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Many proofs have been given of the isoperimetric inequality for 
minimal surfaces of the type of the disc, which was discovered by 
T. Carleman [2] in 1921. The question, however, to find a similar 
inequality for minimal surfaces of higher topological type seems never 
to have been attacked in the literature. On the basis of new results 
[3], [4] such an estimate can be derived for multiply-connected 
minimal surfaces of planar type; and we want to state it here, and 
sketch the proof, for the case of a doubly-connected minimal surface, 
answering in part problems 25 and 26 formulated in [5]: 

Let S be a minimal surface of the type of the circular annulus of area 
A {finite or infinite), bounded by two distinct Jordan curves I \ and T2 

of lengths L\ and L2, respectively {finite or infinite). If these curves 
are rectifiable, then the area of S is finite, and the inequality (Li+L 2 ) 2 

—4 A > 0 is satisfied. 
The numerical value of the constant 4 can easily be improved. 

But the question for the best value of this constant—which un­
doubtedly is 47T—must be left open. 

Consider a minimal surface S= {£ = £(w, v); {u, v)ÇEP}, where P 
is the closure of the ring domain P= {u, v; 0<r\<u2+v2<r\< 00 }. 
The vector %{u, v)(EC2{P)r\C0{P) satisfies in P the regularity condi­
tion |£MX£*| > 0 , the condition of vanishing mean curvature H=0, 
and maps the bounding circles of P onto the curves I \ and T2 in a 
monotonie manner. 

The minimal surface has a conformai representation, i.e. a repre­
sentation where, in addition to having the above properties, the vec­
tor i{u, v) satisfies in P the relations ï£ = ïî, ?V£t> = 0, and maps the 
bounding circles of P topologically onto I \ and T2. We set w = u+iv 
= peid, and we shall use interchangeably the notations %{u> v) and 
ï(p, 6). Once the surface is given in a conformai representation the 
regularity condition ï^>0 is of no consequence. 

For ri<r<r2 let Y(r) be the circle \u, v; u2+v2 = r2}, T{r) its image 
on 5, and L{r) the length of T{r). Applying a device due to L. Bieber-
bach [ l ] and T. Radó [6] it is seen that L{r) ^Max(Li , L2). 

1 The preparation of this paper has been supported in part by Air Force Grant 
AF-AFOSR 883-65. 
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For 0<e<( r 2 —ri) /2 set r{ = r i+e , r2 = r2 —e, and let Pt be the 
domain {w; r{ < \ w\ <r{ }. Denote by Ae the area of the part of S 
corresponding to P e . Integrating by parts we find 

At = — J J (xl + h) dudv 

= V f X l(rl,6)-Uri,e)de- ^ f \(rl,ff)-Url,0)M 
2* J o Z J Q 

and, using the relation p | £P| = \%$\ and estimating, 

At^— Mzx(LhL2)-i Max | ï ( r / , f l ) | + Max | l ( f i ' , 0 ) | > . 
2 (o^0^2*r O^0^2ir / 

All points of S are contained in the convex hull of the curves I \ and 
T2. Thus Ae is bounded, and so is A. 

By a standard argument it now follows that almost all crosscuts, 
images on S of segments {p, 0; n^pSr2, 0 = 0o}, are of finite length. 
Let us slit our surface along such a crosscut. We obtain a surface of 
the type of the circular disc. Its boundary, which might not be a 
Jordan curve (but this is immaterial here) is rectifiable. By a theorem 
of M. Tsuji [7] the vectors f (ri, 0) and £(r2, 0) are absolutely continu­
ous, and the relations limpH>ri &(p, 0) =%e(rp 0) (J= 1, 2) hold for almost 
all 0. Letting e tend to zero in the expression for A € we find 

A£ — f T\%(ri,e)\\lt(rue)\ dd + ±- f U(r2 ,0) |U*('2,0) | 
2* J o Z J Q 

1 1 . 1 I . 
^ — Z i - Max | ï ( f i ,0 ) | H £2- Max | jc(r2, 0) | . 

2 O^0^2ir 2 O ^ 0 ^ 2 T 

At this point we need an estimate for j(fi, 0) and £(r2, 0). Denote by 
d > 0 the distance between the curves I \ and T2, and let %i and £2 

be points on Ti and T2, respectively, for which | £2 —£i| — d. Assuming 
L\ ^ L2 it is easily seen that Ti and T2 are separated by a slab of width 
r^d[2 cos (L2/2d) — l ] . By the theorem of [4] the width of this slab 
cannot be larger that 3/2 times the larger of the diameters of I \ and 
T2. This implies d<L2. 

Now choose the coordinate system so that £2 becomes its origin. 
Then 

Max |{(fi, 0) | ^ — L i + d<—Li + L2, Max \ic(r2} 0) | g —L 2 . 
O^0^2x 2 2 O^0^2ir 2 

J0 

The asserted inequality follows. 
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