INNER FUNCTIONS IN POLYDISCS¹

BY WALTER RUDIN

Communicated by A. Zygmund, November 21, 1966

For $N=2, 3, 4, \cdots$ the polydisc U^N consists of all $z=(z_1, \cdots, z_N)$ in C^N (the space of N complex variables) such that $|z_j|<1$ for $j=1, \cdots, N$. The class of all bounded holomorphic functions in U^N is denoted by $H^{\infty}(U^N)$. If $f \in H^{\infty}(U^N)$ it is well known that the radial limits

(1)
$$f^*(z) = \lim_{r \to 1} f(rz)$$

exist for almost all z in the distinguished boundary T^N of U^N . Here $rz = (rz_1, \dots, rz_N)$.

An inner function in U^N is, by definition, a function $g \in H^{\infty}(U^N)$ such that $|g^*(z)| = 1$ for almost all $z \in T^N$.

The present note contains partial answers to questions such as the following: Is every $f \in H^{\infty}(U^N)$ (other than $f \equiv 0$) a product f = gh where g is inner and both h and 1/h are holomorphic in U^N ? (In this case we say that f and g have the same zeros in U^N .) If not, what are some sufficient conditions on f which guarantee the existence of such a factorization? If f does have the same zeros as some inner function g, does it follow that g can be chosen so that $f/g \in H^{\infty}(U^N)$?

A special role is played by those inner functions which (for lack of a better name) I propose to call good: An inner function g is good if

(2)
$$\lim_{r\to 1} \int_{T^N} \log |g(rz)| dm(z) = 0.$$

Here dm denotes the Haar measure of T^N .

To see some examples, consider these four classes of inner functions in U^N :

- (A) Those which have continuous extensions to the closure of U^{N} .
- (B) Rational inner functions.
- (C) Finite or infinite (convergent) products of rational inner functions.
 - (D) Good inner functions.

In one variable, (A) = (B) and (C) = (D), since the good inner func-

¹ Research sponsored by the Air Force Office of Scientific Research, Office of Aerospace Research, United States Air Force, under AFOSR Grant No. 1160-66, and by the Wisconsin Alumni Research Foundation.

tions in one variable are precisely the Blaschke products. That $(A) \subset (B)$ in the general case is proved in [2]. For $N \ge 2$, $(A) \ne (B)$, as shown by

(3)
$$g(z, w) = (4zw - 3z - w)/(4 - 3w - z).$$

It is easy to prove that $(B)\subset(D)$ and hence that $(C)\subset(D)$; in fact, every convergent product of inner functions is inner, and if each factor is good so is the product. For $N\geq 2$, $(C)\neq(D)$: Let Φ be any inner function in one variable, let α be a complex number, $0<|\alpha|<1$, and put

(4)
$$g(z, w) = (z\Phi(w) - \alpha)/(1 - \bar{\alpha}z\Phi(w)).$$

That g is good follows quite easily via Jensen's formula; one can choose Φ so that the zero-set of g is not a countable union of algebraic varieties, and then $g \notin (C)$.

A continuous function in U^N is called N-harmonic if it is harmonic in each of the variables z_1, \dots, z_N . If $\Phi \in L^1(T^N)$ and if μ is a measure on T^N , the Poisson integrals $P[\Phi]$ and $P[d\mu]$ are N-harmonic in U^N [4; pp. 303, 315]. If $f \in H^{\infty}(U^N)$ and $f \not\equiv 0$, put $f_r(z) = f(rz)$ $(0 \le r < 1, z \in T^N)$ and define

(5)
$$u[f] = \lim_{r \to 1} P[\log |f_r|].$$

The limit exists (compare [4; pp. 321-322]) and is the least N-harmonic majorant of $\log |f|$.

For inner functions g, $u[g] \le 0$, and g is good if and only if u[g] = 0. We let RP denote the class of all functions u which are *real parts* of holomorphic functions u+iv in U^N . Every $u \in \text{RP}$ is clearly N-harmonic.

After these preliminaries we can state some results. The first two are quite easy:

THEOREM 1. If $f \in H^{\infty}(U^N)$, g is a good inner function in U^N , and f/g is holomorphic in U^N , then $f/g \in H^{\infty}(U^N)$.

Theorem 2. Suppose $f \in H^{\infty}(U^N)$, $f \not\equiv 0$.

- (a) If u[f] is in RP then there is a unique (up to multiplication by constants) good inner function g which has the same zeros as f.
- (b) If u[f] is not in RP then no good inner function has the same zeros as f.

THEOREM 3. Suppose $\Phi \in L^1(T^N)$, $\Phi > 0$, and Φ is lower semicontinuous. Then there is a singular positive measure σ on T^N such that the Poisson integral $P[\Phi - d\sigma]$ is in RP.

PROOF. $\Phi = \sum \Phi_k$, where each Φ_k is a positive trigonometric polynomial on T^N . Denote the Fourier coefficients of Φ_k by $\hat{\Phi}_k(n_1, \dots, n_N)$. Fix k. If p_k is a positive integer, there is a positive singular measure σ_k on T^N such that

(6)
$$\hat{\sigma}_k(n_1, \cdots, n_N) = \sum_{i=-\infty}^{\infty} \hat{\Phi}_k(n_1 + jp_k, \cdots, n_N + jp_k).$$

If p_k is large enough, $P[\Phi_k - d\sigma_k]$ is in RP. Put $\sigma = \sum \sigma_k$.

THEOREM 4. If ψ is a bounded positive lower semicontinuous function on T^N then there exists $f \in H^{\infty}(U^N)$ with $|f^*| = \psi$ a.e.

PROOF. The hypothesis implies that ψ has a positive lower bound. Assume $\psi > 1$, without loss of generality. Apply Theorem 3 to $\Phi = \log \psi$, put $u = P[\Phi - d\sigma]$, and define $f = \exp(u + iv)$. Note that $P[d\sigma]$ has radial limit 0 a.e. since σ is singular [4; p. 313].

The assumed lower semicontinuity of ψ is of course not a necessary condition for the existence of an $f \in H^{\infty}(U^N)$ with $|f^*| = \psi$ a.e. Nevertheless it is not an entirely unnatural hypothesis since a certain amount of lower semicontinuity is forced on $|f^*|$: If $f \in H^{\infty}(U^N)$, $z \in T^N$, and $f_z(\lambda) = f(\lambda z)$, then $f_z \in H^{\infty}(U)$, so that

(7)
$$\operatorname{ess\,sup}_{|\lambda|=1} |f^*(\lambda z)| = \sup_{|\lambda|<1} |f(\lambda z)| \qquad (z \in T^N).$$

The right side of (7) is clearly a lower semicontinuous function on T^N , hence so is the left.

THEOREM 5. Suppose $f \in H^{\infty}(U^N)$, $f \not\equiv 0$, ψ is an upper semicontinuous function on T^N , and $|f^*| = \psi$ a.e. Then there is an inner function g with the same zeros as f.

PROOF. By Theorem 3, applied to $\Phi = -\log \psi$, there is a positive singular measure σ on T^N such that

(8)
$$u = P[\log \psi + d\sigma]$$

is in RP. If $h = \exp(u + iv)$, then $|h^*| = |f^*|$ a.e., and

(9)
$$\log |f| \leq P[\log |f^*|] = P[\log \psi] \leq u = \log |h|.$$

Put g=f/h.

The theorem applies, in particular, to any $f \in H^{\infty}(U^N)$ which has a continuous extension to the closure of U^N . But it may be impossible to choose g so that f/g is bounded in U^N , even if f is a polynomial! To state this more precisely, let V^N be the set of all (z_1, \dots, z_N) with $|z_j| > 1$ for $j = 1, \dots, N$.

THEOREM 6. Let f be a polynomial in $z_1, \dots, z_N, f \not\equiv 0$.

- (a) If f has no zero in V^N then there is a rational inner function g such that f/g is a polynomial with no zero in U^N .
- (b) If f is irreducible and if f has zeros in both U^N and V^N then f/g is unbounded in U^N for every inner function g which has the same zeros as f in U^N .

PROOF. (a) is trivial (see [2; p. 991]). To prove (b), assume f/g is bounded in U^N , so $|g| \ge c|f|$ for some c > 0. Hence, for almost all $z \in T^N$, $g(\lambda z)$ is a finite Blaschke product. This implies (via Theorem 2.1 of [2]) that g is rational. Since f is irreducible it follows that every zero of f (in C^N) is a zero of g. But rational inner functions have no zeros in V^N .

Note that (b) may hold even if f has no zero on $T^N: f(z, w) = z + 2w$. The next result should be compared with Theorem A of [3].

THEOREM 7. There exists $f \in H^{\infty}(U^2)$, $f \not\equiv 0$, with the following property: For no holomorphic function h in U^2 is fh an inner function.

PROOF. Let A be an open set on the unit circle whose complement is totally disconnected and has positive measure, let E be the set of all $(z, w) \in T^2$ such that $z/w \in A$. By Theorem 4 there exists $F \in H^{\infty}(U^2)$ with $|F^*| = 1$ a.e. on E, $|F^*| = \frac{1}{2}$ a.e. off E. A generalization of a theorem of Frostman [1; pp. 111–113] shows that there exist arbitrarily small α such that

(10)
$$u[F-\alpha] = P[\log |F^*-\alpha|].$$

Put $f = F - \alpha$, and suppose (to get a contradiction) that fh is inner for some holomorphic h. By (10), u[f] is bounded below, so u[h] is bounded above, hence $h \in H^{\infty}(U^N)$. But $|h^*|$ is close to 1 a.e. on E and $|h^*|$ is close to 2 a.e. on the rest of T^N . This violates the lower semicontinuity property discussed after Theorem 4.

A more detailed discussion of these results, including complete proofs and extensions to other H^p -spaces, will be published elsewhere.

REFERENCES

- 1. O. Frostman, Potentiel d'équilibre et capacité des ensembles, Lunds Univ. Mat. Sem. Vol. 3 (1935).
- 2. W. Rudin and E. L. Stout, Boundary properties of functions of several complex variables, J. Math. Mech. 14 (1965), 991-1006.
- 3. W. Rudin, Zeros and factorizations of holomorphic functions, Bull. Amer. Math. Soc. 72 (1966), pp. 1064-1067.
- 4. A. Zygmund, Trigonometric series, Vol. II, Cambridge Univ. Press, New York, 1959.

University of Wisconsin and University of California, San Diego