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1. The convex hull of a random sample may be considered as one 
possible analogue of the range of a one-dimensional sample. Recent 
work along this line has dealt with the expected number of vertices, 
faces, surface area and other quantities connected with the convex 
hull of n independently and identically distributed random points 
in the plane and in higher dimensions. See Renyi and Salanke [6] and 
Efron [ l ] . Geffroy [2], [3] has shown tha t if the random points are 
normally distributed then the convex hull "grows like" an ellipsoid 
(for a concise statement of these results see Math. Rev. 25 #4559). 
Some features of the limiting geometric behavior of the convex hull 
will be described here. 

2. Let B be a Banach space. Let x( l ) , x(2), • • • be a sequence of 
independent, identically distributed, Borel measurable, 5-valued ran­
dom variables defined on a probability space (ft, 3r, P). Let m be the 
measure defined on all Borel sets A in B by m(A) = P ( {œ : x(l) (co) £-4 } ). 
Let H(n) be the convex hull of {x(l), • • • , x(n)\. Let S(n) 
= i?(w)/maxi„i,...,n ||*(t)||» (where { 0 } / 0 = { 0 } ) . In other words, 
S(n) is the random convex hull normalized to have norm one. Let A 
and C be closed, bounded, convex sets contained in B. We define 
d(Ay C)=m{ e such tha t €>0 , A+e^C and C+e^A, where A + e 
= {y\ BxÇiA, zÇzB with Og| | js | |<e and y = x+z}. We say tha t 
C = LIP iff d(C, S(n)) -* 0 in probability and that C = LAS iff 
d(C, S(n))-^0 almost surely. 

I t is easy to see that if LAS or LIP exists then it is a compact set. 
We are thus led to a second, weaker type of limit. Let C be a closed, 
convex set contained in 5 . We say that C = WLIP if for all x(£C, 
3e > 0 such that P(x £ S(n) + e) -> 0 and if for all x £ C then 
P(xES(n)+e)-*l for each e > 0 . We shall say that C = WLAS if for 
all x(£C, 3 e > 0 such that x$:S(n) + e almost surely for all large n, 
and also if for all x £ C then x£:S(n)+e almost surely for large n and 
each €>0 . I t is easy to prove tha t if B is a finite dimensional space 
then L I P exists iff W L I P exists and the two sets are identical. A 
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similar remark holds for LAS and WLAS. We now turn to some re­
sults involving the above types of limits. 

3. For the first result we need some additional terminology. Let 
y(l), y(2), • • • be independent, identically distributed random vari­
ables. Let m(n) =max(y( l ) , • • • , y(n)). Then we say that m(n) is 
relatively stable (a) in probability if there exists a sequence B(n) > 0 
such tha t P(\m(n)/B(n)-l\ <e)->l for each e > 0 ; (b) almost 
surely if there exists a sequence B(n)>0 such that m(n)/B(n)-+l 
almost surely. The study of the relative stability of the maximum of 
a sample was begun by Gnedenko [4] and has undergone develop­
ment since tha t time. 

THEOREM 1. Let L IP (LAS) exist and contain at least two nonzero 
extreme points. Let y(i) — \\x(i)\\. Then m(n) is relatively stable in 
probability (almost surely). 

The proof depends upon the fact that normalized sample points 
must be close to each extreme point of LIP (LAS). Whether or not 
this occurs will depend upon how the maxima in small cones about 
the extreme points grow. The growth in two disjoint cones is almost 
independent because the number of sample points in each cone is ap­
proximately the number of sample points times the probability that 
a given sample point falls into the given cone. 

Let F be a distribution function. For each x> 1 let 

L(x) = min{;y|F(;y - 0) g 1 â F(y + 0)}. 
x 

If the maximum associated with a series of independent, identically 
distributed random variables with distribution function F> F(0) < 1 , 
is relatively stable then we may choose B(n)=L(n) and it also fol­
lows that L is a slowly varying function; that is, L(cx)/L(x)-~>1 as 
x—>oo for each c>0. 

THEOREM 2. Let B=En^n-dimensional Euclidean space. Let m be 
the product measure of a radial measure and an angular measure. Let 
0(m) be the support of the angular measure. Ifd(m) contains at least two 
angles then LIP(LAS) exists iff m(n) (defined in Theorem 1) is rela­
tively stable in probability (almost surely). The limit is the convex hull 
of the set consisting of the origin and {(1,0) 10£0(w)}. 

The proof uses Theorem 1 and the fact that L is a slowly varying 
function which allows us to show that the maximum radius in each 
open cone containing angles in 9(m) grows at the same rate. 

Let N(p) = {(xf y)\x*+y*^l and * ^ 0 , ^ ^ 0 } for 1 ^ £ < Q O . Let 
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N(oo) = {(x, y)|0gtf^l, O g y ^ l } . 

THEOREM 3. Let B=E2= {(x, y)\x, yGR}. Let m be the product 
measure along the x and y axes of two identically distributed measures 
each with distribution f unction F. Let F(x)=0 for x<0 and F(0) < l . 
Then if LAS or LIP exists it is equal to N(p) for some £ £ [ l , <*>] 
(up to normalization). We then have: 

(a) If L IP exists but not LAS, p = 1. 
(b) In order that Kp<oo correspond to LAS it is necessary and 

sufficient that L(y^)^xL(y) for large y and each x E ( 0 , 1). 
(c) In order that p = oo correspond to LAS it is necessary and suffi­

cient that L(y112) > (l-~e)L(y) for large y and each €>0 . 

The proof is somewhat involved although elementary methods are 
used. I t involves showing tha t we may assume that F(x) is con­
tinuous and strictly increasing for large x. We then can express the 
existence of the limit strictly in terms of L and manipulations with 
L complete the proof. From this result it is possible to find the most 
general limits in En which can arise from a product measure of one-
dimensional measures along an orthogonal set of axes. 

4. We now give three specific examples of limiting convex hulls. 
EXAMPLE 1. Let m be a normal distribution in k which is the 

product measure of N(0, <r(i)) measures along the orthogonal set of 
axes {x(i)}. (See Grenander [5] for more information on normal dis­
tributions in l2.) Then LAS= {(x(l), x(2), • • • ) | ] C ( x ( * ) M * ) ) 2 ^ l } . 

EXAMPLE 2. Let m be Poisson measure on K with the Ji-topology 
(see Skorohod, [7] for definitions of K and the Jvtopology). Then 
WLAS = {ƒ |/(O) = 0, / ( I ) ^ 1, ƒ is nondecreasing and continuous}. 

EXAMPLE 3. Let m be Wiener measure on Ck[0, l ] = t h e space of 
^-dimensional continuous functions defined on [0, l ] . Then LAS 
= {ƒ I/(0) = 0 , ƒ is absolutely continuous and ft f(t)2dt^l} where jf2 

is the inner product of ƒ with itself. 
The first example is essentially Geffroy's result, but with a weaker 

type of convergence and an infinite dimensional space. The third ex­
ample is inspired by a result of Strassen [8] and the proof is closely 
related to the proof that he gave for his somewhat similar result. 

5. These results with detailed proofs will be published elsewhere 
at a later date. I wish to express my deep gratitude to my advisor, 
Professor Lamperti. 
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1. Introduction. In 1913, Bohr [l] proved the following theorem 
for Dirichlet series: if 

(1) f (a + it) « £ c(n)n-°-« 
n-l 

and if \f(<r+it)\ ^ 1 for all <r>0, then 

(2) Z | eft) | SI , 
V 

the sum in (2) extending over all primes. 
A set of positive integers E will be called a Bohr set if there is a 

finite constant B such that for every function ƒ as in (1) 

(3) £ I c(n) | ^ B. 
ne E 
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