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For N=2,3,4, - - - the polydisc U¥ consistsof all = (21, « + -, 2w)
in C¥ (the space of N complex variables) such that |z;| <1 for j=1,
+++, N. The class of all bounded holomorphic functions in U¥ is
denoted by H=(U¥). If fEH=(U¥) it is well known that the radial
limits

M f*@) = lim f (r2)

exist for almost all z in the distinguished boundary T% of U¥. Here
rz=(rz1, - - -, r3x).

An inner function in U is, by definition, a function g&H>(U¥)
such that |g*(z)| =1 for almost all zET¥.

The present note contains partial answers to questions such as the
following: Is every fEH=®(UY) (other than f=0) a product f=gh
where g is inner and both % and 1/% are holomorphic in U¥? (In this
case we say that f and g have the same zeros in UV.) If not, what are
some sufficient conditions on f which guarantee the existence of such
a factorization? If f does have the same zeros as some inner function
g, does it follow that g can be chosen so that f/g&EH=(U¥)?

A special role is played by those inner functions which (for lack of a
better name) I propose to call good: An inner function g is good if

) 1:_1}11 fTN logl g(rz)l dm(z) = 0.

Here dm denotes the Haar measure of T7,

To see some examples, consider these four classes of inner func-
tions in U¥:

(A) Those which have continuous extensions to the closure of U¥,

(B) Rational inner functions.

(C) Finite or infinite (convergent) products of rational inner func-
tions.

(D) Good inner functions.

In one variable, (A) = (B) and (C) = (D), since the good inner func-
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tions in one variable are precisely the Blaschke products. That
(A)C(B) in the general case is proved in [2]. For N=2, (A)=(B),
as shown by

®3) g2(z, w) = (4sw — 32 — w)/(4 — 3w — 2).

It is easy to prove that (B)C (D) and hence that (C) C(D); in fact,
every convergent product of inner functions is inner, and if each
factor is good so is the product. For N=2, (C)#(D): Let ® be any
inner function in one variable, let a be a complex number, 0< || <1,
and put

O] g(z, w) = (22(w) — 2)/(1 — azd(w)).

That g is good follows quite easily via Jensen’s formula; one can
choose ® so that the zero-set of g is not a countable union of algebraic
varieties, and then gé (C).

A continuous function in U¥ is called N-harmonic if it is harmonic
in each of the variables 2y, « - -, gy. f @& L1(T¥) and if u is a measure
on TV, the Poisson integrals P[®] and P[du] are N-harmonic in U¥
[4; pp. 303, 315]. If fEH>(U¥) and f#0, put f.(z) =f(rz) (0=r<1,
2&ET%) and define

(5) ulf] = lim Pllog| .| 1.

The limit exists (compare [4; pp. 321-322]) and is the least N-
harmonic majorant of log |f].

For inner functions g, #[g] <0, and g is good if and only if «[g] =0.

We let RP denote the class of all functions # which are real parts
of holomorphic functions #414v in UV. Every u&RP is clearly N-
harmonic.

After these preliminaries we can state some results. The first two
are quite easy:

TaEOREM 1. If fEH>*(UY), g is a good inner function tn U¥, and
f/g is holomorphic in UV, then f/g &S H=(UY).

THEOREM 2. Suppose f& H=(UY), f#£0.

@) If u[f] is in RP then there is a unique (up to multiplication by
constants) good inner function g which has the same zeros as f.

(b) If u[f] is not in RP then no good inmer function has the same
zeros as f.

TueorEM 3. Suppose PELY(TYN), >0, and P is lower semicontinu-
ous. Then there is a singular positive measure o on TV such that the
Poisson integral P[®—do] is in RP.
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PROOF. &= Y &, where each &, is a positive trigonometric poly-
nomial on T%. Denote the Fourier coefficients of &, by ®x(n, - « - , nx).
Fix k. If p; is a positive integer, there is a positive singular measure
ar on T% such that

0

(6) Gu(ny, -+ mw) = D, Bulmy+ jpu, - -+, mv + Jbu).

J=—c0
If p. is large enough, P[®,—do;] is in RP. Put o= > _o;.

THEOREM 4. If Y is a bounded positive lower semicontinuous function
on T¥ then there exists fEH>(UN) with If*] =y a.e.

Proor. The hypothesis implies that ¢ has a positive lower bound.
Assume Y >1, without loss of generality. Apply Theorem 3 to
®=log ¢, put u=P[®P—ds], and define f=exp(u-+iv). Note that
P[do] has radial limit 0 a.e. since ¢ is singular [4; p. 313].

The assumed lower semicontinuity of ¢ is of course not a necessary
condition for the existence of an fEH*(U¥) with | f*[ =y a.e. Never-
theless it is not an entirely unnatural hypothesis since a certain
amount of lower semicontinuity is forced on |f*|: If fEH=(UY),
2ET7¥, and f.(\) =f(\z), then f,EH>(U), so that

() esssup | f*(\a) | = sup | /9| (€ TY).

=1 nI<t
The right side of (7) is clearly a lower semicontinuous function on 7%,
hence so is the left.

THEOREM 5. Suppose fEH(UY), f£0, Y is an upper semiconinu-
ous function on TV, and |f*| =y a.e. Then there is an inner function g
with the same zeros as f.

Proor. By Theorem 3, applied to ®= —log ¢, there is a positive
singular measure ¢ on T% such that

(8) u = Pllog ¢ + do]

is in RP. If h=exp(#+1v), then | h*| =|f*| a.e., and

) log|f| = Pllog| f*|] = Pllogy] < u = log| 1] .
Put g=f/h.

The theorem applies, in particular, to any fEH*(U¥) which has a
continuous extension to the closure of U¥. But it may be impossible
to choose g so that f/g is bounded in U¥, even if f is a polynomial!
To state this more precisely, let V¥ be the set of all (2, - - -, 2y) with
|2;| >1forj=1,--- N.
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THEOREM 6. Let f be a polynomial in 21, - - -, 25, f5#0.

(@) If f has no zero in VY then there is a rational inner function g such
that f/g is a polynomial with no zero in UV,

(b) If f is irreducible and if f has zeros in both UV and V¥ then f/g
is unbounded in UV for every inner function g which has the same zeros
as fin UV,

PRrOOF. (a) is trivial (see [2; p. 991]). To prove (b), assume f/g is
bounded in UY, so |g| Z¢|f| for some ¢>0. Hence, for almost all
2&TY, g(\2) is a finite Blaschke product. This implies (via Theorem
2.1 of [2]) that g is rational. Since f is irreducible it follows that every
zero of f (in C¥) is a zero of g. But rational inner functions have no
zeros in V%,

Note that (b) may hold even if f has no zero on T%: f(z, w) =2+ 2w.

The next result should be compared with Theorem A of [3].

THEOREM 7. There exists fCH=(U?), f£0, with the following prop-
erty: For no holomorphic function h in U? is fh an inner function.

Proor. Let 4 be an open set on the unit circle whose complement
is totally disconnected and has positive measure, let E be the set of all
(2, w) ET? such that z/w& 4. By Theorem 4 there exists F&EH*(U?)
with | F*| =1 a.e. on E, | F*| =} a.e. off E. A generalization of a the-
orem of Frostman [1; pp. 111-113] shows that there exist arbitrarily
small « such that

(10) u[F — o] = Pllog| F* — «| ].

Put f=F—a, and suppose (to get a contradiction) that f% is inner for
some holomorphic 4. By (10), #[f] is bounded below, so u[k] is
bounded above, hence hEH=(U¥). But | h*| is close to 1 a.e. on E
and |%*| is close to 2 a.e. on the rest of 7%, This violates the lower
semicontinuity property discussed after Theorem 4.

A more detailed discussion of these results, including complete
proofs and extensions to other HP-spaces, will be published elsewhere.

REFERENCES

1. O. Frostman, Potenticl d’équilibre et capacité des ensembles, Lunds Univ. Mat.
Sem. Vol. 3 (1935).

2, W. Rudin and E. L. Stout, Boundary properties of functions of several complex
variables, J. Math. Mech. 14 (1965), 991-1006.

3. W. Rudin, Zeros and factorizations of holomorphic functions, Bull. Amer. Math.
Soc. 72 (1966), pp. 1064-1067.

4. A. Zygmund, Trigonomeiric series, Vol. 11, Cambridge Univ. Press, New York,
1959.

UNIVERSITY OF WISCONSIN AND
UN1VERSITY OF CALIFORNIA, SAN DieGo



