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1. Introduction. A general formula, for moments of arbitrary order 
of the number of upcrossings of a level u by a stationary normal pro­
cess in unit time, was obtained by Cramer and Leadbetter [l], using 
a combination of techniques due to Kac [3], and Ylvisaker [6]. 
Ylvisaker [7] has weakened the conditions of this result slightly by 
a proof which depends on interesting applications of martingale con­
vergence theory and which may be applied also to nonstationary nor­
mal situations. In this note we give a somewhat different direct pro­
cedure, under the weakened conditions, for the calculation of these 
moments. This procedure gives an alternative to that of Ylvisaker 
[7] for normal processes, without the use of martingale theory, and 
may be also applied to nonnormal situations in the same way as the 
discussion in [4] for the first moment. 

We shall here give the "counting procedure" used to obtain the 
number of upcrossings, sketching the derivation, and indicating the 
extension to nonnormal cases. A detailed proof along these lines (for 
the stationary normal case) will be given elsewhere (Cramer and 
Leadbetter [2]). 

2. A general result. We shall consider a process x(t) possessing, 
a.s., continuous sample functions and, for a given integer k, abso­
lutely continuous 2fe-dimensional distributions with corresponding 
densities of the form ƒ*!...<2*(#i * * • #2&). There will be no loss of gen­
erality in considering the number N of upcrossings of the zero level 
by x(t) in O^Jrgl, which is a well-defined random variable (cf. [4]). 

For * = ( / !••• tk) lying in the ^-dimensional unit cube, let mr de­
note the unique integer such that mr/2

n^tr<(mr+l)/2n. Write 
En(t) for the fe-dimensional cube whose sides are the intervals 
[mr/2

n, (m r+l)/2n) . For €>0, let Ane denote the set of all points t 
in the unit cube such that for all s = (si • • • Sk)£:En(t), we have 
|s<—$i| >€ whenever i?*j, and write X»«(t) for the characteristic 
function of the set An*. Finally let the random variable x*\n = l if 
x(i/2n) <0<x[(i+l)/2n], x»,n = 0 otherwise. The following lemma 
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gives the basic properties of the counting procedure used to obtain 
the factorial moments of N. 

LEMMA. Let Jkfn« = E J B , , » . . . » ^ ! ^ * " ' * 4/2n), where the sum­
mation is extended over all ordered sets of distinct integers i\ • • • 4, 
0 ^ 4 ^ 2 n —1. Then, with probability one, 

(i) Mn€ is nondecreasing as n increases or as e decreases, 
(ii) ]xmn+Jimê^Mn***N(N-l) • • • (N-k+1). 

The proof of this lemma is accomplished by arguments extending 
those in [l, Part B]. From the monotonicity properties stated in (i) 
of the lemma it follows that the order of the e and ^-limits in (ii) 
may be interchanged. Hence, writing Mh = &N(N—1) • • • (iV—£ + 1), 
two applications of monotone convergence show that Mh 
= lim€H>0Hmn̂ oo & Afn«. From the definition of Afn« and a simple trans­
formation of variables we thus have 

(1) Mu = Um Urn £ ' X„«(4/2» • • • 4/2») 
«-+0 n—* « 

•P{xir < 0 < xir + 2~nyirf r « 1, 2, • • • , * } 

in which xr — x(r/2n) and yr~2n(xr+i—x1). In fact, the only nonzero 
terms in the sum on the right correspond to integers 4 • • • 4 satisfy­
ing 14~41 > 1 for r?*s. For such integer sets, the random variables 
#t*i • • • %ik> y h * ' ' y ik possess a joint density. Write \l/nti(xi • • • , Xkf 

yi • • • yu) to be equal to this joint density for all t~(h • • • fc) of 
Am lying in the cube £n(4/2M • • • 4/2n), and ^ ^ = 0 outside such 
cubes. From (1) we then obtain the following result by straightfor­
ward calculation. 

THEOREM. For the process x(t) considered, the Mh factorial moment 
of N is 

/

• 1 / • /» oo /» / » 0 /» 0 

l dt I I dy I • I 
•$nt*(2-nxi • • • 2~n%, yi • • - y*)tfx. 

3, Normal processes and generalizations. It can easily be seen 
that the above assumptions are satisfied for a (separable) stationary 
normal process x(t) whose covariance function has a finite second 
derivative at the origin. Further if pt{x, y) denotes the joint density 
forx(/i) • • • x(tk) and the quadratic mean derivatives x'(t\) • • -#'(fe), 
it can be shown (cf. [5]) by convergence of covariances that 
ipnt(2~n%i • • • 2"-"B*, yx • • • yk)-*Pt(0, y) as w—>oo, for all t in the 
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region D(e) =limn^oo An*. I t can be shown by dominated convergence 
that the w-limit in (2) can be taken inside all the integral signs, and 
it is then an easy application of monotone convergence as €—»0 to 
obtain the result: 

(3) Mh = ƒ • • - ƒ it ƒ • • • fyi • • • Vkpt(0,y)dy S » . 

Certain nonnormal processes may be treated in a similar way from 
(2) to obtain (3), (see, for example, the derivation of 8>N in [4] for 
the envelope of a stationary normal process.) In general we may ob­
tain a result corresponding to that given in [4] for the mean. To that 
end write, for t=(t\ • • • fo), 

gtA*>y) = i*fh—tk. «i+r...«*+r(*i • • •**> *i + *7i • • • * * + ryk). 

Tha t is gt,T is the joint density for the x(fi) and the incrementary ratios 
(x*<+T—3c^)/r. Then we have the following result. 

THEOREM. Consider points t = (h • • • fc) s^c& ti^t^ for i^j and 
suppose that, 

(i) g*T(x, y) is continuous in (t, x) /or eacft y , r, 
(ii) .For £ac& e > 0 , gtT(x, y)—*Pt(x> y) as T—>0 uniformly in (t, x) 

for tÇzD(e) and each y. 
(iii) For each e > 0 , there is a function h€(y) such that f or £££>(€), 

g*,r(x,y) S he(y) and J . . . J y i . . . ykhe(y)dy < oo. 

TTiew (3) holds f or the process x(t). 
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