ON CONVOLUTION AND FOURIER SERIES

BY JACK BRYANT

Communicated by A. Zygmund, September 8, 1966

In [4, pp. 108-114], Salem found that each function in $L_1(0, 2\pi)$ (or $C[0, 2\pi]$) can be represented as the convolution of a function in L (or C) with an even function in L with convex Fourier coefficients. We announce here a slight generalization of this theorem, and some related results which follow from a study of our methods. Detailed proofs will appear elsewhere [2].

We require the following notation: If f is a function, $(\tau_h f)(x) = f(x+h)$. B will denote a Banach space with norm $\|\cdot\|$. If $f \in L$, S[f] denotes the Fourier series of f, $\{S_n\}$ the partial sums of S[f] and $\{\sigma_n\}$ the (C, 1) means of S[f]. $\|\cdot\|_1$ denotes the L_1 -norm. If $\{\lambda_n\}$ is a sequence, $\Delta\lambda_n = \lambda_n - \lambda_{n+1}$ and $\Delta^2\lambda_n = \Delta\lambda_n - \Delta\lambda_{n+1}$. We define Q to be the class of functions g with $S[g] = \lambda_0/2 + \sum \lambda_n \cos nx$, where $\Delta^2\lambda_n \ge 0$ and $\lambda_n \to 0$. Note each function in Q is even, positive, integrable and differentiable on $(0, \pi)$. A will denote an absolute constant, not necessarily the same each time it appears.

THEOREM 1. Suppose $S = \sum A_n$ is summable (C, 1) to f in a Banach space B. Let ϕ be a positive increasing function with $\int_0^\infty 1/\phi(t)dt < \infty$. Let $\{\sigma_n\}$ be the (C, 1) means of S; if $\{\lambda_n\}$ is a sequence such that $0 < \lambda_n \le \phi^{-1}(\|\sigma_n - f\|^{-1}), \Delta^2 \lambda_n \le 0$ and $\lambda_n \uparrow \infty$, then the series $T = \sum \lambda_n A_n$ is summable (C, 1) in B.

THEOREM 2. Let $B \subset L$ be a Banach space with $||u||_1 \leq A||u||$ for each u in B, and suppose the (C, 1) means of S[f] are in B and $||\sigma_n - f|| \to 0$. Then there exists $g \in Q$ and $h \in B$ such that f = g * h.

THEOREM 3. Let $f \in L$. Then f = g * h, where $g \in Q$ and S[h] and S[f] have, except for a set of measure zero, the same points of convergence.

THEOREM 4. Suppose $f \in L$, and let $\{\sigma_n\}$ be the (C, 1) means of S[f]. If $\sum ||\sigma_k - f||_1 / k < \infty$ and if $||\sigma_k - f||_1 = o(1/\log k)$, then S[f] converges almost everywhere.

If we suppose more about B, Theorem 2 can be completed as follows:

THEOREM 5. Let $B \subset L$ satisfy the following conditions: B is a Banach space and

- (1) for each u in B, $||u||_1 \le A||u||$,
- (2) for each u in B and each h, $||\tau_h u|| \leq A||u||$,

(3) for each f in $L([0, 2\pi) \times [0, 2\pi))$,

$$\left|\left|\int_0^{2\pi} f(\cdot, t)dt\right|\right| \leq A \int_0^{2\pi} \left|\left|f(\cdot, t)\right|\right| dt,$$

(4) the partial sums of S[u] are in B when u is in B. Then the following four conditions on an element f of B are equivalent:

(i) $\omega_1(f; t) = \sup\{||\tau_h f - f|| : 0 \le |h| \le t\} = o(1),$

(ii) $\omega_2(f; t) = \sup\{||\tau_h f + \tau_{-h} f - 2f|| : 0 \le |h| \le t\} = o(1),$

(iii) S[f] is summable (C, 1) to f in B,

(iv) f = g * h, $h \in B$ and $g \in Q$.

INDICATION OF PROOFS. Theorem 1 is proved by summing the expression for the (C, 1) means τ_n of $T = \sum \lambda_n A_n$ by parts twice and showing the sequence $\{\tau_n\}$ is Cauchy in B. We use Theorem 1 to obtain Theorem 2; the hypothesis $||u||_1 \le A||u||$ is necessary to show the series constructed is S[h] for $h \in B$. To prove Theorem 3, we construct a seminorm on L so that convergence with respect to this seminorm implies a.e. convergence in the set of points of convergence of S[f]. We then use machinery developed for Theorem 1 plus the fact $||\sigma_n - f||_1 \rightarrow 0$ to obtain Theorem 3. Theorem 4 is an observation based on the fact that the numbers $\{1/\log n\}$ are convergence factors for Fourier series. (We note that in Theorem 4, σ_n may be replaced by s_n each time it appears.) Theorem 5 requires hypothesis (3), (4) for (ii) \rightarrow (iii), (1) for (iii) \rightarrow (iv) and (2) for (iv) \rightarrow (i); (iii) \rightarrow (iv) is Theorem 2, and the other proofs are elementary.

REFERENCES

- 1. Jack Bryant, Theorems relating convolution and Fourier series, Ph.D. Thesis, Rice University, Houston, Texas, 1965.
 - On convolution and Fourier series, Duke Math J. (to appear).
 On convolution and moduli of continuity, (to appear).
- 4. R. Salem, Sur les transformations des series de Fourier, Fund. Math. 33 (1939) 108-114.

TEXAS A&M UNIVERSITY