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ForiV = 2 ,3 , 4, • • • thepolydisc UN consists of all z = (zi, • • • , zN) 
in CN (the space of N complex variables) such that \zj\ < 1 for j = l, 
• • • , N. The class of all bounded holomorphic functions in UN is 

denoted by H°°(UN). If f£H°°(UN) it is well known that the radial 
limits 

(1) ƒ*(*) = lim/(r*) 

exist for almost all z in the distinguished boundary TN of UN. Here 
rz=(rzh • • • , rzN). 

An inner function in UN is, by definition, a function gŒH^ÇU1*) 
such that |g*(s)| = 1 for almost all zETN. 

The present note contains partial answers to questions such as the 
following: Is every fE:H™(UN) (other than / ^ 0 ) a product ƒ—g& 
where g is inner and both h and 1/h are holomorphic in UN? (In this 
case we say that ƒ and g have the same zeros in UN.) If not, what are 
some sufficient conditions on ƒ which guarantee the existence of such 
a factorization? If ƒ does have the same zeros as some inner function 
g, does it follow that g can be chosen so that f/gCzH°°(UN)? 

A special role is played by those inner functions which (for lack of a 
better name) I propose to call good: An inner function g is good if 

(2) lim I log | g(rz) \ dm(z) = 0. 
r—>1 «/ yiV" 

Here dm denotes the Haar measure of TN. 
To see some examples, consider these four classes of inner func­

tions in UN: 
(A) Those which have continuous extensions to the closure of UN. 
(B) Rational inner functions. 
(C) Finite or infinite (convergent) products of rational inner func­

tions. 
(D) Good inner functions. 
In one variable, (A) = (B) and (C) = (D), since the good inner func-
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tions in one variable are precisely the Blaschke products. That 
(A)C(B) in the general case is proved in [2]. For N£2, (A)^ (B) , 
as shown by 

(3) g(z, w) = (4:zw — 32 — w)/(4: — 3w — z). 

I t is easy to prove that (B)C(D) and hence that (C)C(D) ; in fact, 
every convergent product of inner functions is inner, and if each 
factor is good so is the product. For N?z2, ( C ) ^ ( D ) : Let <3> be any 
inner function in one variable, let a be a complex number, 0 < | a\ < 1, 
and put 

(4) g(z, w) = (z$(w) — a)/(I — 0LZ<b(w)). 

That g is good follows quite easily via Jensen's formula; one can 
choose <£> so that the zero-set of g is not a countable union of algebraic 
varieties, and then g£|E(C). 

A continuous function in UN is called iV-harmonic if it is harmonic 
in each of the variables z\, • • • , ZN> lî<èÇzLl(TN) and if ii is a measure 
on TN, the Poisson integrals P [ $ ] and P[dix] are iV-harmonic in UN 

[4; pp. 303, 315]. If fEH«>(UN) a n d / ^ 0 , putƒ,(*) =f(rz) ( 0 £ r < l , 
%E:TN) and define 

(5) 4 / ] = limP[log|/ r |]. 

The limit exists (compare [4; pp. 321-322]) and is the least N-
harmonic majorant of log | ƒ | . 

For inner functions g, u [g] ^ 0, and g is good if and only if u [g] = 0. 
We let RP denote the class of all functions u which are real parts 

of holomorphic functions u+iv in UN. Every w £ R P is clearly iV-
harmonic. 

After these preliminaries we can state some results. The first two 
are quite easy: 

THEOREM 1. If fÇîH^ÇU1*), g is a good inner f unction in UN, and 
f/g is holomorphic in UN, thenf/gÇ:II^(JJN). 

THEOREM 2. Suppose f^H^(UN)y fjàQ. 
(a) If u [f ] is in RP then there is a unique (up to multiplication by 

constants) good inner f unction g which has the same zeros as f. 
(b) If u [f ] is not in RP then no good inner function has the same 

zeros as ƒ. 

THEOREM 3. Suppose «ÊGL^Z1^), <ï>>0, and $ is lower semicontinu-
ous. Then there is a singular positive measure cr on TN such that the 
Poisson integral P[<§—dcr] is in RP. 
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PROOF. # = X/£*, where each $* is a positive trigonometric poly­
nomial on TN. Denote the Fourier coefficients of $k by <É>fc(tti, • • • ,WJV). 

Fix k. If pk is a positive integer, there is a positive singular measure 
o-k on r ^ such that 

00 

(6) &k(nh • • • , war) = 2 $*(»i +i#*> - - - ,nN +jpk). 

If £A is large enough, P[$A—do**] is in RP. Put <r= ^T/r*. 

THEOREM 4t. Ij\p is a bounded positive lower semicontinuous junction 
on TN then there exists jE.H«>(UN) with | /* | = ^ a.e. 

PROOF. The hypothesis implies that \f/ has a positive lower bound. 
Assume ^ > 1 , without loss of generality. Apply Theorem 3 to 
<£ = log \[/, put u = P[$—d<r], and define f~exp(u+iv). Note that 
P[Jcr] has radial limit 0 a.e. since a is singular [4; p. 313]. 

The assumed lower semicontinuity of \p is of course not a necessary 
condition for the existence of axijÇ.H™(JUN) with | /* | = ^ a.e. Never­
theless it is not an entirely unnatural hypothesis since a certain 
amount of lower semicontinuity is forced on | /* | : If fÇzH™(UN)i 
zETN, and/s(X)=/(Xs), then jzeH«(U), so that 

(7) ess sup I f*(\z) I - sup J f(\z) \ (z G TN). 
1X1-1 |X|<1 

The right side of (7) is clearly a lower semicontinuous function on TN, 
hence so is the left. 

THEOREM 5. Suppose jGH°°(UN), / ^ 0 , \[/ is an upper semicontinu­
ous junction on TN, and \f*\ =\[/ a.e. Then there is an inner junction g 
with the same zeros as j . 

PROOF. By Theorem 3, applied to $ = —log ^, there is a positive 
singular measure a on TN such that 

(8) u = P[log$ + d<r] 

is in RP. If h~exp(u+iv), then \h*\ = \j*\ a.e., and 

(9) log I j \ â P[log\f*\ ] = P[log*] ^ u = log I h\ . 

Pu t g=f/h. 
The theorem applies, in particular, to any ƒ G H°° (UN) which has a 

continuous extension to the closure of UN. But it may be impossible 
to choose g so that j/g is bounded in UN

f even if ƒ is a polynomial! 
To state this more precisely, let VN be the set of all (01, • • • , ZN) with 
| « y | > l f o r j = l, • • • N. 
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THEOREM 6. Let ƒ be a polynomial in z\, • • • , ZN, ff^O. 
(a) Iff has no zero in VN then there is a rational inner f unction g such 

that f/g is a polynomial with no zero in UN. 
(b) Iff is irreducible and if f has zeros in both UN and VN then f/g 

is unbounded in UN for every inner function g which has the same zeros 
as f in UN. 

PROOF, (a) is trivial (see [2; p. 991]). To prove (b), assume f/g is 
bounded in UN

f so \g\ è c | / | for some c>0. Hence, for almost all 
%ETN, gÇKz) is a finite Blaschke product. This implies (via Theorem 
2.1 of [2]) that g is rational. Since ƒ is irreducible it follows that every 
zero of ƒ (in CN) is a zero of g. But rational inner functions have no 
zeros in VN. 

Note that (b) may hold even i f /has no zero on TN:f(z, w) =z+2zv. 
The next result should be compared with Theorem A of [3]. 

THEOREM 7. There exists fEH^iU2), / ^ 0 , with the following prop­
erty : For no holomorphic function h in U2 is f h an inner function. 

PROOF. Let A be an open set on the unit circle whose complement 
is totally disconnected and has positive measure, let E be the set of all 
(2, w)ET2 such that z/wEA. By Theorem 4 there exists FEH«>(U2) 
with I F*\ = 1 a.e. on E, | F*\ = J a.e. off E. A generalization of a the­
orem of Frostman [ l ; pp. 111-113] shows that there exist arbitrarily 
small a such that 

(10) u[F - a] = P[log I F* - a \ ]. 

Put ƒ = F—oty and suppose (to get a contradiction) that f h is inner for 
some holomorphic h. By (10), u[f] is bounded below, so u[h] is 
bounded above, hence hEH^{UN). But |fe*| is close to 1 a.e. on E 
and I A* I is close to 2 a.e. on the rest of TN. This violates the lower 
semicontinuity property discussed after Theorem 4. 

A more detailed discussion of these results, including complete 
proofs and extensions to other i^-spaces, will be published elsewhere. 
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