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Introduction. Let X be a real Banach space, X* its conjugate space, 
(w, u) the pairing between w in X* and u in X. If C is a closed convex 
subset of X, a mapping T of C into X* is said to be monotone if 

(1) (Tu - Tv, u - v) ^ 0 

for all w and v in C. 
I t is the object of the present note to prove the following theorem: 

THEOREM 1. Let C be a closed convex subset of the reflexive Banach 
space X with 0 £ C , Ta monotone mapping of Cinto X*. Suppose that 
T is continuous from line segments in C to the weak topology of X* while 
(Tu, « ) /H | ->+oo as |H | ->+co . 

Then for each given element w0 of X*, there exists u0 in C such that 

(2) (Tuo — wo, uo — v) ^ 0 

for all v in C. 

If C = X, Theorem 1 asserts that Tu0=Wo and reduces to a theorem 
on monotone operators proved independently by the writer [ l ] and 
G. J. Minty [9] and applied to nonlinear elliptic boundary value 
problems by the writer in [2], [3], and [ó]. (See also Leray and Lions 
[7].) If C= Vy a closed subspace of X, the conclusion of Theorem 1 
is tha t Tuo—WoÇz V"S which yields a variant of the generalized form 
of the Beurling-Livingston theorem proved by the writer in [4] and 
[5]. The conclusion of Theorem 1 for C = X was extended by the 
writer to classes of densely defined operators (see [6] for references) 
and in [5] to multivalued mappings. 

I t is easily shown that Theorem 1 generalizes and includes as a 
special case the following linear theorem of Stampacchia, which has 
been applied by the latter to the proof of the existence of capacitary 
potentials with respect to second-order linear elliptic equations with 
discontinuous coefficients:2 

THEOREM 2. Let H be a real Hubert space, C a closed convex subset 
of H, a(u,v) a bilinear form on H which is separately continuous in u 

1 The preparation of this paper was partially supported by NSF Grant GP 3552. 
2 C. R. Acad. Sci. Paris 258 (1964), 4413-4416. 
Added in proof. A result similar to Theorem 1 has recently been obtained jointly 

by Hartman and Stampacchia (in an as yet unpublished paper) who also give a very 
interesting application to existence theorems for second order nonlinear elliptic 
equations. 
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and v. Suppose that there exists a constant c>0 such that a(u, u) 
^c\\u\\2 for all u in H. 

Then for each WQ in H, there exists u0in C such that 

(3) a(u0, UQ — v) ^ (w0, u — v) 

for all v in C. 

1. We denote weak convergence by —*, strong convergence by —->. 

LEMMA 1. If # o £ C, u0 is a solution of the inequality (2) if and only if 

(4) (Tv - WQ, v - wo) è 0 

/or a// A in C. 

PROOF OF LEMMA 1. If for a given w0 in C and all v in C, we have 
(TUQ — WQ, UQ—V) ^ 0 , then since 

(TUQ - Tv, UQ - v) ^ 0 

by monotonicity, it follows that 

(TV, UQ — V) g (ZWo, Wo ~ V) g (Wo, Wo — v), 

i.e., 

(7\> — WQ, V — Wo) ^ 0. 

Conversely, suppose the inequality (4) holds for all v in C. Suppose 
VQGC, and for 0 < / ^ l , set 

vt = (1 — O^o + too-

Then vtÇîC, vt — UQ = t(vQ—u0)1 and we have 

0 g (T^ — WQ, t(vQ — UQ)) = t(Tvt — ^o, flo — Wo). 

Since t>0 may be canceled, we have 

(Tvt — WQ, VQ — UQ) ^ 0. 

If we let /—>0 and use the weak continuity of T on segments in C, 
we have Tvt-*TuQ, and hence 

(TUQ — WQ, UQ — VQ) ^ 0. q.e.d. 

DEFINITION. Let c(r) =mî\\u\\mBr{(Tu, w)/| |w||}. By the hypothesis 
of Theorem 1, c(r)—»+ °° as r—»+ oo. We have 

(Tu,u)^c(\\4)\\4, uec. 
LEMMA 2. TAere exists a constant M which depends only upon the 
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function c(r) and on || w0|| such that if u0 is a solution of the inequality 
(2), then \\uQ\\£M. 

PROOF OF LEMMA 2. If 

( Tuo — w0, u0 — v) ^ 0, » £ C , 

we have since 0 £ C , 

£(||*o||)||*o|| Û (Tu0,Uo) ^ (Tuo - wo, u0) + (w0, u0) ^ ||wo||-||«o||. 

Hence 

c(||«o||) ^ W | 

and 

||«o|| ^ M(\\wo\\, c(r)). q.e.d. 

DEFINITION. If GQXXX*, G is said to be a monotone set if [u, w], 
[ui, Wi]GG implies that (w—wi, u—ui) ^ 0 . 

G is said to be maximal monotone if it is monotone and maximal in 
the monotone sets ordered by inclusion. 

LEMMA 3. Under the hypotheses of Theorem 1, suppose that C has 0 
as an interior point and let GXIXXX* be given by 

G = {[u, w] | u G C, w = Tu + z, where (z, u — v) ^ 0 for all v in C). 

Then G is a maximal monotone set in XXX*. 

PROOF OF LEMMA 3. G is a monotone set since if [u, w] and [ui, w\\ 
£ G , with w= Tu+z, wi=Tui+zi, then 

(w — wi, u — ui) 

= (Tu — Tui, u — ui) + (z, u — Ui) + (0i, u\ — u) ^ 0. 

Suppose on the other hand that [u0l Wo\Ç:XXX* with 

(wo — w, Uo — u) è 0 

for all [u, w] in G. We assert first that w 0 GC Otherwise, Uo — svo for 
some Vo on the boundary of C with s> 1. Let 250 = 0 be an element of 
X* such that (z0, v0—v) ^ 0 for all v in C. Since 0 is an interior point 
of C, (z0, Vo) > 0 . For each X>0, [y0, Iflo+X^o] lies in G. Hence 

0 S (WQ — Tflo — X20, «o — vo) = (s — l)(wo — Tvo — Azo, t>0). 

Cancelling (s —1)>0, we have 

A(zo, vo) S (wo, *>o) — (7>0, vo), 
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which is a contradiction since (z0l z>o)>0 and X is arbitrary. Hence 
WoGC. 

In addition, for each u in C, [u, Tu] lies in G. Hence 

(Tu — WQ,U — uo) ^ 0. 

Applying Lemma 1, we have 

(Tuo — wo, uo — v) ^ 0, v G C. 

Hence Tu0—Wo~ — z, where (3, u0—z>)=0 for all v in C. Hence 
Wo=Tu0+z, and [u0, w0]£:G. q.e.d. 

LEMMA 4. Theorem 1A0W5 ifXis a finite dimensional Banach space F. 

PROOF OF LEMMA 4. We may suppose without loss of generality that 
Wo = 0, that F is a finite dimensional Hubert space with F* = F, and 
that C spans 7? and hence has an interior point v0 in F. Replacing C by 
Co = Vo — C and defining a new mapping V on Co by IT'w = — T(v0 — u), 
it is easy to verify that we may assume that 0 is an interior point of C 
and the condition on (Tu, u) is replaced by 

(Tu, « - » , ) £ c(\\u\\)\\u\\ 

for a given v0 in C, with c(r)—>+ oo as r —>+ oo. 
Let G be the maximal monotone set in FXF* constructed in 

Lemma 3. Then nG is maximal monotone for each positive integer n. 
By a theorem of Minty [8], for each n>0, there exists [un, wn\ÇzG 
such that 

un + nwn = 0. 

Since wn= Tun+zn, where (zn, un—v) ^ 0 for all v in C, we have 

— ( * n , ^n — »0 J = (Wn, ^n — *>o) 

= ( r « „ , Wn - Vo) + (s» , Wn - V0) è c ( | W | ) | | « n | | , 

while 

— (—un,un — vo) ^ — IWHM| . 
\n / n 

Thus c(||«»||) ^» - 1 | |»o| | , and ||wn|| ^ikf, independent of w. 
We may extract a subsequence which we again denote by un such 

that un—*Uo in F. Then ze/n—>0. For each u in C 

(Tu — wn, « = Un) è 0. 
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Taking the limit as n—> oo, we have 

(Tu, u - Mo) è 0, « G C. 

By Lemma 1, 

(TUQ, UO — V) ^ 0 

for all p in C. q.e.d. 
PROOF OF THEOREM 1. I t suffices to take w0 = 0. For each finite 

dimensional subspace F of X, let CF — CC\F, JF be the injection map 
of F into X, jf the dual projection map of X* onto F*. We set 

Then TF satisfies the hypotheses of Lemma 4, and there exists up 
in CF such that 

(TFUF, UF — v) = (Tup, UF — v) S 0, D £ CF. 

By Lemma 2, since for u in CF, 

(7V«,«) = (r«,«)MMI)IMI> 
there exists a constant itf independent of F such that \\UF\\ Û M. Since 
X is reflexive and C is weakly closed, there exists u0 in C such that 
for every finite dimensional F, u0 lies in the weak closure of the set 
VrF = ÜFcF1 {wFi}. 

Let v be an arbitrary element of C, F a finite dimensional subspace 
of X which contains v. For upx in VFl by Lemma 1, 

(Tv, v - uFl) è 0. 

Since (Tv, v—V\) is weakly continuous in vi, we have 

(Tv, v - uo) ^ 0, s G C 

By Lemma 1, (T^o, w0—v) ^ 0 for t; in C. q.e.d. 
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