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Introduction. Let X be a Banach space. If T and U are mappings 
(in general nonlinear) with domains D(T) and D(U) in X and with 
values in X, then U is said to be nonexpansive if for all u and v in 
D(U), 

\\U(u)-U(v)\\£\\»-v\\, 

while T is said to be accretive if for all u and v of D(T), 

(T(u) - 2 » , w) è 0, w G 7(« - t>), 

where (#, w) denotes the pairing of the element x of X and the element 
w of the conjugate space X* and for each x in X, J(x) is the convex 
subset of X* given by 

/(*) = {w\ w e X*, (w, x) = ||*||«, | |w | | = | | * | | } . 

There are two important connections between the classes of non-
expansive and of accretive mappings which give rise to a strong 
connection between the fixed point theory of nonexpansive mappings 
and the mapping theory of accretive maps. These are: 

(1) If U is a nonexpansive mapping of D(U) into X, and if we set 
T — I--U, D(T)=D(U), then T is an accretive mapping of D{T) 
into X. 

(2) If { U(i)f t^O} is a semigroup of (nonlinear) mappings of X 
into X with infinitesimal generator T, then all the mappings U(t) are 
nonexpansive if and only if ( — 7") is accretive. 

For the special case when X is a Hubert space H (and the concept 
of an accretive mapping coincides with that of a monotone mapping), 
the writer in Browder [3], [4] used the observation (1) above and the 
theory of monotone mappings in Hubert space to prove the following 
fixed point theorem for nonexpansive maps: If C is a closed bounded 
convex subset of the Hubert space H, U a nonexpansive mapping of C 
into C which maps the boundary of C into C, then U has a fixed point 
in C. This line of argument has also been exploited to yield further 
results on the existence and calculation of fixed points of nonexpan­
sive mappings in Hubert space and in the class of Banach spaces 
having weakly continuous duality mappings (like the spaces lp, 
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l<p<co), (for which see Browder [5], [7], [8], [9], [13], Browder-
Petryshyn [14], [IS], and Opial [22]). For more general Banach 
spaces, it was shown independently in Browder [ó], Kirk [20], and 
Göhde [17] that if X is uniformly convex (or more generally has uni­
form structure in the sense of Brodski-Milman [2]) and if U is a non-
expansive mapping of a closed bounded convex subset C of X into itself, 
then U has a fixed point in C. 

In a preceding note [12], the writer has shown, using the observa­
tion (2) that this latter fixed point theorem can be used to obtain very 
general mapping theorems for nonlinear accretive mappings in Ba­
nach spaces X with both X and X* uniformly convex, results which 
generalize to this context the principal results of the theory of mono­
tone operators in Hubert space but by totally different arguments. 

I t is our object in the present note to apply this new general theory 
of accretive operators as well as other observations to obtain a sub­
stantial strengthening of the fixed point theory of nonexpansive 
mappings in uniformly convex spaces. Among our results are the 
following : 

THEOREM 1. Let X be a uniformly convex Banach space (or more gen­
erally a Banach space with uniform structure), B a closed ball in X, 
G an open subset of X containing B. Suppose that U is a nonexpansive 
mapping of G into X which maps the boundary of B into B. Then U 
has a fixed point in B. 

We note that for general Banach spaces X the result of Theorem 1 
cannot be obtained by composing the mapping U with a retractive 
contraction map of X onto B, since such a retraction mapping may 
not exist outside of Hubert spaces for d i m ( X ) ^ 3 (cf. Figueiredo-
Karlovitz [16]). 

We may extend Theorem 1 to the following more general class of 
mappings : 

DEFINITION 1. If Uis a mapping of D(U) inX into X, then Uis said 
to be pseudo-contractive if for all u and v of D(U) and all r > 0, 

\\u - v\\ S ||(1 + r)(u - *) - r(U(u) - U(v))\\. 

We note that if U is nonexpansive, then U is pseudo-contractive 
since 

\\(l + r)(u-v)-r(U(u)-U(v))\\ 

è(l + r)\\u-v\\-r\\U(u)-U(v)\\. 

THEOREM 2. Let X be a uniformly convex Banach space (or more 
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generally a Banach space with uniform structure), B a closed ball in X, 
G an open set in X containing B. Let Ubea pseudo-contractive mapping 
of G into X such that U maps the boundary of B into B. Suppose also 
that U is demicontinuous and that either (a) U is uniformly continuous 
in the strong topology on bounded subsets of X, or (b) X* is uniformly 
convex. Then U has a fixed point in B. 

§1 contains the proofs of Theorems 1 and 2. In §2 we consider an 
extension of Theorem 1 which replaces the closed ball B by a general 
closed bounded convex subset C of X. 

THEOREM 3. Let X be an uniformly convex Banach space, C a closed 
bounded convex subset of X, G an open subset of X which contains C 
and such that C has positive distance from X — G. Suppose that U is a 
nonexpansive mapping of G into X which carries the boundary of C 
into C. Then U has a fixed point in C. 

In §3, we consider the related question of whether one can prove 
existence theorems for nonlinear accretive operators in Banach spaces 
X without assuming as in [12] that X* is uniformly convex. We estab­
lish below the following theorem by a simple constructive argument. 

THEOREM 4. Let X be a Banach space, T a Lipschitzian mapping of 
X into X such that for all u and v of X 

(T(u) - T(v)9 w) è co\\u - v\\2 (w G J(u - v)) 

with a fixed constant c0>0. Then T maps X onto X. 

Two related results proved in [lO] are the following: 

THEOREM 5. Let X be a uniformly convex Banach space {or one with 
uniform structure), T an accretive mapping of X into X which is uni-
formly continuous in the strong topology on bounded sets of X. Suppose 
that ||r(^)||—>+ 00 as ||w||-++ °°. Then T maps X onto X. 

THEOREM 6. Let X be a uniformly convex Banach space with X* 
uniformly convex, T a demicontinuous accretive mapping of X into X 
with \\T(U)\\-->+ 00 as ||w||—»+ 00. Then Tmaps X onto X. 

We remark that Theorem 5 rests upon a refinement of a type of 
existence theorem for differential equations in Banach spaces first 
given by Kibenko-Krasnoselski-Mamedov [19] and Mamedov [21 ]. 

1. Since every nonexpansive mapping U is both pseudo-contrac­
tive and Lipschitzian, Theorem 1 is a special case of Theorem 2. To 
prove the latter, we apply the following fact ([lO], [18]): 
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PROPOSITION 1. Let X be a Banach space, U a mapping with domain 
and range in X, T = I-~ U. Then U is pseudo-contractive if and only if 
T is accretive. 

REMARK. I t is shown in [14] that if X is a Hubert space, U is 
pseudo-contractive if it satisfies the simpler inequality: 

\\U(u) - U{v)\\* S ||« - *||2 + ||(7 - U)(u) - (ƒ - £0W|| f 

(«, v G D(U)). 

PROOF OF THEOREM 2. By Proposition 1, T — I— U is an accretive 
mapping of G into X. We may assume without loss of generality that 
B is a closed ball about the origin and that G is star-shaped with 
respect to the origin. If S is the boundary of Bt then by hypothesis 
for each u in 5, U(u) lies in B. Hence for any w in J(u) for such ut 

( r («) , w) = («, w) - (U(u),w) â N I 2 - | |ff(«)|HM| è 0. 

I t is established in [lO] that for each XQ in G, there exists a maxi­
mal interval [0, d(x0)) with d(xo)>0 and a unique solution on this 
interval of the differential equation 

(1) (du/dt)(i) = - T{u{t))y 0 S t < d(x0), 

with u(0) =Xo, the derivative taken in the weak topology of X. More­
over as t—>d(xo), u(t) either approaches X — G or ||#(/)||—*+ °°-

If v is any point oiG — B, there exists r < 1 such that u ~rv lies in 5. 
For any wi in J(v), w = rwi lies in J(u). Hence 

(T(v)9 wO = (1 ~ O - W » ) - T(u), wi - w) + r-\T{u), w) è 0, 

by the accretiveness of T and the remarks above on (T(u), w). Sup­
pose that u(t) is a solution of the differential equation (1) above lying 
in S\J(G—B) in the interval Do, k+h]. Then: 

lim sup {||«(*o + £)||2 - |k/o)| |2} S - ( W O ) , w) ^ 0 

for any t in this interval and any w in J(u(t)). Thus the norm ||«(/)|| 
does not increase on such an interval. I t follows that each solution 
u{t) of the differential equation (1) beginning a t a point of B must 
continue in B. Hence for any u in By d(u) = + °° • 

I t follows that we may define U{t)u for any u in B and any t^O 
to be equal to u{t) where u(t) is the unique solution of the equation 
(1) with u(0)—u. Since T is accretive, U(t) is a nonexpansive map­
ping of B into B for any / è 0 , and U(t+s)~U(t)U(s) for t, s^O. 
By Theorem 2 of [ó], such a commuting family of nonexpansive 
maps of B must have a common fixed point uQ in B. For w0, we have 
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T(u0) = - weak lim {t~l[U(t)u0 - u0]} = 0. q.e.d. 

2. PROOF OF THEOREM 3. We carry through this proof by a dif­
ferent type of argument. 

For each r > 0, let 

Cr~ {u\uEX, dist(w, C) < r}. 

Cr is an open convex subset of -X". By hypothesis, there exists r > 0 
such that cl(Cr) QG, where cl(CV) denotes the closure of Cr. 

Let v be a point of Cr — C. Then there exists a point u of dC, the 
boundary of C, such that \\v — u\\ <r. Since U is a nonexpansive map, 
|| U(v) — U(u)\\ <r. By hypothesis, £/(#) lies in Cil u lies in dC. Hence 
U(v) has distance less than r from C, i.e., U(v) lies in Cr. Thus 
U(dCKJ(Cr-C))CCr. 

Since Ï7 is nonexpansive and C is bounded, there exists a constant 
d 0 > 0 such that | | ( / ~ L0(i;)|| =^o for v in C We choose a constant 5 
with 0 < s < l such that sdo<r, and define a mapping F of cl(Cr) into 
X by setting F(z;) = s U(v) + (1 - s>. 

F is a convex linear combination of nonexpansive mappings of 
cl(Cr) into X and hence is itself nonexpansive. Since s>0, V has the 
same fixed points in cl(Cr) as C7. For any v in Cr which is not in C, 
V(v) is a convex linear combination of points of Cr and hence lies in 
Cr itself. If v lies in C, then 

| | F « - » | | ~S\\U(V)~V\\ £sdo<r, 

i.e., V(v) lies in Cr. Thus V maps Cr into Cr and by continuity, F 
maps cl(Cr) into cl(Cr). Since V is nonexpansive, it follows from 
Theorem 1 of [6] that V has a fixed point in cl(Cr). Since V and U 
have the same fixed points, U has a fixed point in cl(Cr). 

Let F be the fixed point set of U in C, Fr the fixed point set of U 
in cl(Cr). Then 

F = n *v. 
f>0 

By the above, F r is nonempty for each r > 0 . Moreover, each FT is 
closed, bounded, and convex and hence weakly compact since X is 
reflexive. Since the family {Fr} has the finite intersection property, 
F is nonempty, i.e., U has a fixed point in C. q.e.d. 

3. We shall derive Theorem 4 from the following more general 
result: 

THEOREM 7. Lei X ana Y be two Banach spaces. To and T\ two Lip-
schitzian mappings of Xinto Y. For each t, with Q^t^l,let 
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Tt - (1 -t)T0 + tTi 

and suppose that for each t in [0, l ] , there exists a constant ct such that 

(2) \\u - v\\ S ct\\Tt(u) - Tt(v)\l (u, v e X). 

Suppose further that T0 maps X onto F. Then Ti maps X onto F. 

PROOF OF THEOREM 7. Let H be the subset of [0, 1 ] of those values 
of t for which Tt maps X onto Y. H is nonempty since 0 lies in H. 
If, as we show below, there exists a constant ro>0 such that for any 
to in H the interval of radius rQ about to is also contained in iT, then 
i î i s both open and closed in [0, l ] and H= [0, l ] . I t will then follow 
that 7\ maps X onto F. 

For each tin [0, l ] , let ct be the minimum constant for which the 
inequality (2) holds. If $, t lie in [0, l ] , then 

\\u-v\\^ct\\Tt(u)--Tt(v)\\ 

s*{||r.(iö-r.(*)|H III 
£ct\\Tê(u)-T9(v)\\+ct\ t-s\ M\\u-v\\ 

where M is the Lipschitz norm of (Ti—To), which we denote by 
|| Ti~- T0||Lip. In particular, if c t | j —s| M < 1 , we have 

c.gct(l - ct\t- s\M)~l 

so that ct is upper semicontinuous on [0, l ] . Hence there exists a 
constant c>0 such that for all t in [0, l ] and all u and v in X, 

(3) II « - " I I £ c\\Tt(u) - Tt(v)\\. 
Suppose / lies in H. Then Tt maps X onto Y and has a Lipschitzian 

inverse R mapping Y into X. By the inequality (3), H-RULIP^G""1. 

Let r0 = c/||Ti—To||Lip, and suppose that \s — t\ <r0. For any y in 
F, the equation Ts(u) =y is equivalent by the substitution u = R(w), 
for w in F, to the equation in w given by 

T8R(w) = TtR(w) + (T, - Tt)R(w) 

= w + Ss(w) = y. 

Here Ss^iTs— Tt)R is a Lipschitzian mapping with 

||S.||LIP â ||r« - r.||Lip||*||Lip ^ ||ri - T o ^ H ' - *l < i-

Hence (I+S»)"1 exists and T« maps X onto F. q.e.d. 
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PROOF OF THEOREM 4. We let r 0 = 7, 7 i = r . Both T0 and Tx are 
Lipschitzian mappings. If we set Ci = min(co, 1), and for any t with 
O ^ l ^ l , set Tt= (l—t)To+tTi, then for any u and v of Ĵ f, we have 

(Tt(u) - r«(v), w) = (i - /)(« - », w) + *(r(«o - r(»), w) ^ $i||« - v\\2 

for any w in J(u—v). I t follows that 

4\u - v\\*S\\Tt(u) - Tt(v)\\-\\u - 4 

and hence ||w —-»[| ^cï^Ttiu) — Tt(v)\\. Since 7 maps X onto -X", we 
may apply Theorem 7 and obtain the fact that T maps X onto -X". 

q.e.d. 
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