not hard to see now that if A and B are matrices whose jth columns 
are a,j and bj, respectively, then for any nonnegative vector v the pair 
(Av, Bv) is an activity. The vector v is called the vector of activity 
levels or more simply the activity vector. To complete the description 
of the technology we must restrict the set of possible vectors v, for it 
is obvious that in any real technology it will not be possible to operate 
all activities at once at arbitrarily high levels due to the scarcity of 
primary resources of which labor of various kinds is the most impor­
tant. We assume therefore that the vectors v are restricted to lie in 
some bounded convex polyhedral set V containing the origin. Given 
the mXn matrices A and B and the set V in w-space, the technology 
3 is then given by 

3 = {(Av, Bv)\vEV}. 

In general the set V will vary with time, since population, and 
therefore the labor force, is generally changing. However, in the case 
in which all types of labor grow at the same rate, one can transform 
the development problem into one in which the labor force remains 
constant. In what follows we shall confine ourselves to this case. 

DEFINITION. A program with initial stocks 5 is a sequence of activity 
vectors (vt) from V such that 

AVQ «s s, Avt — Bvt-i. 

Thus, outputs of period t~~l ate inputs of period /. This does not 
mean that one must actually use all available outputs at all times. 
An output may simply be disposed of or stored from one period to the 
next, or allowed to deteriorate, for each of these possibilities may be 
accounted for by introducing suitable activities in the A and B 
matrices. 

We now bring in the utility function, and at this point we introduce 
a mild innovation. Instead of defining the utility on goods bundles, 
we define it as a function Ut on activity vectors v. Thus, ut(v) is the 
satisfaction to society from engaging in activities at levels v at time U 
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We believe this is really an improvement over the usual formulation. 
It is not, after all, the piece of cake that produces satisfaction, but the 
act of consuming it. Likewise there are certain activities, digging 
ditches for example, which produce dissatisfaction. Finally, the prob­
lem previously mentioned of attaching utility to looking at pictures 
in a museum is easily solved by placing the utility on the viewing 
activity rather than the pictures. 

DEFINITION. A utility function ut is a real valued function on the 
set of nonnegative n-vectors v. The utility sequence corresponding to 
the program (vt) is the sequence (ut(vt))-

In the new formulation the concept of optimal infinite program 
remains unchanged. We require that the sequence (ut(vt)) catch up 
to or overtake all others. The notion of competitive program becomes 
even simpler than before, although its economic interpretation is not 
quite so transparent. 

DEFINITION. The program (vt) is competitive if there exist prices 
pt such that for each t 

ut(v) + (pt+iB - ptA)v ^ ut(vt) + (pt+iB - ptA)vt 

for all v in 7. 

The condition states that at each time t, v is chosen so as to maxi­
mize the sum of profit and utility. 

It is now an easy matter to verify that if (vt) is a competitive 
jT-period program from s to s' then it is optimal. Using the Kuhn-
Tucker Theorem one just as easily proves conversely that if u is con­
cave then any optimal jT-period program is competitive.2 Assuming 
these verifications have been performed we turn our attention to 
infinite programs. 

8. Stationary programs and asymptotic properties of good pro­
grams. In this section we will consider only the case where u is inde­
pendent of the time. We introduce the principal notion of the section. 

DEFINITION. A program (vt) is called stationary if vt = tfo for all /. 
From the definition of a program it follows that v0 must satisfy 

(8.1) (B - A)v - 0, 

and in fact stationary programs correspond exactly to vectors v in V 
which satisfy (8.1). 

An optimal stationary program v is a vector satisfying (8.1) for which 
u(v) is a maximum. 

1 To be completely correct here one must also assume that u has a support at all 
points v. A counterexample in 1-dimension would be u(v) =vm which has no support at 
t>=0. 
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Mathematically, if V is unbounded it might be that no optimal 
stationary program existed. However, for the present model, it is 
eminently reasonable that there should exist such a program. It cor­
responds to the economic millennium, or as economists have come to 
call it, the Golden Age, and it represents the steady state which would 
occur after we had built all the productive equipment which our re­
sources could support on a steady basis. The theorems of this section 
will show that optimal stationary programs play a central role in the 
theory of optimal development. The starting point, as usual, will be 
the Kuhn-Tucker Theorem. 

LEMMA. If v is an optimal stationary program there exists an m-vector 
p such that 

(8.2) u(v) + p{B — A)v is maximized at vfor all v in V. 

The proof is a direct application of the Kuhn-Tucker Theorem. 
It is convenient from now on to assume that u(v) = 0, that is, that 

the maximum sustainable utility is zero. This can obviously be 
achieved by adding a suitable constant to u if necessary. The first 
important result is 

THEOREM 5. There exists a constant M such that for any program 
(vt) and any time Tf ]C£i u(v*) ̂  - ^ 

PROOF. For the program (vt) we have from (8.2) 

(8.3) u(vt) + p(B - A)vt ^ 0 for all /, 

so 
T T 

]C u(vù ^ 23 P(A — B)vt = pAvo — pBvr = ps — pBvr ^ Mf 

for since vT is bounded, so is pBvr. 
Theorem 5 shows that for all programs the partial sums 2 £ o Ut(vt) 

are uniformly bounded above. That is, no program can be infinitely 
better than an optimal stationary program. They can, however, be 
infinitely worse, that is, ]C£o Mt(vt) can be unbounded below. This 
suggests 

DEFINITION. A program (vt) is called good if the partial sums 
Z X i u(v*) a r e bounded below. 

We now obtain an asymptotic theorem for good programs. 

THEOREM 6.1fu is strictly concave and the program (vt) is good, then 

(8.4) 2 u(v*) converges, 

(8.5) lim vt = v. 
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(Note that since u is strictly concave v is unique.) 

PROOF. From (8.3) we have 

(8.6) u(vt) = p(A - B)vt - bt where dt è 0. 

Now since (vt) is good there exists N such that 

(8.7) N Û 2>(*d =ps-pBvr- T,öt^M- £>« 

or 23^ 0 ôtSM—N so ]C*°L0 ̂  converges and in particular Km*-».* ôe 
= 0. This means from (8.6) 

lim <*>*) + p{B - ,4)*;, = 0, 
f->00 

but 0 is the maximum of u(v)+p(B—A)v and it is achieved only at v 
since u is strictly concave there, so lim*-* vt = v proving (8.5). 

To prove (8*4) note from (8.7) that 
T T 

22 u(vd = P$ — pBvf — X) &t 

and since vr—>v and XXo 5< converges, we have the desired conver­
gence. 

Now in looking for an optimal program it is clear that we need only 
consider good programs, hence we may look among the convergent 
infinite series 22*" o u(vt) for one with the largest sum. We have al­
ready seen that these sums are bounded in Theorem 5 so it is only a 
matter of showing that the supremum is achieved. This turns out not 
to be so easy* Here is a counterexample. Suppose we start with one 
unit of cake and each day we must decide how much to consume and 
how much to save. Clearly, a program is just a sequence (ct) of con­
sumptions subject to the condition ct^l. Now if u is any strictly 
concave function of c then there can be no optimal program, for if 
(ct) is a program then there must be some time T such that Cr9*cr+u 
but in this case (ct) is overtaken by the program (ci ) where ci =£* for 
t^T, r + 1 and c4 = CT+I~(CT+CT+I)/2. 

Despite the above example one can get a concise existence theorem 
for this model. Once again this requires the use of prices and competi­
tive programs. 

THEOREM 7. If u is strictly concave then there exists a program (vt) 
which is 

(a) good 
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(b) competitive 
(c) the prices pt are bounded. 

We will not prove this theorem which is a technical matter of 
obtaining (vt) as a limit of optimal T-period programs. A somewhat 
delicate part is the verification of condition (c). The interested reader 
is referred to [l]. Assuming this theorem we get 

THEOREM 8. Ifuis strictly concave then the program (vt) of Theorem 7 
is strongly optimal. 

PROOF. Let (v{ ) be any other good program. From (7.1) 

u(v{) + (pt+iB — PtA)vt
f + at =» u(vt) + (pt+iB — p%A)v% for all / 

where 5*è0. Hence 
T T 

]£#(*>/) + PT+IBVT — pos + 2 ** = Z) u(vd + PT+IBVT — pos 

or 
T T 

(8.8) Jl &W) - «(«0) - #m-i*(*r - *r') - L ««• 

Now if Vt9*vl then by strict concavity ÔÉ>0, hence the last term in 
(8.8) becomes negative. By Theorem 6, the term (vv—v{)~*0 since 
(vt) and (v{ ) are both good programs and since the pt are bounded, 
the term PT+IB(VT—VT )—>0. Hence, the right-hand side of (8.8) even­
tually becomes negative, so (vt) overtakes (vl ). 

(One might ask why the cake eating example does not fall under 
this theorem. The answer is that in that example u fails to be strictly 
concave in the sense required. Notice that there are two activities. 
You can't eat your cake and have it too, but you can eat some of it 
and have the rest. If we had attached utility both to the eating and 
having in a strictly concave manner then there would have been an 
optimal program. As given the example fails to satisfy (8.5) of 
Theorem 7.) 

COROLLARY. If s = Bv then the program (v) is strongly optimal. 

PROOF. The program (z), p) clearly satisfies the conditions of Theo­
rem 7, hence is optimal by Theorem 8. 

The corollary says that the optimal stationary program is optimal. 
This is not a trivial tautology, for to say that (v) is optimal stationary 
means that it is better than any other stationary program, but it is 
still conceivable that starting from s = Bv there could be a nonsta-
tionary program better than (v). 
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9. The case of discounting. We shall give one more application of 
competitive prices, this time to show how they can be used to produce 
counterexamples to conjectures one might make. This work was done 
by W. R. Sutherland in his doctoral dissertation [5]. 

In the previous section it was assumed that u was strictly concave 
and independent of time and we showed that all good programs ap­
proach a unique optimal stationary program. Now it is quite usual in 
development theory to consider discounted utilities, that is utility 
function ut where ut(v) = ô*w(z/), and ô is some positive number less 
than unity. In this case if say V is bounded then the existence of 
optimal programs becomes very easy since all utility series converge. 
On the other hand, as we will see, the qualitative behavior in relation 
to stationary programs may be quite complicated. In fact we shall 
give a simple model in which there are exactly two distinct stationary 
programs which are optimal. This is demonstrated by using prices in 
an essential way. 

We consider a very simple model in which there is a single good. 
There are two activities, producing and consuming so that the A and 
B matrix become (0, 1) and (1, 0), respectively. Let us write the ac­
tivity vector as v = (/, c) where / stands for the labor used for produc­
tion and c stands for consumption. In order for (vt) to be a program 
the condition is simply 

Co = s, c% = /f_i. 

We may prescribe the set V of pairs (Z, c) quite arbitrarily provided 
it is bounded. The corresponding utility requirement (ut) is given by 
Ut = ôtu(ltl ct) and a stationary program is then one for which (lt, ct) 
= (s, s) for all /. 

THEOREM 9. A stationary program (s, s) is optimal if there is a price 
p such that u(lf c)+ôpl—pc is maximized at (s, s). 

PROOF. Let (/*, ct) be any program from s. Then 

u(h, ct) + hplt — pct ^ u(s, s) + dps — ps. 

Multiplying by S' and summing, using c* = /*-i, gives 

T 

Z Mudt, ct) - u(s9 s)) rg («™ - 1 ) ^ - (bT+lph - pco) 
t=0 

= ôT+ip(s-lr), 

and since the right-hand side approaches zero, the optimality is 
proved. 
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The converse of this theorem is true under suitable convexity as­
sumptions but we will not need it. 

COROLLARY. If u is strictly concave and 

(9.1) (du/dl)(s, s) « - ô(du/dc)(s, s). 

Then (s, s) is optimal. 

PROOF. Let p = (du/dc) (s, s) and let <#>(/, c)=u(l, c)+ôpl—pc. 
Then 

(d0/dZ)(s, s) = (du/dl)(s, s)+ôp~ (du/dl)(s, s) + d(du/dc)(s, s) « 0 

from (9.1), and (d</>/dc)(s, s) = (du/dc)(s, s)—p = Q by definition of p. 
Hence (s, s) is a critical point of 0 but since <£ is strictly concave, (s, s) 
must maximize <f> and the conclusion follows from the theorem. 

To prove nonuniqueness it suffices to find a strictly concave func­
tion u(l, c) for which the conditions of the corollary hold at two dis­
tinct points. Such a function turns out to be 

u(l, c) = 21, log(3.4 + 1.1c - /) + log(4 + 2c - /) + fc. 

Note that besides being strictly concave, u is increasing in c and 
decreasing in I reflecting the natural condition that consuming is 
pleasant and producing is unpleasant. We leave it to the enterprising 
reader to verify that condition (9.1) is satisfied both at (1, 1) and 
(2, 2). 

Obviously, if there is more than one stationary program which is 
optimal, then one cannot expect asymptotic theorems like Theorem 1. 
In fact Sutherland has given an example in which although there is a 
unique optimal stationary program ((s, s)), any program starting 
from stocks s' different from s moves away from this program and 
approaches some oscillating solution in which one produces on the 
odd days and consumes on the even. 
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