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Introduction. Let X be a real Banach space, X* its conjugate space,
(w, u) the pairing between w in X* and » in X. If Cis a closed convex
subset of X, a mapping T of C into X* is said to be monotone if

Q) (Tu —To,u—v) =0

for all # and v in C.
It is the object of the present note to prove the following theorem:

THEOREM 1. Let C be a closed convex subset of the reflexive Banach
space X with 0&C, T a monotone mapping of C into X*. Suppose that
T is continuous from line segments in C to the weak topology of X* while
(Tu, w)/||uf >+ = as [|uf| >+ .

Then for each given element wy of X*, there exists uo in C such that

2 (Tuo — wo, o — v) <0
forallvin C.

If C=X, Theorem 1 asserts that Tu,=w, and reduces to a theorem
on monotone operators proved independently by the writer [1] and
G. J. Minty [9] and applied to nonlinear elliptic boundary value
problems by the writer in [2], [3], and [6]. (See also Leray and Lions
[7].) 1f C=1V, a closed subspace of X, the conclusion of Theorem 1
is that Tuo—woE V*, which yields a variant of the generalized form
of the Beurling-Livingston theorem proved by the writer in [4] and
[5]. The conclusion of Theorem 1 for C=X was extended by the
writer to classes of densely defined operators (see [6] for references)
and in [5] to multivalued mappings.

It is easily shown that Theorem 1 generalizes and includes as a
special case the following linear theorem of Stampacchia, which has
been applied by the latter to the proof of the existence of capacitary
potentials with respect to second-order linear elliptic equations with
discontinuous coefficients:?

THEOREM 2. Let H be a real Hilbert space, C a closed convex subset
of H, a(u, v) a bilinear form on H which is separately continuous in u

1 The preparation of this paper was partially supported by NSF Grant GP 3552.

2 C. R. Acad. Sci. Paris 258 (1964), 4413-4416.

Added in proof. A result similar to Theorem 1 has recently been obtained jointly
by Hartman and Stampacchia (in an as yet unpublished paper) who also give a very
interesting application to existence theorems for second order nonlinear elliptic
equations.
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and v. Suppose that there exists a constant ¢>0 such that a(u, u)
gc“u”2for all win H.
Then for each wo in H, there exists uo in C such that

A3) a(wo, o — v) = (wo, 4 — V)
forallvin C.
1. We denote weak convergence by —, strong convergence by —.
LeEMMA 1. If uo&E C, uo is a solution of the inequality (2) if and only if
@ (Tv — wo, v — ug) = 0
forallvin C.

Proor oF LEMMA 1. If for a given %, in C and all v in C, we have
(Two—wo, uo—v) =0, then since

(Tug — Tv, 40— ) 20
by monotonicity, it follows that
(Tv, wo — v) < (Tuo, 4o — v) = (wo, %o — v),
1e.,
(Ty — wo, v — ug) < 0.

Conversely, suppose the inequality (4) holds for all v in C. Suppose
1,&EC, and for 0<t =<1, set

v = (1 — t)ug + tvo.
Then v,EC, vi—uo=1t(vo—u,), and we have
0 = (Tv: — wo, t(vs — %)) = 8(Tvs — wo, Vo — Uo).
Since >0 may be canceled, we have
(Tv: — wo, vo — uo) = 0.

If we let £—0 and use the weak continuity of T on segments in C,
we have Tv;—Tu,, and hence

(Tuo — wo, o — v0) = 0. q.e.d.

DEFINITION. Let ¢(r) =inf)y) i { (T, ) /Hu” }. By the hypothesis
of Theorem 1, ¢(r)—>+ « as r—+ ©. We have

(Tu, ) z c(lul)lle], weEC.

LEMMA 2. There exists a constant M which depends only upon the



782 F. E. BROWDER [September
Sfunction c(r) and on “'on such that if uo is a solution of the inequality
(2), then |lud|| = M.

Proor oF LEMMA 2. If

(Tuo — wo, o — ) < 0, v € C,

we have since 0&C,

c(llwol)lwoll = (Tto, o) < (Two — w0, ) + (o, w0) < ||o]] | ]
Hence

e(lldf)) = o]
and
llwoll = 2(Javdl], (). qe.d.

DEFINITION. If GCX X X*, G s said to be a monotone set if [u, w],
[#1, w11 EG implies that (w—w1, u—u;) Z0.

G is said to be maximal monotone if it is monotone and maximal in
the monotone sets ordered by inclusion.

LeMMA 3. Under the hypotheses of Theorem 1, suppose that C has 0
as an interior point and let G CX X X* be given by

G={[u,w]| u € C,w= Tu+ 3 where (3,4 — v) = 0 for all vin C}.
Then G is a maximal monotone set in X X X*.

PrOOF OF LEMMA 3. G is a monotone set since if [#, w] and [u1, wi]
EG, with w=Tu+3, wy=Tu1+2, then

(w — w1, # — u1)
= (Tu — Tur, u — u1) + (2, 4 — u1) + (31, 1 — u) = 0.
Suppose on the other hand that [, w,]EX X X* with
(wo — w, o — u) 2 0

for all [u, w] in G. We assert first that u,& C. Otherwise, %, =sv, for
some 9 on the boundary of C with s> 1. Let z,=0 be an element of
X* such that (3¢, vo—v) =0 for all v in C. Since 0 is an interior point
of C, (20, v0) >0. For each A>0, [vo, Tvo+\20] lies in G. Hence

0 = (wo — Tvo — Azo, %40 — v0) = (s — 1)(wo — Two — A20, v0).
Cancelling (s—1)>0, we have

)‘(20; ‘00) = (wﬂ’ ‘Do) - (Tﬂo, ‘Do),
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which is a contradiction since (2o, 7o) >0 and X is arbitrary. Hence

uOE C.
In addition, for each % in C, [u, Tu] lies in G. Hence

(Tu — wo, u — uo) = O.
Applying Lemma 1, we have
(Tug—wo,uo—v)§0, ‘UEC.

Hence Twuo—wo= —3z, where (2, #o—v)=0 for all » in C. Hence
wo=Tuo+2, and [u,e, w]EG. q.e.d.

LEMMA 4. Theorem 1 holds if X is a finite dimensional Banach space F.

ProoF orF LEMMA 4. We may suppose without loss of generality that
wo=0, that F is a finite dimensional Hilbert space with F*=F, and
that C spans F and hence has an interior point 2o in F. Replacing C by
Co=9¢— C and defining a new mapping 7’ on Co by T'u= — T (vo—u),
it is easy to verify that we may assume that 0 is an interior point of C
and the condition on (7T«, u) is replaced by

(Tu, u — o) Z o(||u|])|| o]

for a given vy in C, with ¢(r)—>+ © as r—+ «.

Let G be the maximal monotone set in FX F* constructed in
Lemma 3. Then #G is maximal monotone for each positive integer #.
By a theorem of Minty [8], for each #>0, there exists [u., w,|EG
such that

U + nw, = 0.
Since w, = T%,~+2., where (2,, u,—v) 20 for all v in C, we have

1
- (—‘ Uny Un — vo) = (wna Un — 1’0)

n
= (Tttny ttn = 90) + (30, tn — v0) Z (|t} |5a]],

while

= (5= 90) 5 ] ol

Thus ¢(||#a||) #1|v||, and ||u.|| < M, independent of n.
We may extract a subsequence which we again denote by u, such
that #,—u, in F. Then w,—0. For each «# in C

(Tu — way v = u,) = 0.
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Taking the limit as n— «, we have
(Tu, u — uo) = 0, ue& C.
By Lemma 1,
(Tug, wo —2) =0

for all v in C. q.e.d.

ProoF oF THEOREM 1. It suffices to take w,=0. For each finite
dimensional subspace F of X, let Cr=CNF, jr be the injection map
of Finto X, j} the dual projection map of X* onto F*. We set

Tr = jo(T| Cr): Cr— F".

Then T satisfies the hypotheses of Lemma 4, and there exists uz
in Cp such that

(Trup, up — v) = (Tur, ur — v) =0, v & Cp.
By Lemma 2, since for « in Cp,
(Tru, w) = (Tu, u) Z o(||]])]|]],

there exists a constant M independent of F such that ||us|| < M. Since
X is reflexive and C is weakly closed, there exists %, in C such that
for every finite dimensional F, u, lies in the weak closure of the set
Ve=Urcr, {ur,}-

Let v be an arbitrary element of C, F a finite dimensional subspace
of X which contains v. For #p, in Vg, by Lemma 1,

(Tv,v — up) = 0.
Since (Tv, v—1v1) is weakly continuous in 1, we have
(Tv, v — uo) =<0, v&EC.
By Lemma 1, (Tuo, #4o—v) 20 for v in C. q.e.d.

BIBLIOGRAPHY

1. F. E. Browder, Nonlinear elliptic boundary value problems, Bull. Amer. Math.
Soc. 69 (1963), 862-874.

2. , Nonlinear elliptic problems. 11, Bull. Amer. Math. Soc. 70 (1964),
299-301.

3. , Nonlinear elliptic boundary value problems. 11, Trans. Amer. Math.
Soc. 117 (1965), 530-550.

4, , On a theorem of Beurling and Livingston, Canad. J. Math. 17 (1965),
367-372.

5. , Multivalued monotone nonlinear mappings and duality mappings in
Banach spaces, Trans. Amer. Math. Soc. 118 (1965) 338-351.




1965) CONVEX SETS IN BANACH SPACES 785

6. , Existence and uniqueness theorems for solutions of nonlinear boundary
value problems, Proc. Sympos. Appl. Math., Vol. 17, Amer. Math. Soc., Providence,
R. 1., 1965; pp. 24-29.

7. J. Leray and J. L. Lions, Quelgues résultats de Visik sur les problémes elliptiques
quasi-linéaires par le méthode de Minty-Browder, Séminaire de Colltgge de France,
1964.

8. G. J. Minty, Monotone (nonlinear) operators in Hilbert space, Duke Math. J.
29 (1962), 341-346.

9. , On a “monotonicity” method for the solution of nonlinear equations in
Banach spaces, Proc. Nat. Acad. Sci. U.S.A. 50 (1963), 1038-1041.

UNIVERsITY OF CHICAGO



