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It has long been recognized that one may associate operator alge-
bras with transformation groups (see, e.g. [9, Chapter III], [11;1,
p. 310] [5]). In this paper we shall answer two questions about the
ergodic invariant probability measures on a locally compact trans-
formation group (Theorems 2 and 3). This information is then used
to solve analogous problems for the unit traces of a C*-algebra
(Theorems 5 and 6). Full proofs will appear elsewhere.

Let (G, Z) be a topological transformation group with G and Z
second countable and Hausdorff, G a locally compact group, and Z a
compact space. Let Z/G be the set of orbits G{ with { in Z, together
with the quotient topology. Define an equivalence relation ~onZ/G
by p~q if the sets {p} and {¢g} have the same closure, and let (Z/G)~
be the equivalence classes with the quotient topology (see [8, p. 58]).
The elements of (Z/G)~ are in one-to-one correspondence with the
subsets of Z that are closures of orbits. Z/G is T if and only if ~ is
trivial, and T3 if and only if the orbits are closed.

Let Z be compact and let C(Z) be the continuous complex valued
functions on Z with the uniform norm, and M(Z)=C,(Z)* the real
Radon measures on Z with the weak* topology. Let G act on C(Z)
and M(Z) by translation, i.e., for s in G, ¢ in Z, f in C(Z), and u in
M(Z), let

$NE) = f(s7*),
() () = (™).

Let M(Z) be the invariant measures on Z, and Pg(Z) the cor-
responding probability measures, i.e.,

Pe(Z) = M&(Z) N H,

where M{§(Z) are the positive invariant measures, and H are the
measures u such that u(Z2)=1. P¢(Z) is a compact simplex in the
sense of Choquet, and its extremal points are just the ergodic mea-
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sures (see [10, §10]). Let EP ¢(Z) be the extreme points together with
the simplex structure topology. A subset is defined to be closed in this
topology if it consists of the extreme points of a closed face in P g(Z).
EPg(Z) is compact, and it is Hausdorff if and only if EPg(Z) is
closed in Pg(Z) (see [4]).

The support of an ergodic measure is the closure of an orbit (see
[8, p. 59]), hence we may define a map

8: EPo(Z) — (Z/G)~

by letting 0(u) correspond to the support of u. The following is verified :

THEOREM 1. 0 is continuous. In addition

(@) If Z/G is T\, then 0 is one-to-one.

(b) If the orbits are closed, 0 is onto.

(c) If the orbits are finite, and uniformly bounded in cardinality, 0
is a homeomorphism.

(d) If the orbits have the same finite cardinality, then EP ¢(Z) and
(Z/G)~ are Hausdorff.

(e) If G is equicontinuous, 0 is a homeomorphism onto, and EP ¢(Z)
and (Z/G)~ are Hausdorff.

In particular, if all of the orbits are finite, then 6 is a continuous
bijection. On the other hand our first construction shows:

THEOREM 2. There is a distal action of the integers G on a compact
metric space Z such that all of the orbits are finite, but 0 is not a homeo-
morphism.

For many transformation groups, 6 is not one-to-one. In fact we
have proved:

THEOREM 3. There is a C” distal action of the integers G on the torus
Z such that (Z/G)~ has only one point (i.e., (G, Z) is minimal), and
EP ¢(Z) is uncountable.

Let ¥ be a separable C*-algebra with identity. Let pr ¥ be the set
of primitive ideals in ¥ with the Jacobson structure topology (see
[3, §3]). Let A* be the Banach dual of % with the weak* topology.
The central functions C(¥) are the f in A* such that f(4B)=f(B4)
for all 4 and B in . Let T(%) be the unit traces on ¥, i.e.,

TR = CHA) N H,

where C*+(9) are the positive central functions, and H consists of the
fin A* such that f(I) =1. T'(¥) is a compact simplex (see [12, Satz 1]),
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and its extreme points are just the traces that give rise to factor
representations (see [3, §6.7.3]). Let ET() be the extreme traces,
with the simplex structure topology.

The kernel of a factor representation of ¥ is primitive (see [2,
p. 100]). This enables us to define a map

0:ETA) —»prA
by

0'(r) = kernel L,
where L7 is the representation defined by 7.

THEOREM. 4. 0’ is continuous. In addition,

@) If A is of type I, then 6’ is one-to-one.

(b) If all of the representations of U are finite dimensional, then 6’
s onto.

(c) If the irreducible representations of N have dimension uniformly
bounded by a finite cardinal, then 0’ is a homeomorphism.

(d) If all of the irreducible representations of U are of the same finite
dimension, then ET () and pr A are Hausdorff.

Letting A(G, Z) be the C*-algebra associated with a transformation
group (G, Z) (see [6, p. 890]) we may use Theorems 2 and 3 to prove

THEOREM 5. There is a separable C*-algebra U for which all of the
representations are finite dimensional, and 0’ is not a homeomorphism.

THEOREM 6. There is a separable C*-algebra U such that pr U has
only one point (i.e., N is simple), and ET(N) is uncountable.

Sketching the proofs of Theorems 5 and 6, assume that G is discrete
and Z is compact, and let A =A(G, Z). Consider the diagram

’

EP4(Z) < ET ()

1o 1o
/6y~ Spra
T

0 and 6’ are defined above. C(Z) may be regarded as a subalgebra of
A, and if P is a primitive ideal in ¥, there is an orbit closure F in Z
such that

PNCEZ) = {fEC2):f| F =0}.
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w(P) is defined to be the corresponding element of (Z/G)~. w is
continuous and onto.

If 7 is an extremal trace, its restriction to C(Z) is an ergodic mea-
sure (see [12, Lemma 14]). Letting 7’ be the restriction map, 7' is
continuous and onto (see [12, Lemma 16]), and the diagram is com-
mutative.

The isotropy group H; at { consists of the s in G for which s{=¢.
Irreducible representations of H; may be induced to irreducible
representations of ¥ (see [6, p. 901]). Inducing the trivial one-dimen-
sional representation at {, one obtains a map 71 of Z into pr . If the
isotropy groups “vary continuously” with ¢, it follows from [6, Theo-
rem 2.1] that 7 defines a continuous map T of (Z/G)~ into pr % which
is a cross-section for . This condition on isotropy groups is too strong
for our purposes. We have been able to prove:

THEOREM 7. If the isotropy groups are commutative, then Ty induces
a continuous cross-section T for .

We have also generalized Theorem 7 to locally compact G and Z.

Turning to Theorem 35, let A =A(G, Z), where (G, Z) is described
in Theorem 2. As the orbits are closed, the action of G on Z is smooth,
and by Mackey’s Imprimitivity Theorem, all of the irreducible repre-
sentations of ¥ are induced from characters on isotropy groups H;
(see [6, Theorem 2.2]). As the latter are of finite index in G, the
irreducible representations are finite dimensional. It follows from
Theorems 1 and 4 that 6 and 6’ are both bijections. Let u. and u be in
EP¢(Z) with 0(u.) converging to 6(u), but u, not converging to u.
We have

Py = T(O(na)) = P = T(0(w)),
hence if ¢’ is a homeomorphism,
1) Te = 071(P,) > 7 = 6~1(P).
As
0(pe) = 76’ (1a) = 07 (7a)

and 6 is one-to-one, u,=w'(r,) and similarly, u=#'(r). From (1),
Ma—u, a contradiction.

(G, Z) is said to be free if the isotropy groups are trivial. G is amen-
able if the regular representation of G weakly contains all of the irre-
ducible representations (see [3, §18.3] and [7, §2.3]). Generalizing a
result of Guichardet for semidirect products [8, p. 58],
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TueoreM 8. If (G, Z) s free and G is amenable, then = is a homeo-
morphism.

Letting (G, Z) be the transformation group of Theorem 3, G is
amenable, and (G, Z) is free, as otherwise there would be a finite,
thus closed orbit. As 7 is one-to-one, pr U has only one point, and as
x’ is onto, ET(Y) is uncountable.
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