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Let M be the lowest eigenvalue of the membrane problem
Au+ Ay =0 in D,
=0 ond D.

It was shown by Barta [1] that if w>0 in D, then
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inf l:— — .
w

This result has been extended to other selfadjoint problems for second
order operators. See [2], [3], and [6].

The purpose of this note is to show that the same technique locates
the spectrum of a nonselfadjoint problem in a half-plane. Such a re-
sult is of interest in investigating stability, where one needs to know

whether there is any spectrum in the half-plane Re A 0.
In a bounded domain D we consider the differential equation
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= — k(x)f(x)
where x~(x1, - - -, x,). The matrix a%(x) is symmetric and positive

definite, k(x) is positive, and all the coefficients are real and bounded
in D. However, they need not be continuous.

The boundary @D is divided into two disjoint parts Z; and 2,
and the boundary conditions are

=0 on 3,
2 i ou

Mlu] = 3 ei(x) + g@)u =0 on Z,.
1 9%;

The vector field e points outward from D.

1 This investigation was supported by the National Science Foundation and the
Air Force Office of Scientific Research.
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We shall prove the following theorem about the spectrum of the
operator L considered as an operator on the space C(D) of continuous
functions with the maximum norm.

THEOREM 1. Suppose w(x) defined on D\JAD has the properties:

(i) w(x)>0 on D\JID;

(ii) wE CH(D)NCYD\JID);

(i) M[w]=0 on =,

Then the discrete and continuous spectra of the problem (1), (2) are
contained in the half-plane

@3) Re\ 2 inf (— %[;:i)

ProoF. Let 7=inf(—L[w]/kw), and suppose that Re\<r. We
wish to show that \ is in the resolvent set.
Let u satisfy (1) and (2), and define

(%) = u(x)/w(x).
Substituting #=vw in (1), multiplying the equation by %, and
taking real parts, we obtain
n 1 2|v|2 n ( n ow 3|v|2
— wa + i+ 2 ) a¥ )
; 2 ax,c’)xj ,_Zl 2 ,_z; ox;/ dx;

+ (L[] + Re()kw) | o|?

r. . 0v 9%
= 20 a¥ — — — Re(t)
1 X c')x;
= — k Re(@f),
since a# is positive definite. The boundary conditions yield

lv‘2=0 on I,

Ze' l |+2M[w”v|2 0 on 2.
1

We observe that L[w]+Re(\)kw =< — (r — Re \) kw. Therefore by the
maximum principle, we find that

1 Re(if)
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Hence
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1
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Thus if Re N <7, the operator L-+X\ k has a bounded inverse in the
maximum norm on its range. Hence \ is in either the residual spec-
trum or the resolvent set. Therefore the discrete and continuous
spectra are contained in the half-plane

. L[w)]
Re) = inf (— ——~)
D kw

as the theorem states.

In what follows we shall assume that the problem does not have
a residual spectrum. That is, we assume that the range of L-+\k is
dense for some sufficiently small \; or, equivalently, that the index
is zero.

The following theorem shows that the bound (3) is a lower bound
for a real point \; of the spectrum:

THEOREM 2. Suppose there is a function w satisfying the conditions
of Theorem 1. Then if the spectrum of (1), (2) is not empty, there exists
a real number Ny in the spectrum such that the whole spectrum lies in the
half-plane

Red =\

ProoF. Let N\ be real, and let v=u/w, where u is real. Then the
problem (1), (2) becomes

n o2 n n 9
S wa - 3 (b4 235050 ) 2 (L] + nbwly
1 ¥i

0x;0%; el j=1 x;

ow

= — kf in D,
v=0 on 21,
dv

¥

> wei— + M[wlo =0 on 2.
1
By the maximum principle we see that if A <inf(— L[w]/kw), then

f>0 implies >0 and hence #>0. Thus the resolvent R, is positive
for A <inf(—L[w]/kw).
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Conversely if R,=0 for some real number 7, we find that the
solution w of

Llw] + 7hw = — k& in D,
(4) w=1 on 3,
Mlw] =0 on 2,

is admissible in Theorem 1, so that the spectrum lies in the half-plane
ReA=7, and R, =0 for all real u=r.

Now let A; be the limit superior of those A for which Ry =0. Then
the spectrum is in the half-plane Re A=\:. If A; is in the resolvent
set, we see by continuity that R\, =0. Moreover, for any A>\; with
AN <||Ry||-* we have Ra=(I—A—M)R\)" 'Ry, =Ry, +AN—N) R,
4+ .+ . =0. Thus if \; is in the resolvent set, we obtain a contradic-
tion with the definition of N\;. Hence ), is in the spectrum of (1), (2).

We observe that for any 7 <\; the solution w of (4) gives the lower
bound 7, so that the lower bound (3) can be made arbitrarily close to
A1 by a judicious choice of w.

ReMARKS 1. If D is unbounded but Z, is bounded, we can define

a solution of (1), (2) by exhaustion. That is, we obtain the solutions
U, of

L) + New, = — bf in DN { | x| <n},
#, =0 on U {|z| =n},
Mlu,) =0 on Z,.

By the method used in the proof of Theorem 1 we find that if Re A
<inf(—L[w]/kw), the functions «, converge uniformly to a solution
u of (1), (2). Thus the spectrum still lies in Re A2 inf(— L[w]/kw).
Theorem 2 can also be extended to this case.

2. If D and the coefficients of our problem are so smooth that for
sufficiently small real u the resolvent R, is completely continuous in
the maximum norm (i.e., the family R,[f] with f<1 is equicontinu-
ous), then the spectrum is discrete, so that A is an eigenvalue.

A theorem of Krein and Rutman [5, Theorem 6.1] shows that the
corresponding eigenfunction #; is positive in D. The theorem of Krein
and Rutman also states that in this case the adjoint operator R}
has the eigenvalue (\; —u)~! with a positive eigenfunctional #¥. From
this fact we can derive Theorem 1 with condition (i) replaced by the
weaker condition w=0. Moreover, we can obtain a complementary
upper bound for A\;:
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If gx) 20 in D, ¢g=0 on Z;, and M[g] £0 on =, then
M =sup(—L[q]/kg).

3. If the coefficients are so smooth that the adjoint operator L*
can be formed, and if the boundary conditions are selfadjoint (e.g.,
2,=0D), an inequality of the same type as (3) may be found by
methods of Hooker [4] and Protter [6]. Namely,

L[w] + L*[w]
2kw )

This inequality may be stronger or weaker than (3).

Re(d) = ix;f (—
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