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1. The problems and definitions. There is a general type of problem
which contains critical point theory at one extreme, and immersion
theory at another. The problems of interest to us lie between these
two theories. A glance into their nature is afforded by a simple
example to be given following some definitions. Let N* and M™ de-
note two differentiable manifolds-with-boundary (perhaps empty) of
dimensions # and m respectively, and let f: N—M be a continuous
function with sufficient differentiability at any stage to allow the
discussion to proceed. The deficiency of f at a point x of N is defined
by (minimum (%, m)-rank f at x). Then x is said to be an ordinary
point of f if f has deficiency zero at x; otherwise x is called a critical
point of f. If each point of N is an ordinary point of f, we shall simply
say f is ordinary. Note that if f is ordinary and # <m then f is just an
immersion, while if #=m then (in terms of suitable coordinate sys-
tems) f is locally a projection.

To proceed with the example, let S* denote the unit sphere in the
(n+1)-dimensional euclidean space R**!, and consider the map
f: S"—>Rr (induced in this instance by the natural projection R»+!
—R"), r=n. Then we observe that: (a) the set of critical points of f
is confined to the submanifold S—! of S*; (b) f I (S*—S1), the restric-
tion of f to the complement of S*~1in S*, and f| S~ are ordinary; and
(c) there exists a map g: R™—R (here the natural projection R'—R?)
such that gf and (gf)| S are Morse functions having the same num-
ber of critical points. Now if one attempts to replace S* in the above
by a compact manifold N and S™! by a submanifold K of N, one
is immediately faced with the questions of which pairs (IV, K) are
admissible and what types of singularities to expect? Should it be
possible to find an f: N— R~ satisfying the modified (a) and (b), N—K
must for instance admit 7 linearly independent vector fields and K
must be immersible in R7; while the addition of (c) would require
that the Euler characteristics of K and N be congruent modulo two,
since the number of critical points of a Morse function defined on a
compact manifold is congruent modulo two to the Euler character-
istic. These are some aspects of problems which we consider.

In this paper we give a condition of a local nature for the set of
critical points of f in the deficiency 1 case to be (not just to be con-
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fined to) a submanifold of N, and conclude with a section concerning
the effect on the structure of N of the existence of a function f: N—R*
subject to conditions weaker than (a) and (b) above. The results in
this section depend largely on the behavior of f| (N—K) and f| K,
and make no essential use of the crucial behavior of f in a neighbor-
hood of K. We shall take up this latter question in a subsequent pub-
lication.

We conclude this section with a historical note. The classical criti-
cal point theory of Morse is concerned with the case r=1and M =R.

The remaining case for r =1, namely f: N*—S?, has been discussed
for a compact manifold N by one of the writers [3]. The attack con-
sists of lifting f, with greatest economy, to a covering map g in the
diagram
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The function hg is invariant under the appropriate factor group of
m1(N) and ordinary critical point theory can be applied to g on a
suitable fundamental domain.

The case # =#, which will be seen to be of special significance, has
been treated by Tucker [4]. Fiberings with singularities have been
discussed in various terms, for instance [2]. There is also a general
spectral theory of maps by Fary [1].

2. Deficiency 1. An example of deficiency 1 is the map (x?, - - -, x™)
—(Q(x), x2, -+ -, x7), where Q is a nondegenerate quadratic form
and 7 =u. If Q is a definite form, this is intuitively a “fold” about the
plane Qu=0, Q,1=0, - - -, Qm=0. The term “fold” is most in-
tuitive when r=n.

THEOREM 1. If x, is a critical point of f: R*—R", nZr, of deficiency
1 and if the critical point of F=N\f*, with multipliers N£0, at xo 15 non-
degenerate, then the critical points of f near xo form a manifold of di-
mension r — 1.

ProOF. A change in coordinates in R* and R" reduces the problem
to the case in which x,=0, f7;(0) =0, lf;p,q(O)l #0 with p, ¢=1, 2,

- -, r—1, and there is no solution except (¢) =(0) for the system
cof2i(0) =0. Then the equations
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vpf:’ + uf;’ = 0,

V0 + #? =1

admit solutions x/=¢7(v), (and also, for reference, u=¢(v)), by vir-
tue of the implicit function theorem, with (x, %, v) near (0, 1, 0).
Further the solution defines a manifold as required. To see this, note

that v,/%i (¢) +¥/5i(¢) =0 so that

FH(B) + vaf fardag + Yunf(B) + Wfsidbe, = O.

At the initial solution f%(0) +f7:4(0)¢; (0) =0. If there were numbers
(¢) #(0) such that ¢; (0)c,=0, it would follow that ¢,f%(0) =0, con-
trary to hypothesis.

3. Relationship to Stiefel-Whitney classes. The following conven-
tions will be used throughout. Let IV denote an #-dimensional com-
pact connected differentiable manifold, let K denote a compact k-
dimensional differentiable submanifold-with-boundary of N, and let
N —K denote the complement of K in N, Unless the contrary is im-
plied, we shall use the singular cohomology theory with coefficient
domain Z,. If V is an n-plane bundle over X and Y is a subspace of
X we shall denote by V| Y the restriction of V to Y. As usual wy(V)
and @.(V) will respectively denote the ith Stiefel-Whitney class and
the dual ith Stiefel-Whitney class of ¥; while w(V) and @(V) will
denote the corresponding total classes. If M is a differentiable mani-
fold with boundary, 7(M) will denote the tangent bundle of M; and
w(M) will denote w;(r(M)) the sth Stiefel class of M, etc. Finally
Pm will denote the real m-dimensional projective space, and R will
denote the r-dimensional euclidean space. We will always assume
that n=7.

For the purposes of the following theorem let L be a disjoint
union of compact submanifolds-with-boundary of N having maxi-
mum dimension k.

THEOREM 2. With L and N as above, assume that there exists an
ordinary mapping f: N—L—Rr. Then w;(N)=0 for all j satisfying
n—r<j<n—=k.

Proor. The fact that f is ordinary implies that 7(N—L) is the
Whitney sum of an (z—r)-plane bundle and a trivial r-plane bundle.
Hence w(N—L) =0 for {>n—r. Moreover it follows from Poincaré
duality that H(N,N — L) = 0 for : < n — &, so that ¢*: HY(V)
—HYN—L) is a monomorphism in this range, The propaosition fol-
lows since w;(IN — L) =1*(w;(N)).
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COROLLARY. Suppose that n, j, k and r are integers satisfying n—r
<j<n—k and that the binomial coefficient Cpy1,; is 0dd. (For example
for n=2°—2 and k<r—2 any j strictly between n—r and n—k will do).
Then there exists no ordinary mapping f: (P*— L)—R",

For the next theorem recall that if K is immersible in R, then
wi(K)=0 for :>r—k.

THEOREM 3. Let K be a compact (not necessarily connected) k-dimen-
sional submanifold-with-boundary of N, and assume that:

D) wi(N)= -+ - =wp_(N)=0 if n>r,

(2) Wai(N)=01if E<m,

(3) w:i(K) =0 for all positive 1>n—Ek,

(4) there exists an ordinary mapping f: (N—K)—R".
Then the characteristic ring of N is trivial (i.e. ws(N)-w,(N) =0 for all
§s>0and t>0).

Proor. Fixing a Riemannian metric on N, let W be the normal
bundle of K in N, and write 7(N)| K as the Whitney sum 7(K) ® W.
Then (1), (2), (4), Theorem 2, and the naturality of the w,’s imply
that w(W)w(K) =1-+terms of degree greater than n—k. Since W is
an (n—k)-plane bundle this implies in view of (3) that #w(K) =w(W)
and hence w(r(N)| K) =1. Thus i*(w;(N)) =0fori= 1, where i*: Hi(N)
—HK) is induced by inclusion. Let T be a small compact tubular
neighbourhood of K in N, (if k=# let T'=K), and let C be the closure
of N—T. Now suppose integers s and ¢ exist which contradict the
conclusion of the theorem. Since the inclusion K—7 is a homotopy
equivalence we conclude from the last equation that there exists an
element a, in H*(N, T) mapping onto w,(N) under the map H*(N, T)
—H*(N) induced by inclusion. Next, as in the proof of Theorem 2, the
fact that f| C, more correctly f | (CN(N—K)), is ordinary implies that
w;(C) =0 for ¢+>n—r; and since T(C)=T(N)I C it follows from (1)
that w(C) =1. Again there is an element a. in H*(N, C) mapping onto
w;(N) under the natural map H*N, C)—H!N). However a,-a.
EH+(N, T\UC)=0, which contradicts w,(N) -w;(N)>#0 by the
naturality of cup products.

COROLLARY. Suppose that K is an (n—1)-dimensional compact sub-
manifold of P* where n is an odd integer not of the form 2°—1, a an
integer. Then there exists no differentiable mapping f: P*—R» such that
f| (P*—K) and f | K are ordinary.

The proof of the following theorem is similar to that of Theorem 3
and is more straightforward. Note that if a compact orientable
(r—1)-dimensional manifold M is immersible in R" then w(M)=1.
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THEOREM 4. Let K be a k-dimensional compact submanifold-with-
boundary of N and assume further that: (1) w(K) =1, and (2) for some
integers s and ¢ satisfying szn—r+1 and tZn—k+1 we have w,(N)
~w(N) #0. Then there exists no ordinary mapping f: (N—K)—Rr.

COROLLARY. Suppose n has the form 29—2, a>2; and suppose that
K 1is a compact orientable (r —1)-dimensional submanifold of P™ where
2r=n-+3. Then there exists no differentiable mapping f: P—R" such
that f| (N—K) and f| K are ordinary.
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