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A compact subset P of a locally compact abelian group G is said 
to be a Kronecker set in G [ l , p. 97] if every continuous unimodular 
function on P is uniformly approximable on P by continuous char­
acters of G. P is a Helson set [l , pp. 114-115] if for some € > 0 and 
each n<EM(P): 

(H, e) €||M|| ^ sup f y(x)dn(x) , ||/i|| = | ju | (P), 

T being the dual of G. 
If P is a Kronecker set in G, P satisfies (H, 1) by [l , Lemma 5.5.1]. 

I t was asked in [ l ] whether (H, 1) implies that P is a Kronecker set. 
Wik [2] constructed a class of counter-examples in the real line; in 
this note a different type of construction is announced. 

Let X be a compact Hausdorff space and U the (abstract) group of 
continuous unimodular functions on X, V a subgroup of U which 
separates the points of X. Then X is embedded as a topological sub-
space of f and is a Kronecker set in f if and only if T is uniformly 
dense in U. We give below two examples in which T is a proper closed 
subgroup of U but for which (JÏ, 1) holds for measures in X. 

(a) X is the 1-torus and T the group of functions with winding 
number, or degree, zero. In this case the Kronecker condition holds 
on the complement of any arc, so (H, 1) holds. 

(b) X is the unit interval [0, 1 ] and T is the set of all functions 
eif, ƒ real and flfdx = 0. In this case U=T*C, C being the subgroup 
of constant functions. 

In (a) and (b) the groups T have the form exp{flr, where H is an 
additive subgroup of the real continuous functions on X. In each case 
H contains a dense subgroup H\ algebraically isomorphic to 
Z®Z@Z(& • • • ; the exponential mapping is an isomorphism onto 
T. In (a) Hi is the^ subgroup of trigonometric polynomials with co­
efficients in Z + V2Z; in (b) one uses the same coefficients with the 
generators { x n - l / ( w + l ) : w ^ l } . Using the smaller subgroups of U 
determined by these subspaces we can embed X—»PW and have the 
same phenomenon in regard to measures in X. In view of Theorem 
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5.2.9 of [l] this is probably the simplest group in which the torus 
and line can be Helson sets. Of course in neither case does the embed­
ding have any connection at all with the usual group operations in X. 
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