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The purpose of this note is to announce several results on deforma­
tions of homomorphisms of Lie groups and Lie algebras. Our main 
theorems are precise analogues of two basic theorems on deformations 
of complex analytic structures on compact manifolds, the rigidity 
theorem of Frölicher-Nijenhuis [3] and the local completeness theo­
rem of Kuranishi fs]. In our results, sheaf cohomology is replaced by 
the cohomology of Lie groups and Lie algebras. Our proofs rely heav­
ily on the theory of deformations in graded Lie algebras (GLA's) 
developed in [9]. Our results on Lie algebra homomorphisms follow 
immediately from the results given there, once the appropriate GLA 
is defined. Detailed proofs of the results on Lie group homomor­
phisms (which are only outlined here) will appear elsewhere. 

1. Deformations of homomorphisms of Lie algebras* Let g and 
§ be finite-dimensional real Lie algebras. For each integer w^O, let 
En be the vector space of all alternating w-linear maps of g into fy; 
let E = ®nE

n. We define a product on E, also denoted [ , ] as fol­
lows: If 4>E:Em and ^ £ J E W , then [<j>, \j/]E;Em+n is given by 

[$, 1̂1 (*i, * • • , *Wn) 

^ ]C s g n M[*C**u>f • # • * *'M)* iK**<*+i)> • • * > **<»+»))L 

where the sum is taken over all permutations cr of {l, • • • , m+n} 
such tha t c ( l ) < • • • <a(m) and a(m+l) < • • • <(x(m+n). When 
<p^to®u and %//— ir®v, where co and ir are alternating (real-valued) 
forms on g and u> v&)> then [<f>, \{/] = (co A^r) ® [u, v]. Thus it follows 
easily that the product (<£, )̂—>[<£, %//] defines E as a GLA. We define 
a homogeneous linear map D: E-^E of degree 1 as follows: if <£££>, 
then 

(D4>)(xl9 • • • , aWfi) 

= X) (-i) i+i<K[^> »i\i *i,-'->*i9---,*h'—, *wi)-
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Then D is a derivation and D o D = 0, since, for <j>=o)®u, we have 
D — dco®u, where d denotes the Chevalley-Eilenberg coboundary 
operator for cochains with values in the (trivial) g-module R [2]. 

An element $ £ £ * is a linear map of g into f). A simple direct com­
putation shows that </> is a homomorphism of Lie algebras if and only 
if 0 satisfies the "deformation equation" (see [9]) D<l>+^[(j>f <£]=0. 
Let (R be the set of all homomorphisms of g into f); (R is a real algebraic 
set in E\ If p£(R, we define a homogeneous derivation Dp of degree 1 
of E by Dpa = Da:+ [p, a]. Then Dpo Dp = 0 and hence (£, Z>p) is a 
cochain complex. A computation shows that the cohomology modules 
Hn(E, Dp) are identical with the Lie algebra cohomology modules 
Hn($, Ï)) (see [2] for definitions). Here Ï) is a g-module via the repre­
sentation adfc o p. 

Let H be a connected Lie group with Lie algebra f). (Our results 
are independent of the choice of H.) We define an if-module struc­
ture on E as follows: if <££EW and fe£iï, then /&•<£ = (Ad&fe) o<£, 
where Ad$ denotes the adjoint representation of H. Then H acts on 
the GLA E by automorphisms. Thus E is an analytic GLA and D is 
an admissible derivation of E in the sense of [9]; the deformation 
theorems stated there apply. 

The set (R QE1 is stable under the action of H. Two LA homomor­
phisms of g into Ï) are equivalent if they lie on the same orbit under H. 
A homomorphism p £ (R is rigid if the orbit H(p) is an open subset of (R. 
In this case, H(p) is one component of a Zariski-open subset of (R 
[9, p. 21]. Consequently, there are only a finite number of equivalence 
classes of rigid homomorphisms of g into 1). The following result is a 
special case of [9, Theorem 18.1]: 

THEOREM A. Let p: g—>{) be an LA homomorphism. If Hl(§, §) =0, 
then p is rigid. 

A connected subset 3Z of (R containing p is a locally complete family 
of deformations of p if the orbit H(3Z) is a neighborhood of p in (R. 
Theorem 20.3 of [9] on the existence of "Kuranishi families" of 
deformations is now applicable. Briefly, it says that there exists a 
locally complete family 3Z of deformations of p which can be param­
etrized by the set of zeros of an analytic map defined on a neighbor­
hood of 0 in Hl($, {)) with values in iï2(ô» &)• If» in particular, H2(Q, Ï)) 
= 0, then p is a simple point of (R (i.e., (R is a manifold near p). 

We remark that all of the above results are valid with only minor 
modifications, if g and Ï) are Lie algebras over an algebraically closed 
field (of arbitrary characteristic) provided that § is the Lie algebra of 
an algebraic group H. 
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The following theorem, which is of interest only in the case of char­
acteristic p>0, is obtained by considering deformations of the iden­
tity homomorphism of a Lie algebra a. 

THEOREM B» Let Aut(a) be the linear algebraic group of all automor­
phisms of a finite-dimensional Lie algebra a over an infinite perfect 
field k. If H2(a, a) = 0 , then the Lie algebra of Aut(a) is the Lie algebra 
Der (a) of all derivations of a. 

Here linear algebraic groups and their Lie algebras are as in Cheval-
ley [ l ] . If k is of characteristic 0, the conclusion of Theorem B 
holds without any hypothesis on H2(ct, a); this is not the case if k 
is of positive characteristic. A related theorem was proved for asso­
ciative algebras by Gerstenhaber [5]. 

Exactly analogous results hold for deformations of homomorphisms 
of associative algebras. If A and B are associative algebras, then 
En is defined to be the vector space of all w-linear maps of A into B. 
If <j>EEm and ^ £ £ n , then [0, yp]ç=LEm+n is defined by 

which is the commutator of the "cup" product in Gerstenhaber [4]. 
The derivation D is defined by 

D<t>(xh • • • , xm+i) = ] £ (— l)*+1<K*i, • • ' , *<*i+i, ' • • , *Wi). 

With these modifications, all of the above results carry over for homo­
morphisms of A into B; Lie algebra cohomology is replaced by the 
cohomology of associative algebras. 

2. Relative deformations. In order to extend our results to de­
formations of Lie groups, we shall need a relative version of the 
results of §1. Let p: g—»f) be an LA homomorphism, let f be a sub-
algebra of g, and consider Ï) as a g-module as above. Let C($, Ï, f)) 
be the complex used to compute the relative Lie algebra cohomology 
modules Hn(e, ï, Ï)) (see [7, p. 594] for definitions). Then C(Q, ï, Ï)) 
is a graded subspace of E ; in fact a computation shows that C(ô, ï, fy) 
\s a graded subalgebra of the GLA E. Moreover, C(ô, ï, ï)) is stable 
ander Dp and Dp agrees with the standard coboundary operator on 
C(ô> ï> ï))> except for an irrelevant sign. Thus the cohomology modules 
of the cochain complex (C(g, f, Ï)), Dp) are just the relative cohomol­
ogy modules i în(ô, ï, ï)). 
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Let ^GCKô» ïi Ï))- Then p + 0 is a linear map of g into f) whose re­
striction to t agrees with p. I t is trivial to see that p-\-<t> is an LA homo-
morphism if and only if 0 satisfies the deformation equation 

0 p * + * [ * , * ! = 0. 

Thus the solutions of the deformation equation correspond to the LA 
homomorphisms whose restriction to Î agrees with p. All of the results 
of §1 can be carried over to such homomorphisms. We leave their 
detailed formulation to the reader. The group H is replaced by the 
identity component of the subgroup H' of i f defined as follows: h(E.H' 
if and only if (Ad^)(p(^)) =p(x) for every #£f . 

3. Deformations of homomorphisms of Lie groups. Let G and H 
be connected Lie groups with Lie algebras g and Ï). We denote by (ft! 
the set of all Lie group homomorphisms of G into H, topologized by 
the compact-open topology, (R is as in §1. Let 0: (R'—>Homn(g, $) be 
the map which assigns to each homomorphism ri G-+H the corre­
sponding LA homomorphism dr: g~*f), Set (R"=0((RO. Then 0 is a 
homeomorphism of (R' onto (R" and (R" is an analytic subset of 
H o m ^ g , {)). This allows us to use differential-geometric reasoning in 
studying (R'. 

If h£:H, let Ih denote the corresponding inner automorphism of H. 
We define (R' as a topological transformation space for H by setting 
Ifi'r = Ih o r for hÇîH and r£(R' . Then 0 is equivariant with respect to 
the actions of H on (R' and HomjR(g, Ï)). Two homomorphisms of G 
into H are equivalent if they lie on the same orbit under the action of 
H. A homomorphism r is rigid if the orbit H(r) is an open subset of CR'. 

For Lie groups, we have the following analogue of Theorem A. We 
refer the reader to [ô] for the (differentiable or, equivalently, con­
tinuous) cohomology theory of Lie groups. 

THEOREM C. Let r:G—>H be a homomorphism of connected Lie 
groups and consider t) as a G-module via the representation Ad$ o r. If 
Hl(G, Ï)) = 0 , then r is rigid. 

The proof is similar to that given by Weil in [10, p. 152] for dis­
crete G. 

Let C be a maximal compact subgroup of G, and let c be the Lie 
algebra of C. If V is a G-module, then it is known [6] that Hn(C, 10 
= 0 for n>0 and that Hn(G, V) is canonically isomorphic to the rela­
tive LA cohomology i?n(g, c, V). 

Let r G(R' and let p = dr. We consider % as a G-module (respectively 
g-module) as above. Let 

(Re = {s G (R; | s(x) = r(x) for every x E C}. 
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We define (Rc similarly. We now apply Theorem C to deformations of 
homomorphisms of C into H. Since Hl(C, tj) = 0, it follows that there 
exist a neighborhood N' of r in (R' and a continuous map 7 : N'—>H 
with y(r) =e (e denotes the identity element of H) such that 7(5) -s 
£(Rc for every sÇzN'. Furthermore, an argument involving the 
simply connected covering group of G shows that there exists a neigh­
borhood N of p on (Rc such that, if TÇZN, then there exists sÇiV' such 
that ds=r. Let 5C be a (sufficiently small) Kuranishi family for p on 
(Rc. (3C exists by the results of §2.) Let Xf=0-1(3Z). Then it follows 
easily that 3Zf is a locally complete family of deformations of r. Since 
Hn(G, Ï)) =i?n(g, c, f)), we see that 3C' can be parametrized by the set 
of zeros of an analytic map defined on a neighborhood of 0 in Hl(G, Ï)) 
with values in H^iG, Ï)). Thus X' is a Kuranishi family for r in (R'. 

REMARKS. (1) I t is not difficult to extend Theorem C to the case in 
which G is a Lie group whose group of components is finitely gener­
ated and H is an arbitrary Lie group. However, we have not been 
able to extend the results on Kuranishi families to this case. 

(2) Let G be a compact topological group. J. M. G. Fell has out­
lined to one of the authors a proof that every finite-dimensional repre­
sentation of G is rigid. More generally, we conjecture that Theorem C 
is valid if G is a compactly generated locally compact topological 
group and H is a Lie group. 
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