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1. I. M. Vinogradov and A. G. Postnikov, in their one-hour report 
on Recent developments in analytic number theory a t the International 
Congress of Mathematicians (Moscow, 1966) have referred to a re­
cent result of A. A. Judin on the lattice-point problem for a random 
circle. If (a, /3) is an arbitrary point in the plane, and A(x; a, ]8) de­
notes the number of lattice-points inside and on the circumference 
of a circle with (a, /3) as centre and x1/2 as radius, then Judin's result, 
as stated in the above-mentioned report, is that 

| A(x; a, 0) — TX\ 
lim sup > c > 0, 

and the proof, according to the report, is by the application of argu­
ments from the theory of almost periodic functions. This is of interest 
in view of the known result [3] that 

A(x\ a, p) - TX = 0(#1/4+e), e > 0, 

for almost all points (a, j3). 
I t is our object to show that the following result, hence also 

Judin's, is a direct consequence of a theorem of ours on the average 
order of arithmetical functions: 

A(x; a, £) — TX 
lim sup > 0, 

s-^oo X114, 

A(x; a, 0) — irx 
lim inf < 0. 

This result is true not only in the plane, but in k dimensions, for 
fe^2. Instead of A(x; a> /3), one can also consider its higher averages 
of order p ^ O , the proof being the same. 

2. THEOREM. If (ai, • • • , au) is an arbitrary point in k-space, k*z2, 
and A(x; cei, • • • , a*.) denotes the number of lattice-points inside and 
on a sphere with centre (ai, • • • , <*&), and radius x112, then 

[A(x; ai, • • • , a*) - **W*/T(k/2 + 1)] - O*^*-1»4), 

as x—* oo. 
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PROOF, (i) Let ai, • • • , aie be given real numbers, not all being 
integers at the same time. Let (m) denote integers. Let (Xr) be the 
sequence of real numbers {(ni—ai)2+ • • • +(tik—ak)2} arranged in 
increasing order of magnitude. Define 

(n i—ai) -f •••-f-(njfc—otfc) ~»Xr 

Consider the Dirichlet series 

*(*) = Z) — > s = a + it, 
r-»l A r 

oo •* 

- E ••• E {(«1 — ai)2 + • • • + (»* — «A;)2}* 

This converges absolutely îor<r>k/21 and satisfies a functional equa­
tion given by 

(2.1) *~r(*)*(5) = 7T-*/2r ( y - ^ ( y - * ) , 

where ^ is represented by the Dirichlet series 

Hs) = E ^ 
r~l f 

_ °° e x p (liciiniOLi + • • • + nk<xk)) 

» r»-oo; (ni. • • • ,njfc)^ (0,0. • • • ,0) 

where 

br = 2 X 2
 e x P (2ri(niai + • • • + ^a^)) . 

Equation (2.1) can be proved directly in the same way as the func­
tional equation of Riemann's zeta-function. If 

00 

0(«> J) = 12 ' # • X) e xP (—[(»i - «i)2 + • • • + ( » * - a*)2]*7)> 
n r«—oo 

for Re y > 0, then 

*(«, y) = r* / 2^i(«, i /y) , 

where 

0i(«> y) 

= 2 • • • X) e x P (2irt(wi«i + • • • + nkotk) - TT(«I + • • • + w*);y). 
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If we denote 
Q*(u> y) = Oi(a, y) - 1, 

then, for <r>k/2, we have 

(2.2) " 
/•* 1 

+ I yhl2-*~ldi(<x, y)dy + —-
J i s — f k 

and 

/

oo 

y)^y 
(2.3) 

r™ i 
+ I y*/*-*-i0(a, y)dy 

J ! s 
These two relations show that <t>(s) and i^(s) are meromorphic func­
tions in the whole s-plane, with <£ having a simple pole at s = fe/2 with 
residue 7rkl2/T(k/2). Further <f> and \[/ satisfy equation (2.1). Not all 
the coefficients (bn) are zero. Hence Theorem 3.2 of [2] is applicable, 
with p = 0, Öo(x)-7r^2x^2/r(fe/2 + l ) , and 0 = ( f e - l ) /4 , giving what 
we want. 

(ii) If a±9 • • • , ah are all integers, then <j>(s) =^(5), and we have 
Epstein's zeta-function, which is known to satisfy (2.1). The result 
is again obvious. 

REMARK 1. If one starts with a positive-definite quadratic form 
Q in ^-variables, with real coefficients, where k^ 2, one considers the 
corresponding function 

M*\Q> «) = IL 1> 

and obtains the result 

A(x; Q, a) - wk^x^/T(k/2 + 1) | Q\"* = Q±(*»-l>/<), 

as x—> 00, where | (?| is the determinant of Q. 
REMARK 2. The function A(x\ au • • • , c^) is integrable and multi-

periodic in the a's, with period 1, and its Fourier expansion is given 
by 

A(x; «i, • • • , au) ~ cix?12 + dxhl* S • • • 5^ 

exp (2T»(OEI»I + \- aknk))Jtn(2irxu\ni + h «I)1 '8) 

( » ? + • • • + «!)*" 
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If one integrates the series on the right, with respect to x, p times, 
where p is a sufficiently large integer, one obtains an absolutely con­
vergent series, which is the Fourier series of Ap(x; ai, • • • , a*), the 
pth integral, with respect to x, of A(x; ai, • • • , «&), and is therefore 
equal to it. Thus one obtains an identity of the form 

r(p) 
I A(l',ai, • • - ,«*) (* -t)"-ldt 

J 0 

.«,,», + ^ „ j ; . . . £ W W . + • • • + « > • ) 
^ ^ (n\ + • • • + nf)*'4+>/2 

•exp (2iri{aini + • • • + o^*)). 

It is known that this is equivalent to a functional equation of the 
form (2.1). (See Lemma 5 of [l].) 
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