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1. The problems and definitions. There is a general type of problem 
which contains critical point theory at one extreme, and immersion 
theory at another. The problems of interest to us lie between these 
two theories. A glance into their nature is afforded by a simple 
example to be given following some definitions. Let Nn and Mm de­
note two differentiable manifolds-with-boundary (perhaps empty) of 
dimensions n and m respectively, and let ƒ : N-^M be a continuous 
function with sufficient differentiability at any stage to allow the 
discussion to proceed. The deficiency of ƒ at a point x of N is defined 
by (minimum (n, m)-rank ƒ at x). Then x is said to be an ordinary 
point of ƒ if ƒ has deficiency zero at x; otherwise x is called a critical 
point of/. If each point of N is an ordinary point of/, we shall simply 
say ƒ is ordinary. Note that if ƒ is ordinary and n ^ m then ƒ is just an 
immersion, while if n^m then (in terms of suitable coordinate sys­
tems) ƒ is locally a projection. 

To proceed with the example, let Sn denote the unit sphere in the 
(w+1)-dimensional euclidean space Rn+1, and consider the map 
ƒ: Sn—*Rr (induced in this instance by the natural projection Rn+1 

—>jRr)t r=*V" Then we observe that: (a) the set of critical points of ƒ 
is confined to the submanifold Sr~l of Sn\ (b) ƒ | (Sn-Sr~l), the restric­
tion of ƒ to the complement of S1""1 in Sn

f and ƒ | Sr~l are ordinary; and 
(c) there exists a map g: Rr—>R (here the natural projection Rr—>RX) 
such that gf and (gf) | 5 r _ 1 are Morse functions having the same num­
ber of critical points. Now if one attempts to replace Sn in the above 
by a compact manifold Nn and S7"""1 by a submanifold K of N, one 
is immediately faced with the questions of which pairs (N, K) are 
admissible and what types of singularities to expect? Should it be 
possible to find an/ : N—>Rr satisfying the modified (a) and (b), iV—K 
must for instance admit r linearly independent vector fields and K 
must be immersible in Rr; while the addition of (c) would require 
that the Euler characteristics of K and N be congruent modulo two, 
since the number of critical points of a Morse function defined on a 
compact manifold is congruent modulo two to the Euler character­
istic. These are some aspects of problems which we consider. 

In this paper we give a condition of a local nature for the set of 
critical points of ƒ in the deficiency 1 case to be (not just to be con-
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fined to) a submanifold of Nf and conclude with a section concerning 
the effect on the structure of N of the existence of a function/: N->Rr 

subject to conditions weaker than (a) and (b) above. The results in 
this section depend largely on the behavior of ƒ] (N—K) and f\K9 

and make no essential use of the crucial behavior of ƒ in a neighbor­
hood of K. We shall take up this latter question in a subsequent pub­
lication. 

We conclude this section with a historical note. The classical criti­
cal point theory of Morse is concerned with the case r = 1 and M = R. 

The remaining case for r = 1, namely / : Nn—>Sl, has been discussed 
for a compact manifold N by one of the writers [3]. The attack con­
sists of lifting ƒ, with greatest economy, to a covering map g in the 
diagram 

Wn ? > R 

I I* 
N > Sl 

The function hg is invariant under the appropriate factor group of 
Ti(N) and ordinary critical point theory can be applied to g on a 
suitable fundamental domain. 

The case r = w, which will be seen to be of special significance, has 
been treated by Tucker [4]. Fiberings with singularities have been 
discussed in various terms, for instance [2]. There is also a general 
spectral theory of maps by Fary [ l ] . 

2. Deficiency 1. An example of deficiency 1 is the map (x1, • • •, xn) 
—KQ(*0» #2> • • • , xr), where Q is a nondegenerate quadratic form 
and r^n. If Q is a definite form, this is intuitively a "fold" about the 
plane 0x1 = 0, Qxr+i = 0, • • • , ^ = 0. The term "fold" is most in­
tuitive when r = n. 

THEOREM 1. If XQ is a critical point of f: Rn-*Rr, n^r, of deficiency 
1 and if the critical point of JP=X»/*, with multipliers XT^O, at Xo is non-
degenerate, then the critical points of ƒ near XQ form a manifold of di­
mension r — 1 . 

PROOF. A change in coordinates in Rn and Rr reduces the problem 
to the case in which x0 = 0, ^ ( 0 ) = 0 , |jfr»«(0)| 5*0 with p, g = l, 2, 
• • • , r — 1 , and there is no solution except (c) = (0) for the system 

Cjf%j(0) = 0 . Then the equations 
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Vj5 + Ufli = 0, 

VpVp + U2 = 1 

admit solutions x3'=<j>J\v)y (and also, for reference, u=yp(v))> by vir­
tue of the implicit function theorem, with (x, u, v) near (0, 1,0). 
Further the solution defines a manifold as required. To see this, note 
that vpfxi{<t>)+\pfxj(<t>) = 0 so that 

j&(0) + Vtfj^vz + &*&(<>) + Wlt*4>*q = 0. 

At the initial solution / ^ ( 0 ) + / ^ ( 0 ) ^ f l ( 0 ) = 0 . If there were numbers 
(C)T*(Q) such that<£?c(0)cfl = 0, it would follow that cqfxj(0) = 0 , con­
trary to hypothesis. 

3. Relationship to Stiefel-Whitney classes. The following conven­
tions will be used throughout. Let N denote an ^-dimensional com­
pact connected differentiable manifold, let K denote a compact k-
dimensional differentiable submanifold-with-boundary of N, and let 
N—K denote the complement of K in N. Unless the contrary is im­
plied, we shall use the singular cohomology theory with coefficient 
domain Z2. If V is an w-plane bundle over X and F is a subspace of 
X we shall denote by V\ Y the restriction of V to F. As usual Wi(V) 
and Wi(V) will respectively denote the ith Stief el-Whitney class and 
the dual ith Stief el-Whitney class of V; while w(V) and w(V) will 
denote the corresponding total classes. If M is a differentiable mani­
fold with boundary, r(M) will denote the tangent bundle of M\ and 
Wi(M) will denote Wi(r(M)) the ith Stiefel class of M, etc. Finally 
Pm will denote the real m-dimensional projective space, and Rr will 
denote the r-dimensional euclidean space. We will always assume 
that n^r. 

For the purposes of the following theorem let L be a disjoint 
union of compact submanifolds-with-boundary of N having maxi­
mum dimension k. 

THEOREM 2. With L and N as above, assume that there exists an 
ordinary mapping ƒ: N—L-*Rr. Then w3(N) = 0 for all j satisfying 
n—r<j<n — k. 

PROOF. The fact that ƒ is ordinary implies that T(ÎSÏ—L) is the 
Whitney sum of an (n—r) -plane bundle and a trivial r-plane bundle. 
Hence wt(N—L)=0 for t>n — r- Moreover it follows from Poincaré 
duality that H'(N, N - L) = 0 for t < n - ife, so that **: H'(N) 
—ÏH^N—L) is a monomorphism in this range, The proposition fol­
lows since Wj(N-L) —i*(wj(N)). 
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COROLLARY. Suppose that n, j , k and r are integers satisfying n — r 
<j<n — h and that the binomial coefficient Cn+ij is odd, (For example 

for n = 2a—2 and k^r — 2 any j strictly between n — r and n — k will do). 
Then there exists no ordinary mapping f : (Pn—L)^>Rr, 

For the next theorem recall that if K is immersible in Rr, then 
^ ( 2 0 = 0 for O r - * . 

THEOREM 3. Let K be a compact (not necessarily connected) k-dimen-
sional submanifold-with-boundary of N, and assume that: 

(1) wi(N)= • • • =wn-r(N)=0ifn>r1 

(2) Wn-k(N)=Oifk<n, 
(3) Wi(K) = 0 for all positive i>n — k, 
(4) there exists an ordinary mapping f : (N—K)—>Rr. 

Then the characteristic ring of N is trivial (i.e. ws(N) 'Wt(N)—0for all 
s>0andt>0). 

PROOF. Fixing a Riemannian metric on Nf let W be the normal 
bundle of K in N, and write r(N) \ K as the Whitney sum r(K) © W. 
Then (1), (2), (4), Theorem 2, and the naturality of the wis imply 
that w(W)w(K) = l + t e r m s of degree greater than n — k. Since W is 
an (n — fe)-plane bundle this implies in view of (3) that w(K) =w(W) 
and hence w(r(N) 12ST) = 1. Thusi*(w{(N)) = 0 for i^ 1, where i* :H^N) 
-+Hl(K) is induced by inclusion. Let T be a small compact tubular 
neighbourhood of K in N, (if k = n let T = K), and let C be the closure 
of N—T. Now suppose integers 5 and t exist which contradict the 
conclusion of the theorem. Since the inclusion K-+T is a homotopy 
equivalence we conclude from the last equation that there exists an 
element a8 in H*(N, T) mapping onto w&(N) under the map H*(N, T) 
-+H8(N) induced by inclusion. Next, as in the proof of Theorem 2, the 
fact that ƒ | C, more correctly ƒ | (Cr\(N—K)), is ordinary implies that 
Wi(C)—0 for i>n—r; and since T(C)=T(N)\C it follows from (1) 
that w(C) = 1. Again there is an element at in Ht(Ni C) mapping onto 
wt(N) under the natural map Hl(N, Q-^H^N). However aa-at 

GH*+t(N, T U C ) = 0 , which contradicts w8(N)-wt(N)?*0 by the 
naturality of cup products. 

COROLLARY. Suppose that K is an (n~ I)-dimensional compact sub-
manifold of Pn where n is an odd integer not of the form 2a — 1, a an 
integer. Then there exists no differentiable mapping f : Pn--^Rn such that 
ƒ| (Pn—K) andf\K are ordinary. 

The proof of the following theorem is similar to that of Theorem 3 
and is more straightforward. Note that if a compact orientable 
(r — 1)-dimensional manifold M is immersible in Rr then w(M) = 1. 
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THEOREM 4. Let K be a k-dimensional compact submanifold-with-
boundary of N and assume further that: (1) w{K) — 1, and (2) for some 
integers s and t satisfying s^n—r+1 and tèzn — k + l we have w8(N) 
*Wt(N)7*0. Then there exists no ordinary mapping f \ (N--K)-j>Rr. 

COROLLARY. Suppose n has the form 2a~2, a > 2 ; and suppose that 
K is a compact orientable (r — 1) -dimensional submanifold of Pn where 
2r^w+3. Then there exists no differentiable mapping f : Pn-^Rr such 
that f \ (N—K) and f\K are ordinary. 
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