IMMERSIONS OF G-MANIFOLDS, G FINITE
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G denotes a finite group. If G acts on X, and HCG, Xx
= {x; hx=x, hEH]}.

1. P.L. G-manifolds. A G-polyhedron is a polyhedron K together
with a P.L. action of G on K: in particular a P.L. G-manifold is a
G-polyhedron whose polyhedron is a manifold. Maps, subspaces of
G-polyhedra are G invariant maps, subspaces of the underlying
polyhedra. A Euclidean G space is the P.L. G-manifold underlying a
finite dimensional complex representation of G. A G ball (pair) is an
invariant ball (pair) in some Euclidean G space. A P.L. G-manifold is
locally-Euclidean (l.e.) if it has a covering by open sets each iso-
morphic to an open set in a G ball. A pair (N, M), N a G-manifold
and M an unbounded submanifold contained in int N, is locally
Euclidean if at each point p of M it is like a stabilizer p ball pair.

The regular neighbourhood theorem [4], [9] holds for l.e. G-manifolds
but not in general. For example let S be a Whitehead sphere [8] and
B the star of a fixed vertex: CS the cone on S, collapses to CB, but the
two are distinct G-manifolds.

If P is a G-polyhedron and K a triangulation of P in which G acts
by vertex permutation, a G block bundle over P will mean a block
bundle £ over K (see [5]) and an action of G on £ as a group of bundle
automorphisms compatible with the inclusion of K in the total space
E(£) such that for each simplex & of K and block 8 above §, (8, §)
~(BX?$, 8) as H spaces, for some H ball B, where H=stabilizer 4.
E (%) is naturally a G polyhedron. If P is a l.e. unbounded G-manifold
(E(), P) is a l.e. pair and conversely

TrEOREM 1. Let (N*, Mybe a le. unbounded G-manifold and un-
bounded submanifold and suppose M is compact. 3n—m G block bundle
& over M unique up to isomorphism and an embedding f: E(§)—N
extending the inclusion of M. If g: E(§)—N is another such 3 isotopy
F; of N mod M and an automorphism o of &€ with g=F1-f-E(a).

2. P.L. G-embeddings. M and N will denote P.L. G-manifolds,
M compact and both without boundary.

Eg(M, N), I¢4(M, N), Homeog(V) are the semisimplicial complexes
of embeddings of M in N, immersions of M in N, homeomorphisms of N.
A % simplex of Homeog(V) is a G-homeomorphism of A*X N com-
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muting with the projection onto A*, where A* is the standard k simplex
on which G acts trivially and G acts on A*X N as a product. A &
simplex of Eq(M, N) is a G-embedding f of A*X M in A*X N commut-
ing with the projections to A* and such that 3 an open covering
{UaX Va; UsCA, VoCX} of A¥X M, embeddings g.: V.—Y, open
sets W, inY containing image g, and embeddings %,: U, X Wo— U, X Y
commuting with the projection to U,, satisfying f/U.X V.=h,
-(id X ga). A k simplex of I¢(M, N) is defined by replacing “embed-
ding” by “immersion” in the definition of E (M, N). An embedding
2: M—N induces

': Homeog(N) — E¢(M, N),

.(id X
(a0 x N5 a0 x W) {ar ¢ ar EO4XH sy

THEOREM 2. 7’ is a fibration.

Theorem 2 extends to the case of M bounded when the boundary
is locally collared, and is proved by the method of [2], [3].

3. P.L. G-immersions. M and N will be as in (2), and l.e. G acts
on the tangent micro-bundles T°(M) and T(V) via the product actions
on MXM and NXN.

Repg(T (M), T(N)) is a semisimplicial complex. A & simplex is a
G invariant bundle map f: A*X T'(M)—A*X T'(N) commuting with
the projections to A* and satisfying

(a) therestriction of f to f1:A* X M—A*X N is of codimension > 0,i.e.
for some point p&A* and each subgroup HCG, f; maps each com-
ponent of p X My into a component of p X Ny of strictly higher dimen-
sion.

(b) the restriction f; of f to a fibre above A*, fo: T(M)—T(N), is
“locally integrable,” i.e. 3 open covering {Ua} of M, open sets V,
in N, maps g.: U,— V, and bundle maps &,: T(V,)—T(N), satisfying
fo/ T(U,) =he-dga, where dg, denotes the differential of g..

(c) 3 open covering { UsX Va; UaCA, VaC M} of AX M, micro
bundles v, above V,, bundle maps g.,: T(V,.)—v. and bundle iso-
morphisms hy: UaXva—u/UaX Vo, where p is the bundle induced
over A¥*X M by f from T(N), satisfying f*/U. X T(Va) =hq- (id X g.),
where f*: A¥X T(M)—pu is induced from f. Let I§ (M, N) denote the
subcomplex of I¢(M, N) satisfying (a) also.

THEOREM 3. a: I§ (M, N)— Repe(T(M), T(N)) is a homotopy
equivalence, the map o being the differential.
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The proof of Theorem 3 uses an extension of Theorem 2 together
with the case G trivial (Haefliger-Poenaru [1]).

4. Smooth G-immersions. M and N will be smooth G-manifolds
(of finite dimension) (see [7]), N without boundary, and M compact,
and X a compact G space with X /G finite-dimensional.

Let I=Imm>*(M, N), and R=Rep*(T (M), T(N)) denote the
spaces of smooth immersions of M in N, smooth representations of
T (M) in T(N), respectively. G acts on I (and similarly on R): f7(m)
=g~f (gm), for fEI, gEG, mE M. If a: X—I or R is G invariant call
a of codimension >0 if the induced mappings a,: M—N, or T (M)
—T(N) are stabilizer x-mappings of codimension >0 in the sense of
(3) for each xE€X. The differential induces a mapping dx from the
space of G invariant mappings X—I of codimension >0 to those
X—R of codimension >0.

THEOREM 4. dx is a bijection on homotopy classes.

There is a relative form of the theorem for pairs (X, 4) where 4
is a closed G-subspace and X is as before.
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