IMMERSIONS OF G-MANIFOLDS, G FINITE

BY G. S. WELLS

Communicated by Richard S. Palais, September 1, 1967

G denotes a finite group. If G acts on X, and $H \subset G$, $X_H = \{x; hx = x, h \in H\}$.

1. P.L. G-manifolds. A G-polyhedron is a polyhedron K together with a P.L. action of G on K: in particular a P.L. G-manifold is a G-polyhedron whose polyhedron is a manifold. Maps, subspaces of G-polyhedra are G invariant maps, subspaces of the underlying polyhedra. A Euclidean G space is the P.L. G-manifold underlying a finite dimensional complex representation of G. A G ball (pair) is an invariant ball (pair) in some Euclidean G space. A P.L. G-manifold is locally-Euclidean (l.e.) if it has a covering by open sets each isomorphic to an open set in a G ball. A pair (N, M), N a G-manifold and M an unbounded submanifold contained in int N, is locally Euclidean if at each point p of M it is like a stabilizer p ball pair.

The regular neighbourhood theorem [4], [9] holds for i.e. G-manifolds but not in general. For example let S be a Whitehead sphere [8] and B the star of a fixed vertex: CS the cone on S, collapses to CB, but the two are distinct G-manifolds.

If P is a G-polyhedron and K a triangulation of P in which G acts by vertex permutation, a G block bundle over P will mean a block bundle ξ over K (see [5]) and an action of G on ξ as a group of bundle automorphisms compatible with the inclusion of K in the total space $E(\xi)$ such that for each simplex δ of K and block β above δ , $(\beta, \delta) \approx (B \times \delta, \delta)$ as H spaces, for some H ball B, where H=stabilizer δ . $E(\xi)$ is naturally a G polyhedron. If P is a l.e. unbounded G-manifold $(E(\xi), P)$ is a l.e. pair and conversely

THEOREM 1. Let $(N^n, M_n^m be \ a \ l.e.$ unbounded G-manifold and unbounded submanifold and suppose M is compact. $\exists n-m \ G$ block bundle ξ over M unique up to isomorphism and an embedding $f \colon E(\xi) \to N$ extending the inclusion of M. If $g \colon E(\xi) \to N$ is another such \exists isotopy F_t of N mod M and an automorphism α of ξ with $g = F_1 \cdot f \cdot E(\alpha)$.

2. P.L. G-embeddings. M and N will denote P.L. G-manifolds, M compact and both without boundary.

 $E_G(M, N)$, $I_G(M, N)$, Homeo G(N) are the semisimplicial complexes of embeddings of M in N, immersions of M in N, homeomorphisms of N. A k simplex of Homeo G(N) is a G-homeomorphism of $\Delta^k \times N$ com-

muting with the projection onto Δ^k , where Δ^k is the standard k simplex on which G acts trivially and G acts on $\Delta^k \times N$ as a product. A k simplex of $E_G(M,N)$ is a G-embedding f of $\Delta^k \times M$ in $\Delta^k \times N$ commuting with the projections to Δ^k and such that \exists an open covering $\{U_\alpha \times V_\alpha; U_\alpha \subset \Delta, V_\alpha \subset X\}$ of $\Delta^k \times M$, embeddings $g_\alpha: V_\alpha \to Y$, open sets W_α in Y containing image g_α and embeddings $h_\alpha: U_\alpha \times W_\alpha \to U_\alpha \times Y$ commuting with the projection to U_α , satisfying $f/U_\alpha \times V_\alpha = h_\alpha \cdot (\mathrm{id} \times g_\alpha)$. A k simplex of $I_G(M,N)$ is defined by replacing "embedding" by "immersion" in the definition of $E_G(M,N)$. An embedding $i: M \to N$ induces

$$i' : \operatorname{Homeo}_{G}(N) \to E_{G}(M, N),$$

$$\{\Delta^{k} \times N \xrightarrow{g} \Delta^{k} \times N\} \to \{\Delta^{k} \times M \xrightarrow{g \cdot (\operatorname{id} \times i')} \Delta^{k} \times N\}.$$

THEOREM 2. i' is a fibration.

Theorem 2 extends to the case of M bounded when the boundary is locally collared, and is proved by the method of [2], [3].

3. P.L. G-immersions. M and N will be as in (2), and l.e. G acts on the tangent micro-bundles T(M) and T(N) via the product actions on $M \times M$ and $N \times N$.

 $\operatorname{Rep}_G(T(M), T(N))$ is a semisimplicial complex. A k simplex is a G invariant bundle map $f \colon \Delta^k \times T(M) \to \Delta^k \times T(N)$ commuting with the projections to Δ^k and satisfying

- (a) the restriction of f to $f_1:\Delta^k\times M\to\Delta^k\times N$ is of codimension > 0, i.e. for some point $p\in\Delta^k$ and each subgroup $H\subset G$, f_1 maps each component of $p\times M_H$ into a component of $p\times N_H$ of strictly higher dimension.
- (b) the restriction f_2 of f to a fibre above Δ^k , f_2 : $T(M) \rightarrow T(N)$, is "locally integrable," i.e. \exists open covering $\{U_{\alpha}\}$ of M, open sets V_{α} in N, maps g_{α} : $U_{\alpha} \rightarrow V_{\alpha}$ and bundle maps h_{α} : $T(V_{\alpha}) \rightarrow T(N)$, satisfying $f_2/T(U_{\alpha}) = h_{\alpha} \cdot dg_{\alpha}$, where dg_{α} denotes the differential of g_{α} .
- (c) \exists open covering $\{U_{\alpha} \times V_{\alpha}; U_{\alpha} \subset \Delta, V_{\alpha} \subset M\}$ of $\Delta \times M$, micro bundles ν_{α} above V_{α} , bundle maps $g_{\alpha} \colon T(V_{\alpha}) \to \nu_{\alpha}$ and bundle isomorphisms $h_{\alpha} \colon U_{\alpha} \times \nu_{\alpha} \to \mu/U_{\alpha} \times V_{\alpha}$, where μ is the bundle induced over $\Delta^{k} \times M$ by f from T(N), satisfying $f^{*}/U_{\alpha} \times T(V_{\alpha}) = h_{\alpha} \cdot (\mathrm{id} \times g_{\alpha})$, where $f^{*} \colon \Delta^{k} \times T(M) \to \mu$ is induced from f. Let $I_{\sigma}^{+}(M, N)$ denote the subcomplex of $I_{\sigma}(M, N)$ satisfying (a) also.

THEOREM 3. $\alpha: I_G^+(M, N) \to \operatorname{Rep}_G(T(M), T(N))$ is a homotopy equivalence, the map α being the differential.

The proof of Theorem 3 uses an extension of Theorem 2 together with the case G trivial (Haefliger-Poenaru [1]).

4. Smooth G-immersions. M and N will be smooth G-manifolds (of finite dimension) (see [7]), N without boundary, and M compact, and X a compact G space with X/G finite-dimensional.

Let $I = \operatorname{Imm}^{\infty}(M, N)$, and $R = \operatorname{Rep}^{\infty}(T(M), T(N))$ denote the spaces of smooth immersions of M in N, smooth representations of T(M) in T(N), respectively. G acts on I (and similarly on R): $f^{g}(m) = g^{-1}f(gm)$, for $f \in I$, $g \in G$, $m \in M$. If $\alpha: X \to I$ or R is G invariant call α of codimension > 0 if the induced mappings $\alpha_x: M \to N$, or $T(M) \to T(N)$ are stabilizer x-mappings of codimension > 0 in the sense of (3) for each $x \in X$. The differential induces a mapping d_X from the space of G invariant mappings $X \to I$ of codimension > 0 to those $X \to R$ of codimension > 0.

THEOREM 4. d_X is a bijection on homotopy classes.

There is a relative form of the theorem for pairs (X, A) where A is a closed G-subspace and X is as before.

REFERENCES

- 1. A. Haefliger and V. Poenaru, La classification des immersions combinatoires, Publ. Math. Inst. Hautes Etudes Sci. 23 (1964), 651-67.
- 2. J. F. P. Hudson, Extending piecewise linear isotopies, Proc. London Math. Soc. (3) 16 (1966), 651-68.
- 3. J. F. P. Hudson and E. C. Zeeman, On combinatorial isotopy, Publ. Math. Inst. Hautes Etudes Sci. 19 (1964), 69-94.
- 4. ——, On regular neighbourhoods, Proc. London Math. Soc. (3) 14 (1964), 719-45.
- 5. C. P. Rourke and B. J. Sanderson, *Block bundles*, Bull. Amer. Math. Soc. 72 (1966), 1036-1039.
- 6. R. Thom, La classification des immersions d'après Smale, Seminaire Bourbaki, December 1957, Sécréteriat Mathématique, Paris, 1958.
- 7. A. Wasserman, Morse theory for G-manifolds, Bull. Amer. Math. Soc. 71 (1965), 384-8.
- 8. E. C. Zeeman, Notes from a seminar on combinatorial topology, Inst. Hautes Etudes Sci., Paris, 1963.
 - 9. J. H. Whitehead, On involutions of spheres, Ann. of Math. (2) 66 (1957), 27-29.

University of Durham, England