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Let ƒ(z) be a meromorphic function; it is assumed that the reader 
is familiar with the following symbols of frequent use in Nevanlinna's 
theory 

n(r,f), N(r,f), T(r,f), ô(r,f). 

The lower order /* and the order X of ƒ(z) are defined by the familiar 
relations 

. log T(r,f) log T(r, f) 
lim ml = /x, hm sup = A. 

r->eo l o g T r-+«> l o g T 

In addition to these classical concepts, we consider the total defi­
ciency A(jf) of the function ƒ 

A(/)-S«(r,/) 
r 

where the summation is to be extended to all the values r, finite or oo, 
such that 

(1) 5(r, f) > 0. 

The number of deficient values of/, that is the number of distinct 
values of r for which (1) holds, will be denoted by *>(ƒ) ( ^ + <*>). 

The investigation presented here leads to the proof of 

THEOREM A. Let f(z) be a meromorphic function of lower order /x: 

(2) h < M < 1, 

and let the poles of f(z) have maximum deficiency (S(oo, ƒ) = 1). 
Then 

(3) A(/) g 2 - sin TTM-

Moreovert if equality holds in (3), then 

(4) v(f) - 2. 

1 The authors gratefully acknowledge support by the National Science Foundation 
under grants GP-5019 and GP-7507. 
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Theorem A remains valid if, in (2) and (3), the lower order ju is 
replaced by the order X. If we perform this substitution, the assertion 
X = M follows from the assumption A(f) = 2 — sin 7rX. 

With ix replaced by X, the inequality (3) is known [4, Corollary 1.3, 
p. 235]; in its present form, which does not exclude functions of 
infinite order, it seems to be new. Concerning (4), we observe that 
one of us had already proved it for all /x belonging to the sequence 
{(1/2) + ( l / 2 s ) } (2 = 1, 2, 3. • • • ) [Notices Amer. Math. Soc, 1967, 
Abstract 643-23]. Theorem A remains true in the limiting case /x== 1 ; 
with the restriction2 X< + oo it follows from a sharpened form due to 
Edrei and Fuchs [3, Théorème 3, p. 264] of a result of Pfluger [ó]. 

Finally we remark that, if (2) is replaced by Og/xgf, and if 
5(°°, ƒ) = !, then 

A(/) - «(«>,ƒ) - 1 

and *>(ƒ) = 1. This follows immediately from an older result of one of 
us [l, Theorem 3, p. 4] . 

1. Auxiliary notions and notations. Our proof depends essentially 
on the following fact. If equality holds in (3), there must exist in­
finitely many, well chosen intervals 

(1.1) Rmèr^ Rm (m = 1 ,2 ,3 , •• -)i 

such that 

' Rm 
hm Rm = + oo, lim — = + oo, 

and such that, if r and t lie in the intervals (1.1), then T(t,f)/T(r,f) 
is very close to (t/r)*, 

A precise formulation requires a few definitions and notations: 
I. PÓLYA PEAKS OF ORDER jit. A positive sequence r\, r2, r3, • • • of 

numbers tending to + oo is said to be a sequence of Pólya peaks, of 
order fx of T(r)y if it is possible to find three positive sequences {r^}, 
{rm}> {em}, such that, as m—>+<*>, 

r'm —• + oo, (rm/rm) —> + °o, (r'J/rm) -* + oo, em —> 0, 

and such that the inequalities 

rL^t^ rZ (m > m0), 

2 Some of the arguments used in our proof of Theorem 1 would make it possible to 
omit this restriction. 
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imply 

T(t)/T(rm) ^ (1 + tm)(t/rmy. 

We take for granted the fact that, if f(z) is of lower order fxf then 
T(r) = T(r, ƒ) has a sequence of Pólya peaks of order /*. A proof will 
be found in [2, pp. 85-86]. 

II . QUANTITIES u(f) AND V(J) DEFINED IN TERMS OF EXCEPTIONAL 

SETS. Let 8 denote a measurable subset of the axis r>0 and let 
S[r', r"\ be the portion of 8 which lies in the interval [rf, r"\ We say 
that 8 has density zero if 

meas 8[0, r] 
lim ^ - i = 0. 
T-->00 f 

We consider systematically the two quantities 

n ON r N(r>1/f) m v N(r^ m 
(1.2) hm sup — = w(/) = u, hm sup = t>(/) = z>, 

r - > » ; rC8 l ( r ) r -*oo ; r$g J T ( / ) 

as well as the analogous quantities u(f') and v(j'). 
The set 8, which is avoided as r—>+ co, is always assumed to be of 

density zero. 
If 8 is a bounded set, the formulae (1.2) reduce to 

W = 1 - 0 ( 0 , / ) , v= l - 5 ( o o , / ) . 

III. DEFINITIONS OF THE SECTOR S AND OF THE COUNTING FUNCTION 

n($, ƒ). The sector 

S = S(co, 7; R', R") 

is defined to be the set of all points z satisfying the inequalities 

co - 7 ^ arg z ^ w + 7 (0 < 7 < *•), # ' â h I ^ *"• 

We extend in an obvious way Nevanlinna's notation and denote 
by w(S, ƒ) the number of poles oîf(z) which fall in the sector S. 

2. Statement of the main result. 

THEOREM 1. Let f(z) be a meromorphic function of lower order 
/x (0 <ix < 1) and let u and v be defined by (1.2). 

I. Then 

(2.1) sin2 irix S u2 + v* — 2uv cos 717*. 

Moreover, v g cos w/x implies u*=\ and u ^ cos Tfi implies v = l. 
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II. Let [rm] be a sequence of Pôlya peaks of order fx of T(r) and let 
£oo(r) and E0(r) be sets of 0 ( — 7rg0<7r) defined by 

EM - {$: \f(re») | £ f } , E0(r) = {$: \f(re») \ «S i - } , 

where a is an arbitrary, nonnegative constant. 
Assume that equality holds in (2.1) and that u < 1, v < 1. Then all the 

following limits exist and satisfy the relations stated 

2 / TT\ 
lim meas E^ifm) = s(°°) = — cos""1 v I 0 < cos""1 v ^ —J ; 

lim meas E0(rm) = s(0) = — cos""1 u 10 < cos"1 w ^ — J ; 

s(0) +s(oo) = 2x. 

Moreover, there exist three positive sequences {i?^}, {i?^'}, {ew} swc& 
tóa/, as m-*-\- oo, 

Rm —> + °o, rm/jRm —> + oo, î /V™ ~> + oo, €m -~> 0, 

awrf such that 
» it 

Rm^ t ^ Rm (m> trio), 

imply 

(2.2) (t/rmy(l + U - 1 S T(t)/T(rm) £ ( / / r j ' t t + i.) 

and 

(2.3) MW-€Méw(/,l//)/r(/)âMW+€m, fJiv-êm£n(t,f)/T(t)£nv+€m. 

There also exist a real sequence {œm} and a positive sequence {rjm} 
such that, as m—*+ oo, rjm—>0 awd 

w(S(a)w, *?,«; #L, #!')> 1//) - »(22», 1//) + o(T(rm)), 
(2.4) , -

n(S(com + 7T, 9/w; JK», .Rm), ƒ) = n(Rm,f) + o(T(rm)). 

Assertion II of the above theorem is closely related to a tauberian 
theorem of Edrei and Fuchs [5, Theorem 1, p. 340]. The inequalities 
(2.2) and (2.3) are "local." Their validity is confined to the intervals 
[R^, R%] and examples show that the inequalities are no longer true 
for unrestricted values of /. 

The relations (2.3) and (2.4) determine, in the annulus j?^2g|2| 
lèR'm, the moduli and the arguments of the zeros and poles of ƒ(z) 
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with such precision that an asymptotic evaluation of f(z) becomes 
possible on suitable circumferences. 

The steps which lead to the proof of assertion (4) of Theorem A 
may be described as follows. 

1. The simultaneous consideration of ƒ(z) and f(z) shows that 
A(f) = 2 - s i n TTjLc ( ! < M < 1 ) and 5(oo,/) = 1 imply 

(2.5) u(f) = sinTT/i, v(f) = 0 . 

2. The relations (2.S) make it possible to apply assertion II of 
Theorem 1 tof'(z) and hence to obtain the asymptotic evaluation of 
f(z) on suitable circumferences. This shows that, on single arcs of 
these circumferences, ƒ' is so small that ƒ is practically constant. On 
the complementary arcs ƒ is very large. I t is easily shown that this 
behavior limits to two the number of deficient values of ƒ (JS). 
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