
VARIETIES OF GROUPS 

BY B. H. NEUMANN1 

1. Introduction. This lecture should really be given by Hanna 
Neumann, because her book with the same title is going to be pub­
lished very shortly by Springer-Verlag, in the series "Ergebnisse der 
Mathematik" ; and she gave an expository address with the same title 
a t the Group Theory Conference at Canberra in August, 1965, and 
this also will be published very soon by Gordon and Breach in the 
Proceedings of that conference. All I can do is to follow the advice of 
that well-known junior mathematician Tom Lehrer and plagiarize. 

2. Varieties. "Varieties" are equationally defined classes of alge­
bras: starting from a "species" of algebras, that is the class of algebras 
with given numbers of algebraic operations of given kinds, unary, 
binary, and so on, we single out subclasses by imposing certain "laws" 
or "identical relations". Thus, for example, a single binary operation 
defines the species of "groupoids"; if the associative law is imposed on 
the operation, we obtain the variety of "semigroups". The study of 
varieties was initiated by Garrett Birkhoff in 1935; the name "vari­
ety" was introduced by Philip Hall in 1949. Much of the theory be­
longs to Universal Algebra, but I shall be mainly concerned with 
varieties of groups, because that is where the deepest theorems have 
been proved and the most difficult and intriguing problems remain 
open. To mention some examples of varieties of groups and to fix some 
notation : 

£) is the variety of all groups; 
© is the variety of trivial ( = one-element) groups ; 
21 is the variety of abelian groups, singled out by the commutative 

law xy = yx ; 
33* is the "Burnside" variety of groups of exponent et singled out 

by the law xe =» 1 ; 
2le = 33<?n3I is the variety of abelian groups of exponent e. 
This last example incidentally illustrates the fact that an inter­

section of varieties is again a variety; not only an intersection of two 
1 This is an amplified version of an address delivered on January 27, 1967, at the 

Annual Meeting, in Houston, by invitation of the Committee to Select Hour Speakers 
for Annual and Summer Meetings; received by the editors March, 1967. 
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varieties but of arbitrarily many. I t follows that the varieties in a 
species, or the subvarieties of a variety—in our case the subvarieties 
of £), that is, the varieties of groups—form a complete lattice under 
the "contained in" order relation. What can be said about this lattice? 
I t is modular but not distributive. How big is it? Here we come at 
once to the first major unsolved problem. 

PROBLEM 1. How many varieties of groups are there? 
All we know is that the cardinal number of the set of group varieties 

lies between fc$0 and 2*V The same question can be asked for other 
algebraic systems; for each of the sets of varieties of groupoids, of 
quasi-groups, and of loops the answer is 2^o [5]. 

Next we may ask about chain conditions in the lattice of group 
varieties. One easily shows that the ascending chain condition is not 
satisfied, for example, by considering 

9Ï2 C SU C Sis C • • • C «. 

PROBLEM 2. Does the lattice of varieties of groups satisfy the descend­
ing chain condition! 

The two problems are not unrelated: if the answer to the second 
were to be "yes", then the answer to the first would have to be " ^ 0 " 
—but I guess that in both cases the answer goes the other way. We 
shall meet Problem 2 later in a different form. 

A classical theorem of Garrett Birkhoff gives an alternative charac­
terization of varieties of groups (and not only of groups, but of alge­
braic systems in general) : a class of groups is a variety if and only if it 
is closed under the operation of forming epimorphs of subgroups of 
cartesian products; or, by a remark of Kogalovskiï, if and only if it is 
closed under the operation of forming epimorphs of subcartesian 
products. In this context the following question, which I owe to 
Evelyn Nelson, is of interest:2 

PROBLEM 3. Let Hi be a class of groups, and g) the class of subgroups of 
epimorphs of cartesian products of subgroups of members of 36. Is g) 
necessarily a variety? 

So far all we have dealt with is not peculiar to groups, but belongs 
properly to universal algebra. The universal algebra aspects of the 
theory have been described in an address given by Alfred Tarski to 
the Colloquium on Logic and Foundations of Mathematics, Hannover 
1966; and Professor Tarski has kindly made a summary of his address, 

2 [Note added February 1967.] In the actual lecture I misstated the problem. 
Professor Gratzer subsequently drew my attention to the (positive) solution of this 
problem implicit in the results announced by Don Pigozzi [9]. 
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to be published in the Proceedings of that conference, available to 
me, and has thereby drawn my attention to some recent, mostly 
unpublished work. 

We turn now to a more properly group-theoretical notion : if 36 and 
§) are classes of groups, we introduce the product 36§} as the class of 
groups that are extensions of groups in ï by groups in §5, that is 
groups G with a normal subgroup iVG3£ such that G/iVGg). This 
multiplication of classes of groups is neither commutative nor asso­
ciative, not even power-associative: if 36 is the class of cyclic groups, 
then $(36$) is properly contained in (36X)36. For varieties of groups, 
however, this multiplication has two important features: the products 
of two varieties is again a variety, and multiplication is associative 
(Hanna Neumann, 1956). Thus the set of varieties has not only the 
structure of a complete lattice, but also that of a semigroup. More­
over, multiplication respects the lattice order. The semigroup has a 
zero, namely the variety 2) of all groups, and a unit element, namely 
the variety S of trivial groups, and apart from these two extreme ele­
ments it turns out to be a free semigroup, freely generated by the 
so-called indecomposable varieties (B. H. Neumann, Hanna Neu­
mann, and Peter M. Neumann, 1962; A. L. Smel'kin, 1962): thus 
every variety other than 3D, (§ has a unique factorization, unique even 
with respect to the order in which the factors occur, into indecom­
posable varieties. Many varieties are known to be indecomposable 
(Peter M. Neumann, 1963), but the question just how many inde­
composable varieties of groups there are is equivalent to Problem 1. 

3. Laws. We turn to the laws that determine a variety. They are of 
the form 

U(xh X2, • • • , Xn) - »(#1, #2, ' ' ' , Xn) 

where u, v are words; or, as we are dealing with groups, we can put 
v~~lu = w and write our laws in the form 

w(xh x2, • • • , Xn) = 1. 

If a variety is determined by finitely many laws, then a single law will 
do: we just multiply all the left-hand sides together, after changing 
the numbering of the variables so that different laws involve different 
variables. Are all varieties of groups definable by a single law? This is 
equivalent to the following open question. 

PROBLEM 2'. Is there a variety of groups that can not be defined by a 
finite set of law si 

This is, in fact, no new problem, but only a different formulation of 
our Problem 2. For if a variety 33 requires an infinite set of laws, say 
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^1 = ^ 2 = ^ = • • • —li and no finite subset suffices to define 35, then 
the sequence of varieties 

3Si 2 352 2 233 2 • • • 2 SB, 

where 33* is defined by the first k laws, wi = W2T= • * • =w& = l, must 
descend properly infinitely many times; and the converse is equally 
straightforward. 

Again this question can be asked for other algebraic systems than 
groups. R. C. Lyndon [ô] has made an example of a finite algebraic 
system, of order 7, whose laws do not follow from any finite set among 
them. The same can be done with a groupoid of order 3, according to 
V. L. Murskiï [7], and even with a semigroup of order 6, according to 
Peter Perkins [8]. Recently A. K. Austin [3] has exhibited a variety 
of semigroups that requires infinitely many laws to define it; see also 
A. P. Biryukov [4].8 

Problem 2' is known as the "finite basis" problem, which is a mis­
nomer: a "basis" in common mathematical parlance is a generating 
set with appropriate independence or irredundancy properties. Thus 
the finite basis problem would properly be the following. 

PROBLEM 4. Is there an infinite irredundant set of group laws, that is 
an infinite set of laws such that the variety it defines is distinct from 
each of the varieties obtained by omitting one of the laws? 

If this is answered in the affirmative, it immediately also gives the 
answer "2**°" to Problem 1 and thus answers Problem 2 negatively 
and Problem 2' positively. This is, in fact, the way in which the cor­
responding problems for groupoids and loops were solved (vide supra). 

Dr. L. G. Kovâcs informs me that he can prove that if there is a 
locally finite variety that does not satisfy the descending chain condi­
tion for subvarieties, then it has 2**° subvarieties—and he has some 
more general results. 

Though these problems are still the most baffling and important 
problems for groups in general, interesting progress has been made in 
a number of special cases. In 1952 R. C. Lyndon showed that the laws 
of every nilpotent variety are finitely based (a variety is nilpotent if it 
consists of nilpotent groups; and so with other properties). In the 
same year Graham Higman showed that certain natural ways of 
making new laws from other laws will only lead to finitely based 
varieties. In 1959 Graham Higman extended R. C. Lyndon's result to 
product varieties U9S, where U is nilpotent and 35 finitely based. Then 
D. C. Cross, M. B. Powell, Sheila Oates, and finally Sheila Oates and 

8 1 owe this reference to Professor Gratzer. 
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M. B. Powell jointly, all working with Graham Higman at Oxford, 
made a successful attack on the basis problem for the laws of a finite 
group, proving in 1963 that all the laws that hold in a given finite 
group follow from a finite set among them. This important result, 
proved by difficult and delicate methods, has now been improved, and 
the proof simplified by L. G. Kovâcs and M. F. Newman. Contrast 
with this Lyndon's 1954 example (vide supra). Recently D. E. Cohen 
has used the methods of Graham Higman (1952) to prove that the 
laws of a metabelian variety of groups are finitely based. 

Now let us look at a different kind of question: what can be said 
about the variety when the laws are given? The oldest and most 
famous problem here is due to W. Burnside: 

PROBLEM 5. Is the Burnside variety $8e> of groups of exponent e, 
locally finite} 

This is in fact an infinite sequence of problems, one for each expo­
nent e. The answer is known to be positive for e = 2, 3, 4, 6, and a 
negative solution has been announced by S. I. Adyan and P. S. 
Novikov a t the ICM Moscow in August, 1966, for large odd e (an 
earlier announcement by P. S. Novikov was premature) ; and at the 
same meeting J. L. Britton produced evidence pointing the same way. 
There are, however, still plenty of finite exponents left for which the 
problem is open. 

When the answer to the Burnside problem is negative or open, the 
Restricted Burnside problem becomes interesting. This asks whether 
among the finite groups in S5e with d generators there is a maximal 
one. To this question L. G. Kovâcs (1967) has recently given an 
intriguing new formulation: 

PROBLEM 6. Do the locally finite groups in 53e form a variety? 
The equivalence of this with the Restricted Burnside problem is not 

trivial. A well-known result of A. I. Kostrikin (1959) gives a positive 
answer for e~p, a prime. 

Instead of trying to make the Burnside problem more manageable, 
one can also try to make it harder. To do this, we need some more 
definitions and notation. 

4. Verbal subgroups. We now look not just at sets of laws that 
define a variety, but a t all the laws that hold in the variety. Thus we 
take a countably infinite alphabet xi, #2, #3» • ' • and ask for all the 
words v in these variables that are laws in the variety S3 ; we think of 
the words as elements of the free group X*> generated by 
{xi, X2, Xz, • • • }. Then the set V of laws of 33 consists just of those 
v~v(xi, • • • , xn) that take the value 1 whenever elements #i, • • • , an 
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of a group A £ 23 are substituted for xi, • • • , xn. Then F is a sub­
group of Xoo, and in particular a fully invariant subgroup. Denote by 
V(A) the subgroup of A generated by all values of words &GF on 
substitution of elements of A for the variables. Then V(A) is a verbal 
subgroup of A, and the connection between V and the variety 23 is 
that 

A G 23 if and only if V(A) = { l} . 

Verbal subgroups are fully invariant, and in free groups the converse 
is also true. As 23 and V are in precise correspondence, we have a 
one-to-one correspondence between the lattice of varieties of groups 
and the lattice of verbal subgroups, and this is a lattice anti-isomor­
phism. Thus all the questions about the lattice of varieties can be 
translated into questions about the lattice of verbal subgroups of the 
free group J » . 

Now put Xd = gp(xi, x2, - - - , Xd) SX^; this is a free group of rank 
d. If we form X d H V, we obtain a fully invariant, hence verbal sub­
group of Xd) this consists of the laws in d variables of the variety 23. 
In this way we map the lattice of verbal subgroups of X^ onto that of 
Xd—it is easy to see that every verbal subgroup of Xd is the inter­
section of Xd with the verbal subgroup of XM it generates. This is a 
lattice homomorphism, and the equivalence classes defined by its ker­
nel congruence are intervals, say V(d) SVS V(d), and correspondingly 
for the varieties: 23(d)C23C23(d). Here SB<d) and 23(d) are the smallest 
and largest varieties, respectively, that have the same laws in d vari­
ables as 23. They can be easily and independently described: 23(d) is 
the variety generated by all ^-generator groups in 23, and 23(d) is the 
variety defined by all d-variable laws of 23; or, equivalently, 23(d) 

consists of those groups whose d-generator subgroups are in 23. Now 
one can translate the various problems about the lattice of varieties 
or the lattice of verbal subgroups of X^ to problems about the lattice 
of verbal subgroups of X*: however, excepting the trivial cases <Z = 0 
and d = l, where the problems vanish, no really new problems arise, 
as the lattice of verbal subgroups of, for example, Xg contains an 
isomorphic copy, indeed many isomorphic copies, of the lattice of 
verbal subgroups of X». So for new problems we have to look in other 
directions. 

PROBLEM 7. Let 23 be a locally finite variety and d ^ 1 an integer. Is 
Wd) locally finitef 

This can be called the Extended Burnside problem, as the classical 
Burnside problem is the special case d = 1 of this. I t is, of course, again 
an infinite set of problems, one for each pair (23, d). As we know, 
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modulo Adyan, Novikov, Britton, that the answer is negative in some 
cases, we go on to ask: 

PROBLEM 8. Is there, to each locally finite variety 33, an integer 
d — d(%S) such that 33(d) is locally finite? 

Again, when the answer to Problem 7 is negative for a particular 
pair (33, d), we can formulate a Restricted Extended Burnside prob­
lem, using again the idea of L. G. Kovâcs as with Problem 6: 

PROBLEM 9. Do the locally finite groups in 33(d), where 33 is a locally 
finite variety, form a variety? 

Moreover, local finiteness is only one of the properties that can be 
considered in this way—there are many others, but there is no need to 
state the corresponding problems explicitly. 

We have already begun to vary the number d of variables or gen­
erators. If we let d range over all positive integers, we get to each 
variety S3 two sequences that converge to it : 

« a ) £ 35(2) c 33(3) c . . . c » c . . . c 33(3) c 33<2> c 33(1>, 

with 

V 33w = 33 = A » w 
d d 

(this is due to Hanna Neumann, 1956). Examples are known where 
the sequence on the left ascends properly a t every step; and M. F. 
Newman has found an example of a variety where the sequence on the 
left ascends properly for a few steps, then remains stationary for one 
step, and then ascends properly again for the remaining infinitely 
many steps. I t is not known whether the sequence on the right can go 
on descending properly—of course not: if an example were known, it 
would a t once provide a negative answer to Problem 2. But the con­
verse implication is not true, or a t any rate not evident, and we ac­
cordingly have to ask: 

PROBLEM 10. Is there to each variety 33 an integer d~d(%$) such that 
« = »«>? 

Differently put : do all the laws of a variety follow from those in a 
certain finite number of variables, the number, of course, depending 
on the variety? As we have already remarked, a positive answer to 
Problem 2 would entail a positive answer to Problem 10; and clearly a 
positive answer to Problem 10 would entail a positive answer to Prob­
lem 8 ; but not conversely. 

The verbal subgroups V of Xw are, inter alia, characteristic sub­
groups of Xoo, and as an aside I should like to draw attention to 
another tantalizing problem: 
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PROBLEM 11. Is every characteristic subgroup of the free group X* of 
(countably) infinite rank fully invariant, hence verbal in X^? 

5. Free groups. Let us now turn to the factor groups of the verbal 
subgroup. If 93 is a variety and V the corresponding verbal subgroup 
of Xn, consisting of the words that are identically 1 in the groups in 
93, we put 

F„(&) S XJV, Fd(%>) a* Xd/(Xd H 7) , 

and call these the 93-free groups of rank fc$0 or d, respectively—the 
corresponding groups for uncountably infinite rank are similarly 
defined, but need not concern us. They are characterized by having a 
set of generators called a "free basis", namely the images under the 
canonic epimorphism of \Xi, x%, #3, • • • } or \xi, #2, • • •,#<*}, respec­
tively, with the property that every mapping of the set into a group A 
of the variety can be extended to a homomorphism of the free group 
into A. 

The D-free groups ^ ( O ) ^ * , , Fd(D)^Xd are also called "abso­
lutely free", other 93-free groups are called "reduced free" or "rela­
tively free". Except in the trivial case of (S-free groups, the rank is 
uniquely determined by the SB-free group, namely as the minimal 
cardinal number of a generating set. A free basis always has this 
minimal cardinality; and in all known cases a converse is also true 
when the rank is finite. Thus for example every generating set of 
Fd(>D) that consists of d elements is a free basis. 

PROBLEM 12. IS every generating set of 7^(93) consisting of d elements 
a free basis, where 93 is an arbitrary variety and d a positive integer? 

Let me remind you that a group A is called a Hopf group if it is not 
isomorphic to any proper factor group of itself, or, equivalently, if 
every ependomorphism of A is an automorphism. The original ques­
tion of Heinz Hopf whether finitely generated groups are Hopf groups 
was first answered positively for absolutely free groups, and then for 
reduced free groups of some other varieties. As finitely generated non-
Hopf groups are known to exist, it makes sense to ask if there are 
reduced free groups among them: 

PROBLEM 12'. Is every reduced free group of finite rank a Hopf group} 
This problem is, however, equivalent to its predecessor, in fact is 

only a reformulation of it. 
In this context I should like to mention an intriguing conjecture of 

Peter M. Neumann; 
CONJECTURE. If 93 is a variety and d a positive integer, and if 93 con-
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tains 2**° nonisomorphic d-generator groups, then 33 also contains a 
d-generator non-Hopf group ; and conversely. 

Of the numerous important properties of absolutely free groups I 
will mention only two: every subgroup of an absolutely free group is 
absolutely free—this is known as the Schreier property; and every 
absolutely free group of rank greater than 1 contains free groups of 
arbitrary finite rank and of rank t$0. I t is easy to see that the free 
groups not only of £) but also of 2t and of %p with prime exponent p 
have the Schreier property; and it has been proved by Peter M. 
Neumann and James Wiegold, and by an improved argument by 
Peter M. Neumann and M. F. Newman, that these are indeed all the 
varieties whose free groups have the Schreier property. 

On the other hand, no variety 33 other than © and @ is known in 
which ^+1(33) can be embedded in ^d(33), for any finite rank d. A 
variety 33 is called "regular" if it has this property, that is if none of 
its free groups Fd(%$) of finite rank contains a group isomorphic to 
F*f i («) . 

PROBLEM 13. Are all varieties T^O, @ regular? 
Auslander and Lyndon proved that if R and 5 are normal sub­

groups of a free group F and if their derived groups are comparable, 
say S' ^ i ? ' , the S^R. This has been generalized by various authors, 
the most recent result being that for arbitrary nontrivial verbal sub­
groups FCXoo, V(S) g V(R) implies S^R—this has been announced 
by M.A. Bron'stein. 

6. Categories. We consider the category 6(33) of all homomor-
phisms of groups in 33 into groups in 33. Here the 33-free groups are 
projective objects: if F is 33-free and A and B are in 33, then to every 
epic a 

F 

A »B 
a 

and every /3 there is a 7 to make this diagram commutative. However, 
varieties 33 are known where 6(33) contains projective objects that are 
not 33-free; all the known ones are of finite exponent divisible by at 
least two distinct primes (P. Hall, 1954). 

PROBLEM 14. For what varieties 33 are the projective objects of 6(33) 
always %$-free? 

Another question that has recently arisen in a different context is 
the following: 
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PROBLEM 15. What varieties 6(93) have the property that every epic 
monic is invertible, that is to say, an isomorphism? 

I t is known that this is the case in all those varieties 33 with the 
embedding property: every amalgam of two groups in 33 can be em­
bedded in a group in 93 ; but the only known varieties with the embed­
ding property are £), 2Ï, and 2ïe for arbitrary exponent e. If there is 
another, it must be nonabelian, but all its finite groups must be 
abelian. Thus we are led to ask: 

PROBLEM 16. Is there a variety that contains nonabelian infinite 
groups but no nonabelian finite groups? 

If 33 is the variety generated by the icosahedral group (any other 
finite nonabelian simple group will serve as well), then 6(33) has non-
invertible epic monies; but a t least all epic monic endomorphisms are 
invertible in this category. Is this a general feature? 

PROBLEM 17. Is there a variety 33 such that 6(33) contains an epic 
monic endomorphism that is not invertible? 

[Added in proof, July 10, 1967.] Dr. Peter M. Neumann has kindly 
drawn my attention to the fact that §6 above is full of errors and 
omissions. He has also constructed an example that solves Problem 17 
positively. See his forthcoming paper Splitting groups and projectives 
in varieties of groups, Quart. J. Math. Oxford (2) 19 (1968). 

7. Quasi-varieties. I really still owe you an explanation of the 
statement I made at the beginning, namely that the class £) of all 
groups is a variety. Groups used to be defined in terms of a binary 
multiplication, and the axioms consisted partly of laws, such as the 
associative law, partly of certain existence or unicity postulates. How­
ever, if groups are instead defined in terms of a binary multiplication 
and a unary inversion, one can make the axioms equational. Indeed it 
can be done by means of a single law. 

A number of authors have defined groups, or abelian groups, not by 
a single law, but by a single identical implication: 

if U(xh X2, ' ' • , %n) = V(XU X2, • • • , Xn), 

then u'(xh x2, • • • , xn) = v'(xh x2, • • • , xn). 

Classes of algebras defined by identical implications have been called 
"quasi-varieties". Every variety is obviously a quasi-variety, but not 
conversely. This leads me to a final question, that I shall have to leave 
quite vague: 

PROBLEM 18. What formal properties of an identical implication, or a 
set of identical implications, will ensure that the quasi-variety it defines is 
a variety? 
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