LOCALLY COMPACT TRANSFORMATION GROUPS AND C*-ALGEBRAS

BY EDWARD G. EFFROS¹ AND FRANK HAHN²

Communicated by G. A. Hedlund, October 4, 1966

It has long been recognized that one may associate operator algebras with transformation groups (see, e.g. [9, Chapter III], [11; 1, p. 310] [5]). In this paper we shall answer two questions about the ergodic invariant probability measures on a locally compact transformation group (Theorems 2 and 3). This information is then used to solve analogous problems for the unit traces of a C^* -algebra (Theorems 5 and 6). Full proofs will appear elsewhere.

Let (G, Z) be a topological transformation group with G and Z second countable and Hausdorff, G a locally compact group, and Z a compact space. Let Z/G be the set of orbits $G\zeta$ with ζ in Z, together with the quotient topology. Define an equivalence relation $\sim \operatorname{on} Z/G$ by $p \sim q$ if the sets $\{p\}$ and $\{q\}$ have the same closure, and let $(Z/G)^{\sim}$ be the equivalence classes with the quotient topology (see [8, p. 58]). The elements of $(Z/G)^{\sim}$ are in one-to-one correspondence with the subsets of Z that are closures of orbits. Z/G is T_0 if and only if \sim is trivial, and T_1 if and only if the orbits are closed.

Let Z be compact and let C(Z) be the continuous complex valued functions on Z with the uniform norm, and $M(Z) = C_r(Z)^*$ the real Radon measures on Z with the weak* topology. Let G act on C(Z) and M(Z) by translation, i.e., for s in G, ζ in Z, f in C(Z), and μ in M(Z), let

$$(sf)(\zeta) = f(s^{-1}\zeta),$$

 $(s\mu)(f) = \mu(s^{-1}f).$

Let $M_{\mathcal{G}}(Z)$ be the invariant measures on Z, and $P_{\mathcal{G}}(Z)$ the corresponding probability measures, i.e.,

$$P_G(Z) = M_G^+(Z) \cap H,$$

where $M_G^+(Z)$ are the positive invariant measures, and H are the measures μ such that $\mu(Z) = 1$. $P_G(Z)$ is a compact simplex in the sense of Choquet, and its extremal points are just the ergodic mea-

¹ This research was supported in part by the Office of Naval research (NONR 551(57)).

² National Science Foundation Fellow.

sures (see [10, §10]). Let $EP_G(Z)$ be the extreme points together with the simplex structure topology. A subset is defined to be closed in this topology if it consists of the extreme points of a closed face in $P_G(Z)$. $EP_G(Z)$ is compact, and it is Hausdorff if and only if $EP_G(Z)$ is closed in $P_G(Z)$ (see [4]).

The support of an ergodic measure is the closure of an orbit (see [8, p. 59]), hence we may define a map

$$\theta: EP_G(Z) \to (Z/G) \sim$$

by letting $\theta(\mu)$ correspond to the support of μ . The following is verified:

THEOREM 1. θ is continuous. In addition

- (a) If Z/G is T_0 , then θ is one-to-one.
- (b) If the orbits are closed, θ is onto.
- (c) If the orbits are finite, and uniformly bounded in cardinality, θ is a homeomorphism.
- (d) If the orbits have the same finite cardinality, then $EP_G(Z)$ and $(Z/G)^{\sim}$ are Hausdorff.
- (e) If G is equicontinuous, θ is a homeomorphism onto, and $EP_G(Z)$ and $(Z/G)^{\sim}$ are Hausdorff.

In particular, if all of the orbits are finite, then θ is a continuous bijection. On the other hand our first construction shows:

Theorem 2. There is a distal action of the integers G on a compact metric space Z such that all of the orbits are finite, but θ is not a homeomorphism.

For many transformation groups, θ is not one-to-one. In fact we have proved:

THEOREM 3. There is a C^{∞} distal action of the integers G on the torus Z such that $(Z/G)^{\sim}$ has only one point (i.e., (G, Z) is minimal), and $EP_G(Z)$ is uncountable.

Let $\mathfrak A$ be a separable C^* -algebra with identity. Let pr $\mathfrak A$ be the set of primitive ideals in $\mathfrak A$ with the Jacobson structure topology (see $[3, \S 3]$). Let $\mathfrak A^*$ be the Banach dual of $\mathfrak A$ with the weak* topology. The central functions $C(\mathfrak A)$ are the f in $\mathfrak A^*$ such that f(AB) = f(BA) for all A and B in $\mathfrak A$. Let $T(\mathfrak A)$ be the unit traces on $\mathfrak A$, i.e.,

$$T(\mathfrak{A}) = C^+(\mathfrak{A}) \cap H$$

where $C^+(\mathfrak{A})$ are the positive central functions, and H consists of the f in \mathfrak{A}^* such that f(I) = 1. $T(\mathfrak{A})$ is a compact simplex (see [12, Satz 1]),

and its extreme points are just the traces that give rise to factor representations (see [3, $\S6.7.3$]). Let $ET(\mathfrak{A})$ be the extreme traces, with the simplex structure topology.

The kernel of a factor representation of \mathfrak{A} is primitive (see [2, p. 100]). This enables us to define a map

$$\theta' : ET(\mathfrak{A}) \to \operatorname{pr} \mathfrak{A}$$

by

$$\theta'(\tau) = \text{kernel } L^{\tau}$$
,

where L^{τ} is the representation defined by τ .

THEOREM. 4. θ' is continuous. In addition,

- (a) If \mathfrak{A} is of type I, then θ' is one-to-one.
- (b) If all of the representations of $\mathfrak A$ are finite dimensional, then θ' is onto.
- (c) If the irreducible representations of \mathfrak{A} have dimension uniformly bounded by a finite cardinal, then θ' is a homeomorphism.
- (d) If all of the irreducible representations of $\mathfrak A$ are of the same finite dimension, then $ET(\mathfrak A)$ and pr $\mathfrak A$ are Hausdorff.

Letting $\mathfrak{A}(G, Z)$ be the C^* -algebra associated with a transformation group (G, Z) (see [6, p. 890]) we may use Theorems 2 and 3 to prove

Theorem 5. There is a separable C^* -algebra $\mathfrak A$ for which all of the representations are finite dimensional, and θ' is not a homeomorphism.

THEOREM 6. There is a separable C^* -algebra $\mathfrak A$ such that pr $\mathfrak A$ has only one point (i.e., $\mathfrak A$ is simple), and $ET(\mathfrak A)$ is uncountable.

Sketching the proofs of Theorems 5 and 6, assume that G is discrete and Z is compact, and let $\mathfrak{A} = \mathfrak{A}(G, Z)$. Consider the diagram

$$EP_G(Z) \stackrel{\pi'}{\leftarrow} ET(\mathfrak{A})$$

$$\downarrow \theta \qquad \qquad \downarrow \theta'$$

$$(Z/G)^{\sim} \stackrel{\pi}{\leftarrow} \operatorname{pr} \mathfrak{A}$$

$$\stackrel{\longrightarrow}{T}$$

 θ and θ' are defined above. C(Z) may be regarded as a subalgebra of \mathfrak{A} , and if P is a primitive ideal in \mathfrak{A} , there is an orbit closure F in Z such that

$$P \cap C(Z) = \{ f \in C(Z) : f \mid F = 0 \}.$$

 $\pi(P)$ is defined to be the corresponding element of $(Z/G)^{\sim}$. π is continuous and onto.

If τ is an extremal trace, its restriction to C(Z) is an ergodic measure (see [12, Lemma 14]). Letting π' be the restriction map, π' is continuous and onto (see [12, Lemma 16]), and the diagram is commutative.

The isotropy group H_{ζ} at ζ consists of the s in G for which $s\zeta = \zeta$. Irreducible representations of H_{ζ} may be induced to irreducible representations of \mathfrak{A} (see [6, p. 901]). Inducing the trivial one-dimensional representation at ζ , one obtains a map T_1 of Z into pr \mathfrak{A} . If the isotropy groups "vary continuously" with ζ , it follows from [6, Theorem 2.1] that T_1 defines a continuous map T of $(Z/G)^{\sim}$ into pr \mathfrak{A} which is a cross-section for π . This condition on isotropy groups is too strong for our purposes. We have been able to prove:

THEOREM 7. If the isotropy groups are commutative, then T_1 induces a continuous cross-section T for π .

We have also generalized Theorem 7 to locally compact G and Z.

Turning to Theorem 5, let $\mathfrak{A}=\mathfrak{A}(G,Z)$, where (G,Z) is described in Theorem 2. As the orbits are closed, the action of G on Z is smooth, and by Mackey's Imprimitivity Theorem, all of the irreducible representations of \mathfrak{A} are induced from characters on isotropy groups $H_{\mathcal{E}}$ (see [6, Theorem 2.2]). As the latter are of finite index in G, the irreducible representations are finite dimensional. It follows from Theorems 1 and 4 that θ and θ' are both bijections. Let μ_{α} and μ be in $EP_G(Z)$ with $\theta(\mu_{\alpha})$ converging to $\theta(\mu)$, but μ_{α} not converging to μ . We have

$$P_{\alpha} = T(\theta(\mu_{\alpha})) \longrightarrow P = T(\theta(\mu)),$$

hence if θ' is a homeomorphism,

(1)
$$\tau_{\alpha} = \theta'^{-1}(P_{\alpha}) \to \tau = \theta'^{-1}(P).$$

As

$$\theta(\mu_{\alpha}) = \pi \theta'(\tau_{\alpha}) = \theta \pi'(\tau_{\alpha})$$

and θ is one-to-one, $\mu_{\alpha} = \pi'(\tau_{\alpha})$ and similarly, $\mu = \pi'(\tau)$. From (1), $\mu_{\alpha} \rightarrow \mu$, a contradiction.

(G, Z) is said to be *free* if the isotropy groups are trivial. G is amenable if the regular representation of G weakly contains all of the irreducible representations (see $[3, \S18.3]$ and $[7, \S2.3]$). Generalizing a result of Guichardet for semidirect products [8, p. 58],

THEOREM 8. If (G, Z) is free and G is amenable, then π is a homeomorphism.

Letting (G, Z) be the transformation group of Theorem 3, G is amenable, and (G, Z) is free, as otherwise there would be a finite, thus closed orbit. As π is one-to-one, pr $\mathfrak A$ has only one point, and as π' is onto, $ET(\mathfrak{A})$ is uncountable.

BIBLIOGRAPHY

- 1. J. Dixmier, Algèbres quasi-unitaires, Comment. Math. Helv. 26 (1952), 275-321.

 - Sur les C*-algèbres, Bull. Soc. Math. France 88 (1960), 95-112.
 Les C*-algèbres et leurs representations, Gauthier-Villars, Paris, 1964.
 - 4. E. Effros, Structure in simplexes, Acta Math. (to appear).
- 5. H. Furstenberg, Strict ergodicity and transformations of the torus, Amer. J. Math. 83 (1961), 573-601.
- 6. J. Glimm, Families of induced representations, Pacific J. Math. 12 (1962), 885-911.
- 7. F. P. Greenleaf, Invariant means on topological groups and their applications, (to appear).
- 8. A. Guichardet, Charactères des algèbres de Banach involutives, Ann. Inst. Fourier (Grenoble) 13 (1962), 1-81.
 - 9. J. von Neumann, On rings of operators. III, Ann. of Math. 41 (1940), 94-161.
- 10. R. Phelps, Lectures on Choquet's theorem, van Nostrand, Princeton, N. J., 1966.
- 11. I. E. Segal, A class of operator algebras which are determined by groups, Duke Math. J. 18 (1951), 221-265.
- 12. E. Thoma, Über unitäre Darstellungen abzählbarer, diskreter Gruppen, Math. Ann. 153 (1964), 111-138.

University of California at Berkeley. University of Pennsylvania and YALE UNIVERSITY