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The purpose of this note is to announce some properties and ap­
plications of Orlicz spaces of finitely additive set functions, the V* 
spaces. The V* spaces are natural generalizations of the Vp spaces 
(Bochner [2] and Leader [ó]). 

1. The 7*(X) spaces. Throughout this note Q, is a point set, 2 a 
field of subsets of Q, ju a finitely additive extended real valued non-
negative set function defined on 2 ; and 2oC2 is the ring of sets of 
finite /x-measure. A partition IT is a finite disjoint collection {En} C2o. 
The partitions are partially ordered by defining whenever 
each JE„£7TI is a union of members of ir%. H and g) are Banach (or 
B-) spaces with conjugate spaces X* and §)* respectively. $ is a 
(nontrivial) Young's function with complementary function ^r. 

DEFINITION. 7*(Q, 2, /x, 30 = (F*(ï)) consists of all finitely addi­
tive ju-continuous 36-valued set functions F on 2 0 such that for some 
k>0, 

u(F/k) = sup E *('r^V<2W = *> 

where the supremum is taken over all partitions T = {En} and the 
convention 0/0 = 0 is observed. 

F*(ï) becomes a J5-space under each of the equivalent norms 

N*(F) = inf{* > 0: U(F/k) ^ l} 
or 

11*11 / V 11 )̂11 ll<Wll r <- T / ™ Ar ,~ < A \\F\U = sup^sup 2^ — : G G VQP), N*(G) g 1> . 

Using the integration procedure of [4, Chap. I l l ] , one can de­
fine the (possibly incomplete) Orlicz spaces L*(Î2, 2, /*, 3Q( = L*(X)) 
of totally jit-measurable 3Ê valued functions ƒ satisfying fç&(\\f\\/k)dij, 
^ 1 for some k>0. L*(3£) becomes a normed linear space under either 
of the two equivalent norms 

1 The results announced here are contained in the author's doctoral thesis written 
under the guidance of Professor M. M. Rao at Carnegie Institute of Technology* 
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/i has the finite subset property, FSP(^4 £ 2 , n(A) = oo, only if there 

is J3GS, BCAt o<M(5)<x), ||/|U=sup{/o||/|| ||g||4», gG£*(**), 
N*(g) g 1}. ikf*(36) C£*(36) is the closed subspace determined by the 
^-simple functions. If <£ satisfies the A2 condition (<3?(2#) ^K*(x))9 

Af*(X) = £*(*). i*(96) and 7»(X) are related by 
THEOREM 1. Let $ 6e continuous, for ƒ££*(£), cfe/îw X/ &y X/(£) 

= fsfdn, EG2 0 . Ï7œ mapping X maps L*(X) linearly into F*(X) awrf 
N*(f)=N*(\f). If ix has FSP <MK*/GM»(X), | | / | |HIV| |*. 

2. The structure of F*(36). When *(x) = |x | , the corresponding 
F*(36) is denoted by Vl{H) and is endowed with the variation norm 
&(•)• The study of the structure of 7*(36) rests upon the following 
generalization of the Radon-Nikodym-Bochner theorem [4, IV.9]. 

THEOREM 2. Let /x(S2) < oo and FELV1{TJ. If 

W ) IU(£)II ) 
is weakly sequentially compact for each positive integer n, then for each 
€>0, there exists a /z-simple function ƒ« such that t>(F—\f€) <e where X 
is the injection of Theorem 1. 

For -FG7$(3Q and each partition w= {En}, F* is defined by 

F _ V HEn) 

r MOE») 

£w where ju-En is the set function defined by fi'En(E)=fx(Enr\E)t 

EG2o. 5*(36) denotes the closed subspace of F*(36) of functions satis­
fying lim*. N$(F— FT) = 0 where the limit is taken in the Moore-Smith 
sense. 

THEOREM 3. If 4> obeys the A2 condition and 36 is reflexive 5* (36) 
= F*(X). 

3. Linear operators on F*(X) and L*(X). £(£, g)) denotes the £-
space of bounded linear operators from 36 to g). 

DEFINITION. TF*(Of 2, /X, 5(96, g))) = (TF*CB(X, g))) consists of all 
finitely additive ju-continuous B(H, g))-valued set functions H defined 
on So and satisfying (i) y*H G F*(£*) for all y* G g)* and (ii) 
BVLp\\*\\*i N*(y*H) =\\H\\w*< oo. 

THEOREM 4. Let $ &e continuous. Then 
(a) /0 eacft fe G I*(5$(36), g)) ^ere corresponds a unique H 

eW*(B(X, g))) such that 
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^ H(En)[F(En)] 
h(F) = lim £ - l ^ L f ^ i , F e 5»(30. 

(b) If 5*(3£) M normed with || •]]$, /fte correspondence h—*H maps 
B(S*(X), g)) isometrically isomorphically onto W*(BQc, gj)). 

Since the injection X of Theorem 1 maps lf*(X) onto a dense subset 
of S*(3Q, it follows that B(M*(%), d) is equivalent to W*(B(1, g))) 
with the representation of /îG-B(M*(X), 2» taking the form 

#(£»)[ ƒ ƒ<*/*] 
*(/) = I™ Z Trrr ' / G M*(*)> # G ^ W*> ©))• 

4. Martingales. Here generalizations of the classical conditional 
expectation operator and martingales to the V*(%) setting are given. 

DEFINITION. Let <i> obey the A2-condition and B be a subfield of 2 . 
For FES*(%), PB(F) is defined by PB(F) =limVB FrB where the limit 
is taken in the F$(36) topology through all partitions TTBEB. 

PB and EB, the usual conditional expectation operator [lO] are 
intimately related. In fact if S is a cr-field, B is a sub <r-field of 2 and 
fx is countably additive and finite on 2 , then \EB(f) =PBQf) for all 
ƒ ELl(%) where X is the injection of L1^) 'm^° Vl(%) of Theorem 1. 

DEFINITION. Let $ obey the A2-condition and {BT, TET] be an 
increasing net of subfields of 2 . {FT, BT,TET} is an 5*(3Q-martingale 
if P*T1(FT2) = P r i f o r r 2 ^ T i . 

Typical of the class of mean martingale convergence theorems 
which can be proved is 

THEOREM 5. Let 36 be reflexive, <S> obey the ^-condition and ^l be con­
tinuous. If {FT,BT,TET} is an S*(%)-martingale, then the net {FT,TET} 

converges in N$(-) norm if and only if there exists P , 0 < P < oo such 
thatN*(FT)^P, rET. 

The following corollary which extends [3, Theorem 3] is immediate 
from the properties of X. 

COROLLARY 7. Let Hi be a cr-field and fx be countably additive and finite 
on 2 . If $ obeys the ^-condition and ^ is continuous, a martingale 
{fT, BT, TET} in L®(%) converges in L*(£) norm if and only if there 
exists P, 0 < P < oo such that N^(fT) g P , rET. 
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