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1. Introduction. This paper concerns itself with certain rings of 
meromorphic functions on noncompact Riemann surfaces. Let Ö de­
note a noncompact Riemann surface. We denote by A the collection 
of all mappings of Q into the complex plane C which are analytic on 
Q. Also, we denote by M the collection of all mappings of ti into the 
Riemann sphere 2 which are meromorphic on £2. As is well known, 
A is an integral domain under the operations of pointwise addition 
and multiplication, and M is the field of quotients of A. The rings 
considered here are those subrings of M which contain the ring A. 
Such subrings will be referred to as A-rings of M. In particular, A is 
itself an A -ring of Jkf, as is the field M. 

The ring A has been extensively investigated in recent years, and a 
considerable amount of information concerning the ideal theory of 
this ring has been obtained. The main result here is the theorem of 
Helmer [3], which asserts that every finitely generated ideal of A is 
actually a principal ideal of A. This theorem is the basis for most of 
the known results on the ideal theory of A, as is evident from the 
papers of Henriksen [4], [S], Kakutani [7], and Banaschewski [2]. 

We announce some results pertaining to the A -rings of M, the 
principal one of which is a characterization of these rings (Theorem 
3). Thanks to this characterization, a number of theorems concerning 
the ideal theory of A extend to any ,4-ring of M, as, for example, the 
theorem of Helmer. Inasmuch as A is itself an A -ring, our results 
may be considered as generalizations of the corresponding results 
for ,4. 

The methods involved in the proofs of these results involve a study 
and exploitation of the valuation theory of M, which was previously 
considered by Ailing [l] . In particular, we make considerable use of 
the valuation rings of M which are also A -rings of M. These rings 
are readily identified by means of Helmer's theorem, and they may 
be employed to prove many of the known results on the ideal theory 
of A. Moreover, the arguments involved in these proofs frequently 
apply to any A -ring of M. It is also possible to classify certain A-
rings by these methods, and we are able, for example, to determine 
the noetherian A -rings of M. 

Finally, we consider the extent to which a Riemann surface is 
determined by its A -rings. More exactly, we can show that if two A-
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rings of functions mermorphic on two noncompact Riemann surfaces 
are isomorphic, then the isomorphism in question is induced by a con-
formal or anticonformal equivalence between the two surfaces. This 
may be considered as a generalization of a theorem of Nakai [8], who 
proved this for the case where the A -rings in question are just the 
rings of functions analytic on the two surfaces. The proof of this re­
sult again makes use of the valuation theory of M, especially the 
characterization of the noetherian valuation rings of M as given by 
Iss'sa [6]. However, the proof does not depend on the theorem of 
Nakai, as we derive it from a more general result (Theorem 13) con­
cerning isomorphisms between fields of meromorphic functions. In 
particular, we obtain the field isomorphism theorem of Iss'sa [6] with­
out the use of the Nakai theorem. 

2. Algebraic preliminaries. Let D be an integral domain and let 
K be its field of quotients. We shall say that a nonempty subset S of 
D is a multiplicative subset of D if 0(£S and if 5 is closed under 
multiplication (i.e., if x £ S and y £ 5, then xy<ES). If S is a multi­
plicative subset of D, the subset {x/y:x(ED> y<ES} of the field K, 
to be denoted by 5-1£>, is a subring of K containing D which will be 
termed the ring of quotients of D with respect to S. Further, a subring 
B of K is called a ring of quotients of D if B = S"1D for some multi­
plicative subset 5 of D. In the special case S = D~P, where Pj^D 
is a prime ideal of D, the ring of quotients S^D, denoted by DPi is 
called the localization of D at P . 

Given a ring of quotients S~lD of D, a number of relations hold be­
tween the ideals of S~lD and the ideals of D which do not intersect 
the set S (cf. [9, pp. 41-49, 218-233]). These relations are employed 
in the proofs of our results, as are many results from valuation theory. 

3. A -rings of M. 
DEFINITION 1. An A-ring of M is a subring of M which contains the 

ring A. 
Our study of the A -rings of M is based on the following three theo­

rems, and especially on the third. 

THEOREM 1. Let B be an A-ring of M and let P be a prime ideal of 
B. Then BPi the localization of B at P , is a valuation ring of M which 
contains B. Conversely, if R is a valuation ring of M which contains B, 
then R = Bpfor some prime ideal P of B. 

THEOREM 2. Let B be an A-ring of M. Then B is the intersection of a 
collection of valuation rings of M. 

THEOREM 3. Let B be an A-ring of M. Then B is a ring of quotients 
of A. In fact, B^S^A, where 5 = {fGA: 1/fGB}. 
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Thus the A -rings of M are exactly the ring of quotients of A, and 
the A -rings of M which are also valuation rings of M are exactly the 
localizations of A at its prime ideals. These results may be used to 
advantage in studying the A -rings of M. In view of the relations be­
tween the ideals of A and those of S~"lA, we obtain extensions of a 
number of results on the ideal theory of A to the A -rings of M, such 
as the following. 

THEOREM 4. Let B be an A-ring of M. Then every finitely generated 
ideal of B is a principal ideal of B. 

THEOREM 5. Let B be an A-ring of M and let P be a nonzero, proper 
prime ideal of B. Then P is contained in exactly one maximal ideal of B. 

THEOREM 6. Let B be an A-ring of M and let P be a maximal ideal of 
B. Then the collection of all primary ideals of B which are contained in 
P is totally ordered under set inclusion. 

THEOREM 7. Let B be an A-ring of Mand let P be a maximal ideal of 
B. Then the intersection of any collection of prime (resp% primary) ideals 
of B contained in P is again a prime (resp. primary) ideal of B. 

Since these theorems are all known to be valid for A itself [2], they 
may be considered as generalizations of the ideal theory of A. One 
may also obtain a number of results on the valuation rings of M 
which contain A by the use of our characterization of A -rings. For 
example, using some results [2], [5] on the prime ideals of A, we 
have the following. 

THEOREM 8, Let Rbea nontrivial valuation ring of M which contains 
A. Then the following are equivalent: (1) B is a noetherian ring. (2) B 
is a valuation ring of rank one. (3) B is a valuation ring of finite rank. 
(4) B is a maximal subring of M. (5) There exists a point aÇzQ such 
that B » {ƒ G M: f (a) 5^00}. 

Of particular interest are those A -rings of M consisting of all func­
tions in M having no poles on a given subset of Q. 

DEFINITION 2. Given E CÖ, we define A{E) = {fGM: f (a) 7* 00, 
aGE}. 

Evidently -4(E) is the collection of functions f G M which are 
analytic at each point of E, so A(E) is an A -ring of M. With suitable 
restrictions on the set E, the ring A (E) must satisfy some very strong 
conditions. 

THEOREM 9. Let B be an A-ring of M,B^M. Then the following are 
equivalent*. (1) B=:A(E)f where E is a nonempty, relatively compact 
subset of 0. (2) B is a noetherian ring. (3) B is a principal ideal ring. 
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(4) B is a unique factorization ring, (5) Every proper, nonzero prime 
ideal of B is a maximal ideal of B. (6) Every proper, nonzero prime ideal 
of B is a minimal prime ideal of B. (7) Every subring of M which con­
tains B is a noetherian ring. (8) Every valuation ring of M which con­
tains B is a noetherian ring. 

The rings described by this theorem can then be used to character­
ize the rings A(E) with ECU. 

THEOREM 10. Let B be an A-ring of M. Then B~A(E) for some sub­
set E of Û if and only if B is the intersection of a decreasing sequence of 
A-rings which satisfy the conditions of Theorem 9. 

4. Isomorphism theorems. In order to determine the possible ring 
isomorphisms between two A -rings on two noncompact Riemann 
surfaces, we make use of a recent theorem of Iss'sa [ó], which char­
acterizes the noetherian valuation rings of the field M. This result 
may be stated as follows. 

THEOREM 11. Let Rbe a noetherian valuation ring of M. Then R is 
an A-ring of M. 

This result may be combined with Theorem 8 to yield 

THEOREM 12. Let Rbe a nontrivial noetherian valuation ring of M. 
Then there exists a point a £ Q such that R = Ra= {fE:M:f{A)9é- °° }. 
Conversely, for each aÇSlthe ring Ra is a nontrivial noetherian valuation 
ring of M. 

With this result we then obtain the following theorem concerning 
field isomorphisms between fields of meromorphic functions. 

THEOREM 13. Let Oi and £22 be Riemann surfaces, where fli is non-
compact. Let F% be a subfield of the field of functions meromorphic on Q2, 
F% containing the constants. Let M\ denote the field of functions mero­
morphic on Qi, and suppose that 6: M\—>Fz is afield isomorphism of M\ 
onto F%. Then there exists a unique map <f> : Q2--*Oi such that one of the 
following holds: 

(1) <l> is analytic and 0f=fo<f> for all ƒ G Mi, 
(2) <f> is conjugate-analytic and 6f = (ƒ o <£)* for all ƒ E Mi. 

Now if Q is a noncompact Riemann surface, and if B is an A -ring 
of M, then M is the field of quotients of B. Hence Theorem 13 may be 
applied to ring isomorphisms between A -rings on noncompact Rie­
mann surfaces. It results that a noncompact Riemann surface Q is 
uniquely determined to within a conformai or an anti-conformal 
equivalence by the algebraic structure of any of the A -rings of M. 



58 JAMES KELLEHER 

This may be considered as a generalization of the theorem of Nakai 
[8], who proved this result for the case where the A -ring in question 
is the ring A itself. It also contains the field isomorphism theorem of 
Iss'sa [6], the case where the .4-ring involved is simply the field ilf. 
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