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In [3], it was shown that the recursive isomorphism type of a 
co-r.e. retraceable set may contain nonretraceable sets. The question 
naturally arises whether every nonrecursive, co-r.e. retraceable set 
gives rise, under some recursive permutation, to a nonretraceable 
set. I t is an obvious corollary to the first theorem announced in this 
note that the answer is "no." 

If an infinite retraceable set has no nonretraceable regressive sub­
sets, we term it hereditarily retraceable; a hereditarily retraceable iso­
morphism type is then a recursive isomorphism type consisting ex­
clusively of such sets. Likewise, a hereditarily retraceable isol is a 
recursive equivalence type each member of which is an immune re­
traceable set having no nonretraceable regressive subsets. Such, then, 
are the objects referred to in the title of the note; the existence of a 
continuum of them follows from Theorem 1 below. Our terminology 
is, in all other respects, that of [ l ] , [2]. 

THEOREM 1. If ais an infinite retraceable sett then a has an infinite 
retraceable subset /? with the following property: 

(V/) (ƒ a one-one partial recursive function=*every regressive subset of 
/(j3) is retraceable.) 

Moreover, if a has recursively enumerable complement then we 
can satisfy the additional requirement that /3 have recursively enu­
merable complement. 

The proof, which will appear in detail elsewhere, is accomplished 
by means of a simple priority scheme which (a) applies to any retrac­
ing function, and (b) is designed to exploit the following lemma (the 
truth of the lemma is obvious) : 

LEMMA 0. If an infinite set {5 of natural numbers is regressed by the 
partial recursive function ƒ, then either /3 is retraceable or there are in­
finitely many numbers b(£fi such that f(b)>b. 

REMARK 1.5. With regard to the analogy 

recursive retraceable 

r.e. regressive 
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suggested in [2], we observe that the existence of hereditarily retrace­
able sets is a negative result of a rather crippling sort; for the theo­
rem stating that every infinite recursive set has a nonrecursive r.e. 
subset is surely as basic a result as can be found in the theory of r.e. 
sets. 

We conclude the note with a theorem which is, in part, an applica­
tion of Theorem 1, and which concerns the question of a regressive 
extension of [l, Proposition P 4 ] : Proposition P4 of [ l ] asserts that 
the composition of the principal functions (i.e., the order-of-magni-
tude enumeration functions) of two infinite retraceable sets enumer­
ates a retraceable set. In Theorem 2 we shall consider not only com­
position of principal functions of regressive sets, but also (and doubt­
less more naturally for the class of regressive sets) composition of 
regressive functions, (The terms regressive function and retraceable 
function signify as in [2 ] ; note that if a is an infinite retraceable set 
then the notions principal function of a and retraceable function with 
range a coincide.) 

THEOREM 2. (i) If f is an everywhere-defined regressive function and 
g is an everywhere-defined retraceable function, then f g {defined by 
(fg)(x) =f(g(x))) is a regressive function. However: 

(ii) There exist retraceable functions h with the following property : 
(Vg) ( Ba) (V/) [g an everywhere-defined retraceable Jpunction=$(a is a 
regressive set such that if f is a regressive function with range a then 
hgf is not regressive) ] ; 
(iii) There exist retraceable functions h with the following property : 
(Vg) ( 3/) [g an everywhere-defined retraceable functions(ƒ is the prin­
cipal function of a regressive set and hgf is not regressive) ] ; 
(iv) There exist f unctions f and g such that g is the principal f unction 

of a retraceable set, ƒ is the principal function of a regressive set, and f g 
does not enumerate a regressive set. 

Part (i) of Theorem 2 is trivial to verify, and part (iv) is established 
by an easy ad hoc construction which we shall not describe here. Parts 
(ii) and (iii) are obtained from Theorem 1 in the following manner. 
Let y be an infinite retraceable set, and let g be the retraceable func­
tion enumerating y (i.e., g is the principal function of 7). We shall 
indicate the proof for (ii) ; the argument on behalf of (iii) is virtually 
identical with that for (ii), Applying Theorem 1, let /3 be a hereditar­
ily retraceable set (any one will do) ; let h be the retraceable function 
whose range is /3. Let D be the degree of unsolvability of the range of 
the composite function hg. Now, if we look carefully a t the proof of 
Theorem TS of [ l ] , and take into account the fact ([2]) that recur-
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sively separable, recursively equivalent retraceable sets have re­
gressive union, we see (with the help of a trivial countability argu­
ment) that the following assertion is true: there exists a regressive 
set a such that a is not retraceable in D (i.e., a is not retraced by a 
function partial recursive in D).2 Let ƒ be a regressive function with 
range a. Suppose hgf were regressive. Then, since the range of h is 
hereditarily retraceable, hgf would have to enumerate a retraceable 
set. But then, by using partial recursive functions r and t such that 
r retraces range(feg) and t retraces range(fegf), we could obtain a func­
tion p, partial recursive in D, such that p retraces a: contradiction. 

Thus, each of the two obvious candidates for a direct regressive 
extension of [l, Proposition P4] turns out to be a rank falsehood. On 
the other hand it is easy, on the basis of [l, Proposition P4] and [2, 
Proposition 5] , to define a binary operation of "functional composi­
tion" on the class of regressive isals. (Note that by [2, Proposition 3] 
it is optional whether we regard a regressive isol as a recursive equiv­
alence type whose members are regressive sets, or as one whose mem­
bers are regressive functions.) 
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2 It is a straightforward matter to define such a function from g's to «'s without 
any use of the axiom of choice. 


