SOME CLASSICAL THEOREMS ON OPEN
RIEMANN SURFACES!

BY ROBERT D. M. ACCOLA?

There are many approaches to the study of open Riemann sur-
faces. I shall mention only three of these. First, one can ask how to
generalize the classical theory of compact Riemann surfaces; that is,
the theory of algebraic curves over the complex numbers. My talk
will be concerned with this approach. Secondly, one can ask how
much of the classical theory of meromorphic functions in the plane or
unit disk carries over to more general domains. I shall not be con-
cerned with this problem today although perhaps this is a more rea-
sonable approach than the first, since open surfaces do not really
seem a proper object for algebraic investigation. (This, however, will
not prevent me from speaking on the subject.) Thirdly, one can deal
with the problem of classification of surfaces. This topic is, I think,
almost unavoidable in any discussion of open surfaces since it is
difficult to make general statements which do not trivialize for some
important class of surfaces. This will be particularly true for theo-
rems with algebraic origins, although there are notable exceptions.
Theorems concerning periods of differentials will make little sense in
the context, say, of the unit disk. Consequently, I shall have to dis-
cuss to some extent the classification problem in order that you under-
stand the types of surfaces where one can reasonably hope for ana-
logues of theorems from classical algebraic geometry.

The classical theorems I want to discuss are the following: Abel’s
theorem, the Riemann-Roch theorem, and the theorem of Torelli.
Let me remind you of the classical theorems in a form that seems most
easily generalized. The classical theory may be said to start with the
observation that the only functions meromorphic on the Riemann
sphere are the rational functions. On the Riemann sphere we may
prescribe the zeros and poles of a rational function subject only to
the restriction that the numbers of zeros and poles be the same if we
adopt the usual conventions when counting multiple values.

If one considers the field of meromorphic functions on a compact
Riemann surface, then, algebraically, this field is a finite (algebraic)
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extension of the field of rational functions. Each nonconstant mero-
morphic function on a compact surface takes each value the same
number of times, and, in fact, represents the sutface as a finite sheeted
branched covering of the Riemann sphere. However, when we ask
about the possibility of prescribing zeros and poles on a nonsimply
connected compact surface, we discover that we have lost some free-
dom. Already, in the case of elliptic functions, which are meromorphic
functions on a torus, we know that the difference between the zeros
and poles in a fundamental parallelogram must be some period of the
elliptic function. This first case of Abel’s theorem indicates that to
understand the problem of prescribing zeros and poles, one must
consider objects other than the functions; one must consider differ-
entials, or if you like what amounts to the same thing, one must con-
sider multi-valued functions. Abel’s theorem concerns three types of
mathematical objects: meromorphic functions, abelian differentials,
and divisors. Let me talk a little bit about differentials and divisors.

By an abelian (or meromorphic) differential one means a differen-
tial that is locally the differential of a meromorphic function. (I am
really talking about abelian differentials of the first and second kind.)
The integrals of such abelian differentials can be thought of as multi-
valued functions. While it makes no sense to talk about the value of
a differential at a point of a Riemann surface, it does make sense to
talk about the zeros and poles of an abelian differential. If an abelian
differential has no poles, it is said to be of the first kind, or regular.
On a compact Riemann surface, there are no regular single-valued
nonconstant analytic functions; however, if the genus is greater than
zero, there are everywhere regular multi-valued functions whose dif-
ferentials, the single-valued mathematical objects, form the vector
space of abelian differentials of the first kind. This vector space has
dimension g, the genus of the surface involved. Denote this space by
T's Let me remark here, that a very convenient way of forming mero-
morphic functions is to take the quotient of two linearly independent
abelian differentials, since this will be a single-valued function.

By a divisor on a surface we mean nothing more than a zero chain;
that is, a finite set of points with an integer associated with each
point. For a meromorphic function its zeros and poles form a divisor
where the associated integer is positive or negative depending on
whether the point is a zero or a pole, and the value of the integer is
the multiplicity. For an arbitrary divisor, the sum of the associated
integers is said to be its degree. Clearly, the degree of the divisor of
a meromorphic function is zero, since the numbers of zeros and poles
are equal.
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Before stating Abel’s theorem let me talk a little more about com-
pact surfaces. Topologically, a compact surface of genus g is a sphere
with g handles.? One can form a basis for the first homology group by
taking a pair of curves associated with each handle. If we label the
handles 1, 2, - - -, g, then we have cycles 4; and By for the kth
handle. They intersect each other but no other curves in the ho-
mology basis. A basis of this kind, of which there are many, will be
called a canonical homology basis. An abelian differential (of the first
or second kind) will have well-defined periods around any cycle.

For a torus, the genus is one. If we consider a torus as a period
parallelogram of an elliptic function with opposite sides identified,
the one abelian differential of the first kind is d2. The periods are
precisely the integrals of dz over the sides of the period parallelo-
gram. These sides form an 4 and a B cycle.

Abel’s theorem answers the following question. On a compact
Riemann surface, when is a given divisor of degree zero the zeros
and poles of a meromorphic function; that is, the divisor of a mero-
morphic function? The answer is roughly as follows. Since the given
divisor D has degree zero, we can join the points with positive coeffi-
cients to those with negative coefficients with curves to form a one-
chain v. The boundary, of this one-chain, dv, is D in the sense of
singular homology. Abel's theorem says that given v so that dy =D,
then there must be a one-cycle, ¢, that is; a one-chain whose boundary
is zero, so that to integrate any abelian differential of the first kind
a over 7y gives the same result as integrating « over ¢. Thus, over the
one-chain vy —c¢, any abelian differential of the first kind must have
zero period. Let me state this precisely now.

ABEL'S THEOREM. Let W be a compact Riemann surface. Let D be
a divisor of degree zero. D is the divisor of a meromorphic function if
and only if there is a one-chain v so that dy=D and [,a=0 for all
abelian differentials of the first kind, c.

Since the second condition is vacuous in case W is the Riemann
sphere, the theorem reduces to the fact that any divisor of degree
zero is the divisor of a rational function.

If one is perverse enough to refuse to form meromorphic functions
by taking quotients of differentials, one can still use Abel’s theorem
and the fact that the dimension of T', is finite to prove the existence
or meromorphic functions on compact surfaces. This remark is silly
when made in the classical context, but it does have some relevance
to the open case when the genus is infinite.

? | assume the surface is oriented.
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I shall not explain the Riemann-Roch theorem in detai . Its state-
ment is more complicated. Let me say that it involves abelian differ-
entials (even of the third kind), meromorphic functions, divisors, and
the finite genus, g, of the surface. It is definitely not silly to remark
that the theorem provides existence theorems for meromorphic func-
tions with prescribed singularities. These existence theorems do, how-
ever, depend on the genus being a finite number. Since the usual
statement of the Riemann-Roch theorem involves explicitly the genus
of the surface, one might wonder how one can hope to generalize this
to a surface of infinite genus. However, you will recall that in some
proofs of the theorem, the final formula is a consequence of the equal-
ity of dimension of two spaces of differentials. Since the genus does
not enter explicitly into the definition of these vector spaces, one can
hope to find a generalization at this point.

Now we wish to generalize Abel’s theorem to open Riemann sur-
faces. My remarks will have most pertinence to the situation of in-
finite genus. A sphere with a countable infinity of handles, which
become very small, or the surface of an infinite ladder furnish exam-
ples of such surfaces.

Another instructive example is the following. Let {a,.} be a se-
quence of distinct complex numbers converging to the origin. Join
the pairs ass-1, a2, by disjoint slits. Now cut the Riemann sphere along
each of these slits. Join two copies of such a multiple slit sphere by
cross-identifying across corresponding slits in the usual way. In this
way we obtain a two-sheeted branched covering of the Riemann
sphere minus the origin, with branch points of order two above each
of the a@,'s. Had we chosen but 2g+42 such points, a., the resulting
branched covering of the whole Riemann sphere would have been a
compact hyperelliptic surface of genus g. Since the branch points
converge to the origin in the case of an infinity of the a's, there are no
manifold points on the surface corresponding to the origin. The re-
sulting surface is of infinite genus and is called a transcendental
hyperelliptic surface.

In dealing with one-cycles on an open surface, it is necessary to
distinguish between dividing and nondividing cycles. A simple closed
curve on a surface is said to be a dividing cycle if, when we cut the
surface along the curve, the surface is, indeed, divided into two pieces.
Otherwise, a simple closed curve will be called a nondividing cycle.

At first glance, the project of generalizing any theorem concerning
meromorphic functions to open surfaces might seem futile because
of the work of Behnke and Stein [3]. They showed that on an open
Riemann surface one can have an everywhere regular analytic func-



1967] CLASSICAL THEOREMS ON RIEMANN SURFACES 17

tion with any discrete set of zeros. However, results have been ob-
tained by putting restrictions on the functions and differentials under
consideration. I will describe some of these restrictions.

The regular analytic differentials on open surfaces to be considered
will be Dirichlet bounded [2, Chapter V]; that is, if « is an every-
where regular analytic differential (one-form), then « will be said to
be Dirichlet bounded if the Dirichlet integral [fwa/A*a is finite. If
locally @ =df =f'dz, then the Dirichlet integral is 2/ /w|f’| 2dxdy. The
term “regular” is unnecessary in describing Dirichlet bounded ana-
lytic differentials, since poles always force the Dirichlet integral to be
infinite. The space of Dirichlet bounded analytic differentials is a
separable Hilbert space which we shall denote by I',. A meromorphic
differential, in this context, is usually required to have a Dirichlet
bounded integral outside of some compact set. Thus, it will have a
finite number of poles. Also, we shall have occasion to distinguish
those differentials whose periods over dividing cycles are zero. Such
differentials are called semiexact and we shall denote the semiexact
differentials in I'y by Tee.

So much for the differentials. What restrictions must be placed on
meromorphic functions to obtain an Abel's theorem? Here the re-
quirements are more technical and I will not describe them all. The
class of suitable meromorphic functions is called gquasi-rational by
Ahlfors [2, p. 315]. A meromorphic function is said to be quasi-
rational if the meromorphic differential d log f=(f'/f) dz is Dirichlet
bounded and exact outside some compact set. This last requirement
has as a consequence that the number of zeros and the number of
poles of a quasi-rational function must be equal and finite. There are
additional requirements which I shall omit. Since the conditions on
d log f are linear, the quasi-rational functions are closed under multi-
plication.

With these definitions we can state Ahlfor’s generalization of
Abel’s theorem. A divisor D of degree zero is the divisor of a quasi-
rational function if and only if there exists a one-cycle ¥ whose
boundary is D and such that [,a=0 for all Dirichlet bounded semi-
exact abelian differentials, .. (A very similar result was proved inde-
pendently by Kusunoki [9].)

In a somewhat similar spirit Royden [16] has produced a general-
ization of the Riemann-Roch theorem for a wide class of open sur-
faces. Rodin [15], using Sario’s principal functions, was able to give
Royden’s theorem its most general statement for arbitrary surfaces.
Thus, Abel’s theorem and the Riemann-Roch theorem seem to, and
in fact do, have very general analogues on open surfaces. The theo-
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rems are true generalizations, for they reduce to the classical theo-
rems if the surface in question is compact.

There is, however, a catch. There is no guarantee that the class of
quasi-rational functions for a given surface contains anything more
than the constants. The same situation holds for the meromorphic
functions in the Royden-Rodin version of the Riemann-Roch theo-
rem. Apropos of my previous remark, it is definitely not true that
the quotient of two Dirichlet bounded abelian differentials is a quasi-
rational function. In fact, that such quotients in general have any
reasonable properties as meromorphic functions is yet to be proved,
if it is true. Moreover, since the genus is in general infinite, we cannot
use these theorems to prove the existence of quasi-rational functions.
If the class of quasi-rational functions trivializes, the theorems are
not devoid of content, however. In Ahlfors’ generalization of Abel’s
theorem, it simply means that no divisor of degree zero has the
stated property, a statement not without interest. Still, I think it
would be disappointing if the class of quasi-rational functions always
was trivial except in the classical case of compact surfaces where all
meromorphic functions are quasi-rational.

So an important question persists. Do there exist surfaces of in-
finite genus which admit nonconstant quasi-rational functions? Inter-
estingly enough, this question seems to have been answered by Mau-
rice Heins before it was asked.

To understand what Heins did, we must first look a little closer
at the problem of classifying Riemann surfaces. The scheme of classi-
fication proposed by Ahlfors and Sario was to classify together sur-
faces where some distinguished class of functions trivializes. Let HD,
AD, HB, and A B stand respectively for the following classes of func-
tions: Dirichlet bounded harmonic functions: Dirichlet bounded
analytic functions; bounded harmonic functions; and bounded ana-
lytic functions. Let Ogp, Oap, Oxnp, and O4p stand for the classes of
surfaces where HD, AD, HB, and AD respectively reduce to the con-
stant functions. Notice that the compact surfaces are in all of these
classes. Every time a class of functions is discovered, a new class of
surfaces arises. Classification theary has many objects for Its study.
The statement Ogp CO4p merely means that if a surface admits no
nonconstant bounded harmonic functions, then it admits no non-
constant bounded analytic functions; an easy observation since the
real part of a bounded analytic function will be a bounded harmonic
function. Similarly, Ogp COsp. Another important class of surfaces
are called parabolic and denoted O,. Here g stands far a Green’s
function; thus, parabolic surfaces are defined by the fact that there
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are no Green'’s functions on them. For the purposes of classification
theory, a Green’s function is a positive harmonic function on a sur-
face punctured at one point where the function has a logarithmic pole.
By the minimum principle for harmonic functions one sees easily
that compact surfaces are also parabolic. Among the classes of sur-
faces so far introduced, in many ways the parabolic surfaces are clos-
est to the compact surfaces even though they can well have infinite
genus. In particular, all differentials in T', are semiexact; that is,
I'y =T, for parabolic surfaces.

Between the various classes, the following inclusion relations are
known [2, Chapter IV]:

0, # Oms # Oup #Z O,
0,  Onp = Oap # Oup.

Roughly speaking, classification theory deals with the order relations
between the O classes and, in particular, whether the inclusions are
strict or not.

The significance of a surface being in O4p, for our present problem,
is this: on such surfaces any differential in T', is determined by its
periods. For if @ and &' have the same periods, &« —a’ is exact. Thus
the function which is the integral of a—a' is an AD function and so
is a constant. Thus a=¢'.

What Heins did was to study a class of meromorphic functions on
parabolic surface, a class he called functions of bounded valence [7].
(Actually he studied functions on more general surfaces of class Oyp,
but I shall not discuss this.) In general, a meromorphic function, f,
is said to be of bounded valence if there is some integer NV so that f
assumes any value at most N times counting multiplicities. Thus,
such a function represents the underlying surface as a finite sheeted
covering of part of all of the Riemann sphere. Let BV denote this
class of functions on a surface. The constants are considered to be in
BYV. On a general surface, BV is not a field. However, if the surface
in question is parabolic, then Heins showed that BV is, in fact, a
field.

The importance of BV functions is this. If the surface in question
is parabolic, then all quasi-rational meromorphic functions are BV
functions, The additional restrictions in the definition of quasi-ra-
tional, that I did not describe, are always met on parabolic surfaces,
so in that case the definition as presented is complete. Also, the class
of functions considered by Royden are functions of bounded valence
on parabolic surfaces.



20 R. D. M, ACCOLA [January

I shall now state the central theorem of Heins which shows why
Abel’s theorem and the Riemann-Roch theorem hold on parabolic
surfaces. In fact, this theorem exhibits the mechanism by which these
theorems are almost reduced to the classical theorems on compact
surfaces.

TeEEOREM (HEINS). Let W be a parabolic Riemann surface admitiing
nonconstant functions of bounded valence. Assume g is infinite. Then
there exists a compact surface Wy and an analytic mapping « from W
into Wy so that for each f in BV on W, there is an fo, meromorphic on
W so that f=f, o w. The set of points, S, in Wy not covered maximally
by m has capacity zero. (w is necessarily a finite sheeted covering of, say,
n sheets.)

Thus, BV on W is isomorphic to the field of meromorphic functions
on the compact surface W,. Moreover, the divisor of any BV func-
tion, f, on W is the divisor of the corresponding f, lifted via w. In
fact, Abel’s theorem, and the Riemann-Roch theorem on W are
nothing more than the corresponding theorem on W, lifted via .
Let me show how this takes place for Abel’s theorem.

It is not difficult to show that a function f, on Wy lifts via 7 to a
quasi-rational function, f, on W if and only if the zeros and poles of
fo do not intersect S, the set of W, not covered maximally. Thus =
tells us how to lift functions and divisors from W, to W. Moreover,
since 7 is finite sheeted, we can lift an ay&ET'(Wy) to an aET (W)
via 7. This does not quite complete the proof of one half of Abel’s
theorem on W, since I's(W) consists of more than the differentials
lifted from W,. I shall now complete one-half of Abel’s theorem on W.

Suppose f is a quasi-rational function on W being the lift of f, via
w. Let o be a path on Wy—.S so that dv, is the divisor of fo. If v is
o lifted via m, that is, y =7"1(y,), then dv is the divisor of f. Suppose
we choose vy so that all differentials in I's(Wy) vanish over v, Here
we use the classical formulation of Abel’s theorem. Take a ET(W).
We want to show that [,a=0. Let y=v1+v:+ - - - +v» where v,
is the part of vy lying on the sth sheet. Similarly, let @ be «; on the sth
sheet. (This is a little imprecise, but it can be done precisely in each
parametric disk, which is all that is necessary.) Then [,a= > %, [y.a:
Now we can define a Dirichlet bounded differential ap on Wy—.S by
adding together the determinations of o on the various sheets. Then
Jya=2[yai=[ra0 by the definition of v. But S, being a set of
capacity zero, is a removable singularity for ao; thus a extends to
be a differential in I',(W,). By the classical theorem [,,00=0, and so
Jya=0. Thus one-half of Abel’s theorem is proven.






