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We consider systems of the form 

(1) ut + f(v)x = 0, vt + g(u)x « 0, 

with initial data (z>(0, x), u(0, x)) = (v0(x)f u0(x)). Here u and v are 
functions of / and x, / ^ 0, — *> < # < oo, and ƒ and g are C2 functions 
of a single real variable. We assume that the system (1) is hyperbolic 
and genuinely nonlinear in the sense of Lax [4]. 

THEOREM 1. For each point (v0y u0) in the (v~u)-plane, there exist 
two smooth curves u = w(v)~w(v, v0, u0) and u~s(v)—s(v, Vo, u0), 
passing through (v0, u0) defined f or all v^v0 with the properties that 
wf(v)>0, s'(v)<0 and each point (v, w(v)) satisfies the Lax conditions 
for backward rarefaction waves [4], while each point (v, s(v)) satisfies 
the Lax conditions f or forward shock waves [4]. 

In other words, the Riemann problem for (1) with initial data 

(v0(x), u0(x)) s= (vo, Uo), x < 0, 

= (vh w(vi)), x > 0 

where Vi>v0l can be solved by two constant states (v0, u0) and 
(vi, w(vi)) separated by a backward rarefaction wave. Similarly the 
Riemann problem for (1) with initial data 

(vo(x), u0(x)) = (vo, Uo), x < 0, 

= (vh s(vi))> %> 0 

where z>i>z/o can be solved by two constant states (po, UQ) and (vi, s(vi)) 
separated by a forward shock wave. 

Fix a point (v0, u0) in (v — u)-space and let 

C(vo, Uo) = {(v, u): v ^ vo, s(v, v0, u0) ^ u g w(v, v0, u0)} 

THEOREM 2. If (vi, w i )£C(^ , u0), then C(vu ui)QC(v0, u0). 

One consequence of Theorem 2 is that the interaction of two for­
ward shocks produces a forward shock and a backward rarefaction 
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wave. (A similar result is valid for the interaction of two backward 
shocks.) In [3] this consequence is part of the hypothesis. 

THEOREM 3. Let one of the f unctions v0(x) and UQ(X) be bounded and 
let them have the property that if xi<X2, fa, #2)£C(fli, U\), where (V{, Ui) 
— (vo(xi)y Uo(xi))f i = l, 2. Then there exists a global solution, defined in 
/;>0, of (1) with the initial data (v(0, x), u(0, x)) = (vo(x), u0(x)). 

The condition on the initial data can be restated as follows. If 
Xi<x2, then the Riemann problem for (1) with data 

(üo(#), u0(x)) = (t>i, Ui), x < 0, 

= 0>2, W2), X > 0 

is solvable by a backward rarefaction wave and a forward shock. 
Similar theorems can be proved for backward shocks and forward 

rarefaction waves. 
Our methods are extensions of those in [5] where the case g"(u) = 0 

is considered. We obtain the solution as a limit of a sequence of solu­
tions of initial-value problems for (1) with step data. We then show 
that the approximating solutions are uniformly bounded and have 
uniformly bounded variation in the sense of Tonelli-Cesari [ l ] , on 
each compact set in (t—x)-space, / ^ 0 . 

We remark that existence theorems of a somewhat different nature 
have recently been obtained in [2] and [3], by different methods. 
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