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1. Introduction. A previous note [1] introduced some systems of
nonlinear functional-differential equations of the form

¢)) X() = AX() + BX)X(t—-7n+C@®) t=0,

where X =(x;, - - -, x,) is nonnegative, B(X;) is a matrix of non-
linear functionals of X (w) evaluated at all past times w& [—, ¢],
and C=(Cy, - - -, C,) is a nonnegative and continuous input func-
tion. Some global ratio limit theorems were then stated for one of
these systems. Here two other cases are considered. In particular,
we study the dependence of the stability properties of (1) on the
time lag 7.

Our systems are defined as follows. Given any positive integer #;
any real numbers o, %, >0, and 720; and any # X7 semistochastic
matrix P=||p]| (i.e., p;20 and D s, pa=0 or 1), let

@ () = —am() + 8 3 mlt ~ D)) + i),
Rl
n -1
@3 y3(0) = paza() [ > p,-mzjmw] ,
M}
and
4 2n(d) = [—uspn(®) + Bx;(t — 7)m(D)]0(pn),
for all 4, j, k=1, 2, - - -, n, where
8(p) =1 ifp>0,
=0 ifp=0.

The initial data in [—1-, 0] is always chosen continuous, nonnega-
tive, and with 2;(0) >0 iff p;>0.
In Grossberg [1], we announced some results for the case

0 1 1 1
P = n—1 n—1 n—1
0
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Here we state some results for the cases P=E,/nand P=1/(n—1)
-(E,—1I,), where E, is the X7 matrix with 1’s everywhere and I,
is the »Xn identity matrix. In both cases, we choose all C; to be
identically zero.

2. Complete graphs with loops. Suppose P=E,/n. In terms of
the graph theoretical interpretation previously given [1], this means
that every vertex v; is connected to every vertex v; with an equal
weight p;;=1/n. The graph of this system is therefore complete, and
since 2=j is permissible it is a complete graph with loops.

For fixed 7=0, let S(r) be the largest real part of the zeros of
R, (S)=S4+a—Be S, and let o(r)=u-+2S(r). The sign of o(7)
influences the limiting behavior of the ratios y;(tf) and X,(¢)
=x;() [ 2.1 %:()]"* as t—>, and in particular the behavior of
y.-(t)=min} {yi(t): k=1, 2, -+ -, n} and Yi(f) =max {yu(t): k=1,
2’ I 20

THEOREM 1. For any fixed n=2 and =0 with a(v) >0, let (2)-(4)
have arbitrary nonnegative and continuous initial data. Then the limits
Qi=lim;., X;(t) and Pj=lim;., ¥ (t) exist and satisfy the equations

() Qi=Py, 4,j=1,2,---,n

Moreover Qi€ [mi, M| where m;=min(X;(0), :(0)) and M;
=max(X;(0), Y:(0)). The functions X~y Xi—Y: i and V;
change sign at most once and not at all if y;(0) <X:(0) = V.(0).

3. Stability properties are graded in the time lag 7. Theorem 1 has
an unusual consequence when o> . This case is characterized by the
property that lim,,, x;(¢) =0 for all 7=1, 2, - - -, » and all 7=0.
Heuristically this is the case for which the effect of all perturbations
C; over a finite time interval eventually die out.

ProrosiTION 1. If aa>f, then a(r) is monotone increasing in v =0,
and ¢(0)=c=u+2(B—a).

Thus if >, then o(r¢) >0 implies that Theorem 1 holds for all
72=70. We therefore say that the stability properties when P=E,/n
are graded in 720, In particular, if «>2(a—p) >0, then Theorem 1
holds for all 7= 0 and all = 2.

4. Dependence of limiting equations on the time lag 7. The condi-
tion o(r) >0 is not superfluous to guaranteeing the limiting equations
(5), as we now illustrate in the case 7 =0 for simplicity.

PRroPOSITION 2. If 0 <0, then
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B=*(0) )
4]0 ]290)
for all t=0, where 2D = Y % _ gimand x= Y _%_1 X

In particular if |o| is chosen so large that

Bx%(0) ) ( 8x2%(0) )
0) —ya(0)| > 2log{1l+ = )1 +—FT"—"F"=
| :#(0) — 3(0) | g( 1] [s90) o [:00)"

then the equations Pjz=(Q;, and P;=(Q; cannot be simultaneously
fulfilled.

| () — y2(0) | S 2 log (1 +

5. Complete graphs without loops. In the complete graph with
loops, any probability distribution Q; can arise as a limit when t— o«
if o(7)>0. Simply let m;= M; be the desired distribution. When the
loops are removed from the complete graph, this is no longer
true in general. This latter case is characterized by the matrix
P=(E,—1I,)/(n—1) since then p;;=0,47=1, 2, - - -, n. We illustrate
this fact in the complete 3-graph without loops.

THEOREM 2. Let P=%(E3;—1I;) and v=0. Then for any positive
initial data satisfying 2:;(0) =2;:(0), 1, j=1, 2, 3, the following conciu-
sions hold.

(A) (Limiting behavior.) Al the ratios X; and vyj, have limits
Qi=lim;., X;(t) and Py =lim., ¥ (t) whick satisfy the equations

(6) 3= Qi= QP+ QP {44, %) = {1,2,3}.
In particular

lim x(f)e®t = Q; Y x(0).
1= k=l
(B) (Uniqueness.) If moreover the coefficients satisfy the inequality
a=u+2(ﬂ—-a)>0, then Qz=1/31 and Pfk=pik=%(1—6ﬂc): 7, J k
=1, 2,3

That is, the dynamical “limiting transition probabilities” P, al-
ways equal the geometrical “path weights” pjx, in sharp contrast to
the complete graph with loops. ¢>0 can be guaranteed if a>f, or
a<B, or a=p, for appropriate choices of u (e.g., if u> 2| a— Bl ). Since
x= D 2_, x obeys the equation %= (8—a)x, lim;., x;(t) =0 if a>p,
liMiae %:() = 0 if <P, and Y s, x:(f) =constant if a=B. In all
cases lim;.. X () =1/3. The absolute size of the outputs x;(t) is thus
a bad index of the stability of the ratios X;(f) as t— .
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The manner in which these limits are approached can also be
qualitatively studied.

(C) (Oscillations.) For all indices {3, j, k} ={1,2,3 }, the functions
f;;'-'—-x,-——xj, Lijk =845 Zix,y h;jk=xizj;,—xkzj;, and }"ij change sign at most
once. fi; and gri; do not change sign at all if f:;(0)gri;(0) =0, while Vi
and hj,; do not change sign at all if £:;(0)gri;(0) = 0 and hjri(0)gri;(0) 0.
Moreover f:;(0)grij(0)>0 implies fi;(t)gri;(t) >0 for all t=0, while
fii(0)gri;(0) >0  and  hii(0)gri;(0) >0 dmply  fii(t)grii(t) >0 and
Bini(t) grii(8) >0 for all £ 20.

For example, if x;(0)>x;(0) and 2::(0) >2:;(0), then x;(t) >x;(¢)
and 2;:(¢) >2;(¢) for all £20. That is, a common ordering in cor-
responding vertices and edges “propagates through time” and there-
fore is a geometrical property of the graph. If moreover x;(0)2:(0)
>x;(0)2:;(0), then v,;(¢) approaches its limit monotonically but does
not reach this limit in finite time.

Proposition 2 also holds in the complete 3-graph without loops.
When ¢ <0 and la] >0, the ratios y4(¢) are approximately constant.
Nonetheless the limiting equations (6) hold because the ratios X ;(t)
adjust themselves as much as is required to reach an “equilibrium”
state as {— .

6. The variational system. In this section we linearize the complete
graphs with and without loops. We compare these linearizations with
their nonlinear counterparts and in the graph without loops treat
the general case P=(E,—1I,)/(rn—1). Although conditions under
which ratio limits exist coincide, the limiting equations are not always
the same.

(2)—(4) can be written in matrix form when all C;=0 as

(" u@ = fUu®, U@ — 1),
with
U= (xb *cty Xny B11y B12y * ¢ * y mn-1, zmn),

f = (fl, te ,fn,fll,flzy e ,fn,n-l,fn»),
n n -1
fi= —axi+ B8 wmlt — T)Plu'zki( > Pkmzkm)

krml Ml

and
fe = [—uzp + Bt — 7)xe]0(pa).

A positive solution U of (7) is one for which x;(¢) >0 and 2;()>0
iff p;x>0 for all £=0. A positive uniform solution U, of (7) is one for
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which x;(t) =+ () >0 and z;,(t) =8()0(pr), where 8(¢) >0, for all £20.
If V=U—U,, then [2] using the notation f=f(£, 3),
V() =f(Us®), Ust=m)) V() + foUs(t), Uolt—))V (t=7)+o(|V])).
This system is studied because
1 n -1 1
Xi——=(1 —n)(V.-I:E Vk:l ——-),whereV.-= xi =,
n kel n

whenever y and ) _2_, x; are given the same initial data. Ignoring the
terms o(|| V]|), which are O(e®-®) and therefore exponentially small
when a>8, we find

®  WO=f(U®), Ust—=m)WO)+1(Uo(t), Us(t—m)W (t—1),

which is the variational system of (7). We write W in component
form as W=(hy, - - -, hu, b1, - * *, hsa), and for every f&C°[0, 7]
we define

Kf) = f(r) + 8 f " Hgetnde.

The linearized analog of Theorem 1 is then the following

THEOREM 3. Let P=E,/n where n=2 and v =0 is chosen arbitrarily
with o(r)>0. Let U, be a fixed but arbitrary positive uniform solution
of (7). For any solution of (8) whose initial data satisfies K.( Y r, hi) #0,
the limits

Qi = lim A(2) [.»2.'::1 h"‘(t)]-l

=0

and

o= im h’_k(,)[ > hjm(t):l~1

M=l
exist and satisfy the equations
%) Py = (Q; + 0/ + n0)).

Thus linearizing (7) as in (8) changes the distribution of its ratios
as t—x. The two conditions Q=P and (9) are compatible when
Q,>01ff Qk=P,-,,=1/n.

The linearized analog of Theorem 2 is now given in terms of the
functions k(7) =Be~*® and o(7).
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THEOREM 4. Let P=(E,—1I,)/(n—1), where n=3 and 1=0 are
chosen to satisfy o(1)>0 and k(@)+o(@)>k(@)(A+70())/(n—1).
Let Uy be any positive uniform solution of (7). Then there exist positive
constants wy and wy such that for any solution of (8) whose initial data
satisfies K. (D™, hs) #0,

WO 3 i) | = = = 0t

1
M=l n

and

| Tial) | = —— = 0t
mysd n — 1

COROLLARY 1. For every 720 such that o(r) >0, there exists an
n=n(r) such that Theorem 4 holds for n and .

COROLLARY 2. Theorem 4 is true for all systems with nZno and =1,
if it is true for n=mngand r=10. If =0 and ¢ >0, Theorem 4 s true for
all nz3.

That is, stability is graded in n.

COROLLARY 3. If Theorem 4 holds for n=mn, and T =, then it holds
for n=mnq and all v in a neighborhood of T,.

COROLLARY 4. If a>B (i.e., lim;., x;(t) =0 for all 7= 0, there exists
a positive function u(n) of n= 3, which is monotone increasing in n with
limy, ., u(n) = o, such that Theorem 4 holds for all n= 3 and & [0, u(n)).

6. Summary. Global ratio limit theorems are stated for some non-
linear functional-differential equations and their linearizations. The
possible limits depend on the matrix P characterizing the geometry
of the system. A system is found whose stability becomes easier to
guarantee as its time lag increases, and several of whose ratios oscil-
late no more than once and are monotonic as {— « no matter how
large the time lag is.
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