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Here we present the principal ideas and results of [5] with some 
indications of proof. We introduce the notion of measure-theoretic 
uniformity, and we describe its use in recursion theory, hyperarith-
metic analysis, and set theory. In recursion theory we show that 
the set of all sets T such that the ordinals recursive in T are the re­
cursive ordinals has measure 1. In set theory we obtain all of Cohen's 
independence results [l] , [2] without any use, overt or concealed, of 
his method of forcing or his notion of genericity. Solovay [8], [9] has 
extended Cohen's method by forcing statements with closed, mea­
surable sets of conditions rather than finite sets of conditions; in this 
manner he exploits forcing and genericity to prove: if ZF is consis­
tent, then ZF+ "there exists a translation-invariant, countably addi­
tive extension of Lebesgue measure defined on all sets of reals" + "the 
countable axiom of choice" is consistent. Solovay's result is also a 
consequence of the notion of measure-theoretic uniformity. 

We begin with the simplest possible example of measure-theoretic 
uniformity. Let T be an arbitrary set of natural numbers, and let P 
be the power set of the natural numbers. We think of P as the prod­
uct of countably many copies of a two-point set {a, b}. We assign 
the unbiased measure: tn({a, &}) = 1, m({a}) =m({b}) = J, and 
m((j>) = 0. We give P the induced product measure denoted by u. 

Let R(T, x, y) be a recursive predicate of the set-variable T and 
the number variables x and y. A familiar uniformity can be expressed 
as follows: If for some given T we have (x)(Ey)R(T, x, y)y then there 
exists a function ƒ recursive in the given T such that (x)R(T, x,f(x)). 
Before we introduce the measure-theoretic counterpart of this uni­
formity, we must shift our point of view from Skölem functions to 
bounding functions in order to make the measure come out right: if 
for some given T we have (x)(Ey)R(T, x, y), then there exists a func­
tion/recursive in T such that (x)(Ey)yûf(X)R(Tf x, y). Note that the 
existence of a Skölem function is equivalent to the existence of a 
bounding function. It is not hard to verify: if { T\ (x)(Ey)R(T> x, y) \ 
has measure 1, then { T\ (£ƒ)(ƒ recursive and (x)(Ey)yèf(X)R(Ti x, y)) ) 
has measure 1. Thus the restriction of the bounding function ƒ to the 

1 The preparation of this paper was supported by U. S. Army Contract ARO-D-
373. The author wishes to thank Professor Anil Nerode for many helpful conversations 
on uniformity and definability in set theory. 
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recursive functions resulted merely in a restriction of T to a set of 
measure 1. 

THEOREM 1. Let B(Tyx, y) be arithmetical. Then the set of all T satis-
fying the following condition has measure 1: if (x)(Ey)B(T, x, y), then 
there exists an arithmetical f unction f such that (x)(Ey)yzf(X)B(T, x, y). 

COROLLARY 2. Let B(T) be arithmetical If the set ÎB(T) has positive 
measure, then B(A) holds f or some arithmetical A. 

The proof of Theorem 1 turns on the fact that the measure of the 
set TB(T, #, y) is an arithmetical function of x and y. 

Let To, Tit Xi, • • • be an arbitrary sequence of sets of natural 
numbers. For all results below prior to Theorem 7, we define 
ffî(To, Tu T%, • • • ) as follows: let Mo(T0l 7i, r2, • • • ) be the set of 
all sets arithmetical in some finite subsequence of To, 7\, JH2, • • • ; 
for each recursive ordinal a > 0 , let ïiïla(To, Tu JT2, • • • ) be the set of 
all sets "hyperarithmetic" in some finite subsequence of To, 7if T%, • • • 
with the set-quantifiers of the hyperarithmetic definitions restricted 
to U{snx^(r0, 7i, r2, • • • ) | j3<a}; finally, let 9tfl(r0, Th T1% • • • ) 
= U {ffîaiTo, T\% r2, • • • )|a<coi}, where coi is the least nonrecursive 
ordinal, We put a probability measure on sequences of sets of natural 
numbers by putting the product measure on the product of countably 
many copies of P, the power set of the natural numbers. Feferman 
[3] proves that if To, Tu Ï2, • • • is a generic sequence, then 
W(Tot Tu T%y • • • ) is a model of the X)î-axiom 0f choice. The get of 
all generic sequences has measure 0. 

THEOREM 3. With probability 1: 9nx(r0, 7i, T2, • • • ) is a model of 
the ^X-axiom of choice. 

Spector [lO] proved the existence of two incomparable hyper-
degrees by observing that the set {(To, 7\)| To and T\ are hyper-
arithmetically incomparable} has measure 1. Theorem 3 is a con­
sequence of the measure-theoretic uniformity expressed by Theorem 
4, The origin of Theorem 4 is a result of Kreisel [4]: if B(T} x, y) 
is ir\, and if for some given T we have (x)(Ey)B(T9 x, y), then there 
exists a function ƒ hyperarithmetic in the given T such that 
(*)B(rf *,ƒ(*)). 

THEOREM 4. Let B(T, x, y) be ir\. The set of all T satisfying the fol­
lowing condition has measure 1: if (x)(Ey)B(T, x, y), then there exists 
a hyperarithmetic f unction f such that (x)(Ey)v*f(X)B(Tt x, y), 

COROLLARY 5. With probability 1, the ordinals recursive in T are 
the recursive ordinals. 
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COROLLARY 6. For every T, if the set {X\ T is hyperarithmetic in X} 
has positive measure, then T is hyperarithmetic. 

Now let 2fTC be a countable, initial segment of the constructible sets 
which is a model of ZF. For each T, let 2HT(r) be the set of all sets 
constructible from T by means of the ordinals of W. Let <3K0(T) 
= {T} ; for each a>0 in 3TC, let fPda(T) be the set of all subsets of 
U{9TC/3(r)|j8<a} definable by means of some first-order formula of 
ZF with constants in, and quantifiers restricted to, U { ^ ( T ) \ j8 <a}. 
Then 9n(r)=U{2fH0(r) | i8G9^}. Feferman [3] provides a language 
£* suitable for dissecting 2iïl(r). <£* includes the usual logical sym­
bols, the G-symbol for membership, numerals for all the ordinals in 
9H, a 3-symbol to denote the set T, abstraction symbols, and re­
stricted quantifier symbols (Ex)x<a and (x)x<a. 

Let ƒ be a function from the ordinals of 9ÏI into the ordinals of 9ÏL 
We say ƒ is definable in SflZ if there exists a formula F(x, y) of ZF 
with constants in Sflfl such that for all a, j8 £ 91T, we have f (a) 
=j8<-*tzcyftF(û!, j8). Theorem 7 expresses the key measure-theoretic 
uniformity we associate with ZF. 

THEOREM 7. Let B(x, y) be a formula of <£*. Then the set of all T 
satisfying thefollowing condition has measure 1 : if Ë c^(r) (x) (Ey)B(x, y), 
then there exists a function f definable in 3ft such that 

^cXiW)(%)x<«(Ey)y<s{a)B(%, y). 

For each sentence $ of <£*, we observe that the set {T\ È ^ C D ^ } 

is Borel, since 2fft is countable; we define p($), the probability that 
$ is true in 9ÏI(JT), to be the measure of this Borel set. 

THEOREM 8. For each fe^O, the function p($), restricted to sentences 
of <£* having at most k unbounded quantifiers, is definable in 9fTC. 

Theorem 7 follows from Theorem 8 easily. Let p(a, j3) 
=P((x)x<a(Ey)y<pB(x, y)). By Theorem 7, p(a, 0) is definable in 2HX. 
For each a, p(a, /3) is a nondecreasing, bounded function of /?. But 
then for each a, there is a 7 such that p(a, 7) = least upper bound of 
{p(a, p)\pEWl} = P((x)x<a(Ey)P(x, y)); let the least such 7 be f (a). 

I t follows from Theorem 7 that the replacement axiom holds in 
Wl(T) with probability 1. Both Cohen [ l ] , [2] and Solovay [8], [9] 
show the replacement axiom holds in their models by observing that 
the forcing relation, restricted to sentences with at most k unbounded 
quantifiers (fe^O), is definable in SflX. We use Theorem 8 instead. 

THEOREM 9. With probability one, 9ll(T) is a model of ZF+V^L 
and the cardinals ofîPfl(T) are the same as those of 9ÎI. 
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Let To, Tu Z2, • • • be an arbitrary sequence of sets of natural 
numbers. OTt(To, Zi, Z2, • • • ) is defined like M(T), save for some 
slight complications designed to maximize the symmetry of 
9îZ(Z0, TU Z2, • • • ). Let <£* be augmented by symbols 3o, 3i, 32, • • • ; 
Theorems 7 and 8 remain true. Feferman [3] shows that if Zo, Zi, 
Z2, • • • is a generic sequence, then 3ïl(Z0, Zi, Z2, • • • ) is a model of 
ZJP in which the Boolean algebra of all sets of natural numbers has 
no nonprincipal, maximal ideals. 

THEOREM 10. With probability 1, 37l(Z0, Zi, Z2, • • • ) is a model of 
ZF in which the Boolean algebra of all sets of natural numbers has no 
nonprincipal, maximal ideals. 

The proof of Theorem 10 uses only one trick not used to prove 
Theorem 9. We formulate this trick as Lemma 11. Let r be an arith­
metical function from co2 into {0, 1} ; r induces a transformation of 
the sentences of <£* as follows: "w£3y" is replaced by "(w£3y and 
r(n, j) = 0 ) V ( ^ C ^ i a n d r(n, j ) = l ) . " In a similar fashion, r trans­
forms all sequences of sets of natural numbers. 

LEMMA 11. {(Z0, Th Z2, - • • ) | |= ^ o v ^ r , , . . . ) ^ ) } = 
r ({(Z 0 , Zi, Z2, • • • ) | t:(3\i(TotT1,2,T-.-fi}), for each arithmetical f unc­
tion T. 

Lemma 11 is Feferman's transformation lemma [3] with "forcing" 
replaced by "truth" and "generic sequence" replaced by "arbitrary 
sequence." 

LEMMA 12. Let $ be a sentence of £* whose only 3»-symbols are 
3o, 3i, • • • , 3w(wè0). Let To, T\, • • • , Zn be an arbitrary finite se­
quence of sets of natural numbers. Then the conditional probability that 
$ is true, given that 3* = Tifor allien, is either 0 or 1. 

Let Xa be a variable of <£* restricted to sets of natural numbers in 
m(T0, Zi, Z2, • • • ), and let B(X<*) be a formula of <£* with all 
quantifiers bounded. For each formula B{XU) and each sequence 
Z=(Zo , T\, Z2, • • • ), we define the absolute measure of X(aB{X<a), 
denoted by ^{X^BiX03)), as follows: let 3B be some 3t-symbol not 
occurring in B(Xœ), then jitJ(ZC0^(Xw)) is the conditional probability 
that B(3B) is true given that 3» = Z\ for every 3rsymbol occurring in 
B{Xoi). We say 9TC(Z0, Zi, Z2, • • • ) is measure-complete if for every 
pair of formulas B0(X") and Bi(X"), if X»BQ(X») = j£«jBi(X«) is true 
in 2fïl(Z0, Zx, Z2, - • - ), then d(Ê»B(X»))~ixT

a(X«B (X-)). Thus, 
in a measure-complete model, we can associate absolute measure with 
sets rather than definitions of sets. 
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LEMMA 13. With probability one, 2flfl(jTo, T\, T*, • • • ) is a measure-
complete model of ZF in which the absolute measure is definable. 

Solovay [9] has results virtually identical with Theorem 10 and 
Lemma 12, save that To, T\, T2, • • • is always a sequence generic 
in his sense. 

LEMMA 14. With probability one, MCTQ, T\, T2, • • • ) is a measure-
complete model of ZF, then the absolute measure agrees with Lebesgue 
measure on all Lebesgue-measurable sets, is translation invariant, and is 
countably additive. 

LEMMA 15. With probability one, the countable axiom of choice holds 
in 2fE(r0, Ti, r2 , • • • ). 

The result of Solovay [9] we quoted on the first page of this paper 
follows from Lemmas 13 through IS. The translation invariance follows 
from some basic facts about random variables. The countable addi-
tivity of the absolute measure follows from the measure-completeness 
and the countable additivity of Borel measure. In short, the sets of 
reals in a countable, measure-complete model form a good copy of a 
certain countable family of Borel sets in the "real" world. We wish 
to stress that this last fact has no vital connection with the ideas of 
forcing and genericity. 

Let ^ be a sentence of ZF. Then the Borel set {T\ Ëgrccn^} has 
measure 0 or 1 by the 0-1 law.2 Let FETi($K), (the fundamental equiv­
alence type of a one-element extension of M), consist of all $ such 
that {Tl \=-<fîi(T)$} has measure 1; as we saw above, FETi($K) in­
cludes ZF+ VT^L. All Cohen-generic extensions 9ïl(!T) have the same 
elementary equivalence type, and that type is not FETi(îftl). In [6] 
we will define the fundamental equivalence types of general, count­
able models. 

Call T fundamental if 2ftl(r) has the fundamental equivalence type. 
Several persons have observed : a set is fundamental if and only if it 
has the same degree of nonconstructibility as some Solovay-generic 
set. When we pass from sets to degrees, we pass from forcing to 
measure-theoretic uniformity. In [7] Scott and Solovay provide an 
interesting general theory which makes possible an accurate com­
parison between the forcing approach and the measure-theoretic 
uniformity approach. 

2 Professor Simon Kochen suggested the use of the 0-1 law here in place of 
Lemma 12. 
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