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I t has long been recognized that one may associate operator alge­
bras with transformation groups (see, e.g. [9, Chapter III] , [ l l ; 1, 
p. 310] [5]). In this paper we shall answer two questions about the 
ergodic invariant probability measures on a locally compact trans­
formation group (Theorems 2 and 3). This information is then used 
to solve analogous problems for the unit traces of a C*-algebra 
(Theorems 5 and 6). Full proofs will appear elsewhere. 

Let (G, Z) be a topological transformation group with G and Z 
second countable and Hausdorff, G a locally compact group, and Z a 
compact space. Let Z/G be the set of orbits Gf with f in Z, together 
with the quotient topology. Define an equivalence relation ~ onZ/G 
by p~q if the sets {p} and {q} have the same closure, and let (Z/G)~ 
be the equivalence classes with the quotient topology (see [8, p. 58]). 
The elements of (Z/G)~ are in one-to-one correspondence with the 
subsets of Z that are closures of orbits. Z/G is T0 if and only if ~ is 
trivial, and Ti if and only if the orbits are closed. 

Let Z be compact and let C(Z) be the continuous complex valued 
functions on Z with the uniform norm, and M(Z) = Cr(Z)* the real 
Radon measures on Z with the weak* topology. Let G act on C(Z) 
and M(Z) by translation, i.e., for s in G, f in Z, ƒ in C(Z)t and JU in 
M(Z), let 

fcOG") = / ( * -U 

Let Mo(Z) be the invariant measures on Z, and PQ(Z) the cor­
responding probability measures, i.e., 

pQ(z) = MJ(Z) n H, 

where MQ(Z) are the positive invariant measures, and H are the 
measures ju such that /z(Z) = l. PQ{Z) is a compact simplex in the 
sense of Choquet, and its extremal points are just the ergodic mea-
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sures (see [10, §10]). Let EPG(Z) be the extreme points together with 
the simplex structure topology. A subset is defined to be closed in this 
topology if it consists of the extreme points of a closed face in PG(Z). 
EPG(Z) is compact, and it is Hausdorff if and only if EP Q{Z) is 
closed in PQ{Z) (see [4]). 

The support of an ergodic measure is the closure of an orbit (see 
[8, p. 59]), hence we may define a map 

6: EPG(Z) -+ (Z/G)~ 

by letting 0(ix) correspond to the support of JU. The following is verified : 

THEOREM 1.0 is continuous. In addition 
(a) If Z/G is To, then 0 is one-to-one. 
(b) If the orbits are closed, 0 is onto. 
(c) If the orbits are finite, and uniformly bounded in cardinality, 0 

is a homeomorphism. 
(d) If the orbits have the same finite cardinality, then EPQ{Z) and 

(Z/G)~ are Hausdorff. 
(e) If G is equicontinuous, 0 is a homeomorphism onto, and EPG(Z) 

and (Z/G)~ are Hausdorff. 

In particular, if all of the orbits are finite, then 0 is a continuous 
bijection. On the other hand our first construction shows: 

THEOREM 2. There is a distal action of the integers G on a compact 
metric space Z such that all of the orbits are finite, but 0 is not a homeo­
morphism. 

For many transformation groups, 0 is not one-to-one. In fact we 
have proved: 

THEOREM 3. There is a C° distal action of the integers G on the torus 
Z such that (Z/G)~ has only one point (i.e., (G, Z) is minimal), and 
EPG(Z) is uncountable. 

Let 51 be a separable C*-algebra with identity. Let pr 21 be the set 
of primitive ideals in §1 with the Jacobson structure topology (see 
[3, §3]). Let 21* be the Banach dual of 2t with the weak* topology. 
The central functions C(2t) are t h e / i n 2Ï* such that f(AB) =f(BA) 
for all A and B in 2Ï. Let JT(2I) be the unit traces on 21, i.e., 

T(2l) - C+(2I) H F , 

where C+(2Q are the positive central functions, and H consists of the 
ƒ in 21* such that ƒ(/) = 1. r(2t) is a compact simplex (see [12, Satz l ] ) , 



224 E. G. EFFROS AND FRANK HAHN [March 

and its extreme points are just the traces that give rise to factor 
representations (see [3, §6.7.3]). Let ET{%) be the extreme traces, 
with the simplex structure topology. 

The kernel of a factor representation of 31 is primitive (see [2, 
p. 100]). This enables us to define a map 

0 ' : £ 7 \ 2 i ) - » p r 2 t 

by 

0'(r) = kernel LT
y 

where LT is the representation defined by r. 

THEOREM. 4. 0' is continuous. In addition, 
(a) If 21 is of type I, then 0' is one-to-one. 
(b) If all of the representations of 21 are finite dimensional, then 0' 

is onto. 
(c) If the irreducible representations of 2t have dimension uniformly 

bounded by a finite cardinal, then 0' is a homeomorphism. 
(d) If all of the irreducible representations of 21 are of the same finite 

dimension, then ET{%) and pr 2t are Hausdorff. 

Letting 21 (G, Z) be the C*-algebra associated with a transformation 
group (G, Z) (see [6, p. 890]) we may use Theorems 2 and 3 to prove 

THEOREM 5. There is a separable C*-algebra 21 for which all of the 
representations are finite dimensional, and 0' is not a homeomorphism. 

THEOREM 6. There is a separable C*-algebra 2Ï such that pr 21 has 
only one point (i.e., 21 is simple), and ET(%) is uncountable. 

Sketching the proofs of Theorems 5 and 6, assume that G is discrete 
and Z is compact, and let 21 = 21 (G, Z). Consider the diagram 

ir' 
EPG(Z) <- JEr(80 

le | 0 ' 
{ZIG)~ £ pr 2Ï 

"r 
0 and 0' are defined above. C(Z) may be regarded as a subalgebra of 
81, and if P is a primitive ideal in 2t, there is an orbit closure F in Z 
such that 

PC\C(Z) = { / G C ( Z ) : / | F = 0}. 
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7r(P) is defined to be the corresponding element of (Z/G)~. w is 
continuous and onto. 

If r is an extremal trace, its restriction to C(Z) is an ergodic mea­
sure (see [12, Lemma 14]). Letting IT' be the restriction map, ir' is 
continuous and onto (see [12, Lemma 16]), and the diagram is com­
mutative. 

The isotropy group Hç a t f consists of the 5 in G for which s£ = f. 
Irreducible representations of Hç may be induced to irreducible 
representations of 31 (see [6, p. 901]). Inducing the trivial one-dimen­
sional representation at f, one obtains a map Ti of Z into pr 2Ï. If the 
isotropy groups "vary continuously" with f, it follows from [6, Theo­
rem 2.1] that T\ defines a continuous map T of (Z/G)~ into pr 21 which 
is a cross-section for TT. This condition on isotropy groups is too strong 
for our purposes. We have been able to prove: 

THEOREM 7. If the isotropy groups are commutative, then T\ induces 
a continuous cross-section Tfor TT. 

We have also generalized Theorem 7 to locally compact G and Z. 
Turning to Theorem 5, let 2l = 2l(G, Z), where (G, Z) is described 

in Theorem 2. As the orbits are closed, the action of G on Z is smooth, 
and by Mackey's Imprimitivity Theorem, all of the irreducible repre­
sentations of 21 are induced from characters on isotropy groups H$ 
(see [6, Theorem 2.2]). As the latter are of finite index in G, the 
irreducible representations are finite dimensional. I t follows from 
Theorems 1 and 4 that 0 and 0' are both bijections. Let jxa and /i be in 
EPG(Z) with 0(M«) converging to 0(M), but /xa not converging to ju-
We have 

Pa = nOQla)) -> P = T(0(M)), 

hence if 0' is a homeomorphism, 

(1) ra = Ö ' - W ~> r = ^ - i (P ) . 

As 

0O*«) = T0'(r«) = 0^(ra) 

and 0 is one-to-one, M« = TT'(^a) and similarly, JU = 7T'(T). From (1), 
Ma~̂ M> a contradiction. 

(G, Z) is said to be free if the isotropy groups are trivial. G is amen­
able if the regular representation of G weakly contains all of the irre­
ducible representations (see [3, §18.3] and [7, §2.3]). Generalizing a 
result of Guichardet for semidirect products [8, p. 58], 
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THEOREM 8. If (G, Z) is free and G is amenable, then w is a homeo-
morphism. 

Letting (G, Z) be the transformation group of Theorem 3, G is 
amenable, and (G, Z) is free, as otherwise there would be a finite, 
thus closed orbit. As w is one-to-one, pr 31 has only one point, and as 
ir' is onto, ET($) is uncountable. 
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