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Recently A. S. Galbraith communicated to the authors the con­
jecture that normal operators (Nakai-Sario [4]) are linear liftings 
(Tulcea [7]). In the present Research Announcement we shall show 
that the conjecture is correct: conditions (l)-(S) of [4] imply condi­
tions (I)-(V) of [7]. 

Galbraith's conjecture also led us to a generalization of normal 
operators where we make use of Wiener's compactification of a Rie­
mann surface (cf. Cons tan tinescu-Cornea [2]). The results have ap­
plications to Ahlfors' [ l ] conjecture on extreme normal operators. 

We wish to express our sincere gratitude to Dr. Galbraith for stim­
ulating this research. 

1. Normal operators on Wiener's boundary. Consider a finite union 
2? = UjLi Rj oî disjoint hyperbolic Riemann surfaces Rj with Wiener 
harmonic boundaries Tj (Constantinescu-Cornea [2]). Decompose 
r,- into two disjoint compact sets a3- and ]8y, the case j3y = 0 (void) not 
excluded. Set T = U? Tif a = UJ a,- and /3 = U? ft. 

We are interested in mappings of the space C(a) of real-valued 
continuous functions on a into the space H(R) of harmonic functions 
on R. An operator L from C(a) into H(R) is, by definition, normal if 
(L.l) L is linear, (L.2) ƒ è 0 implies Lf^O, (L.3) Lf\ a =ƒ, (L.4) LI = 1, 
and (L.5) fy*dLf—0 along a dividing cycle y on R homologous to a. 

Clearly LfÇzHBÇR), the space of bounded functions in H(R). If 
jR is a bordered Riemann surface with compact border a, and if a lies 
on a, then L is normal in the original sense [4], as stated more pre­
cisely in §4 below. 

In the case j3 = 0 , an operator L satisfying (L.l) and (L.2) gives 
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Lf = Hf
R, the unique harmonie function on R with boundary values ƒ 

on a = T. Conditions (L.3)-(L.5) are trivially satisfied, and there 
exists one and only one normal operator. For this reason our main 
interest is with the case j 8 ^ 0 . 

2. Operators between function spaces. For a normal operator L, 
ƒ—»!ƒ( j3 gives an operator TL from C(a) into C((3). Conversely, given 
an operator T from C(a) into C(|8), there exists a unique operator LT 

from C(aO into HB(R) such that ƒ—>Lj/1 ]3 is JH. We shall call T normal 
if L r is normal. 

We wish to characterize normal operators among operators from 
C(a) into C(j3). Let K(z, p) be the Wiener harmonic kernel on RXT 
and let fx be the harmonic measure on V (see [3]). We consider the 
measure y o n T given by 

dv(p) =(^f*d,K(z,P)S)dn(p), 

where y is as in (L.5). Clearly v depends only on ju, and on the decom­
position of T into a and /3. 

An operator T from C(a) into C(f3) is normal if and only if (T.l) 
T is linear, (T.2) / = 0 implies Tf^O, (T.3) 71 = 1, and (T.4) Jjdv 
-hTfdv. 

3. Operators between measure spaces. The totality { T\ of normal 
operators T from C{a) into C(j3) forms a convex set. A generalized 
form of Ahlfors' problem [l] is to determine the set BIT} of ex­
treme points of {T}. In this connection it is also interesting to in­
vestigate the conjugate operator T* of TÇ£{T}. Let M(a) (resp. 
M(j3)) be the conjugate space of C(a) (resp. C(/3)), i.e., the totality of 
signed regular Borel measures a on a (resp. /3). Then T* is an oper­
ator from M(fi) into M (a) given by fpTfda=fafdT*o- for f (EC (a) and 
<r&M(J3). Among operators from M iff) into M {a), we shall again 
call 71* normal if it corresponds to a normal T. 

An operator T* of Miff) into M{a) is normal if and only if (T*.l) 
T* is linear, (T*.2) (r = 0 im£«w r*o- = 0, (T*.3) fadT*a=fpd<ry 

(T*.4) r**> = j>, awd (T*.5) T* is weakly continuous. 
The determination of E { J H * } is equivalent to that of BIT}. In 

the case where a and /3 are homeomorphic and the homeomorphism 
preserves v, Ahlfors' conjecture [ l] can be restated as follows: 
r * £ E { T*} if and only if there exists a homeomorphism i = iT* of /3 
onto a such that T*ep = €;(P), where ep is a point mass at ££j3. This is 
certainly the case for operators with (T*.1)-(T*.4). However, condi­
tion (T*.5) shows that the conjecture is not universally valid. Ac­
tually, Savage [5] gave a counter example even in the simple case of 



i966] NORMAL OPERATORS, LINEAR LIFTINGS 949 

R: l<\z\ < 2 , with a and (3 lying over | s | = 1 and 2, respectively. 
There exist, of course, cases where Ahlfors' conjecture is correct. 

Take, e.g., a Riemann surface FQOHB — OSTB1 with n = l, 2, • • • (see 
Constantinescu-Cornea [2]), remove a disk Fo, and form the double 
R of F—Fo about dF0. As a we take the Wiener harmonic boundary 
of F, and as ]3, the symmetric image of a in R. Then ce = /3 is a set of 
w isolated points. If we take the center of JJ, on dFo, then v\ a and *>| j8 
are symmetric and atomic, and (T*.5) is immediate. 

4. Normal operators on the relative boundary. As a special con­
crete case we consider the complement R of a regular region of an 
open Riemann surface, with a lying on the relative boundary â of R. 
There exists a unique continuous mapping TT of RVJa^J^ onto 
Ryjâ\Jj3 such that TT is an identity on R^Jf3, and à) = (jj,\a) o r 1 , 
where ö> is the harmonic measure on â with respect to RUa^Jfi. 

A normal operator L of C{a) into H(R) in the original sense [4] 
can be represented as an operator T of C(a) into C(j8) with ( T . l ) -
(T.4). Here i^UceW/3 and v are replaced by RVJa^J^ and a suitable 
v such that v = (y\a) o 7r~x on â and î? = J>118 on ]8. We may take C(a) 
= L°°(Q:, Ô>), which contains C{â) as a subspace. 

For any normal operator T of C{a) into C(|8), there exists a r £ { T\ 
such that T\ C(a) — T, and vice versa. 

5. Linear liftings. Let Z = a^Jfi and co be a measure on Z such that 
co | a = w and co|j8 = 0. For L and ƒ GL°°(Z, co) we set p / = / | â on â and 
p/ = L(f | a) | j8. Then p is a linear lifting on L^iZ, co) (Tulcea [7]). Thus 
a normal operator gives an example of a linear lifting. Ahlfors' prob­
lem [ l ] can then be stated as follows: when is a linear lifting a lifting, 
i.e., a multiplicative linear lifting ? 
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