MODELS OF SPACE-TIME

BY W. F. EBERLEIN¹

Communicated by M. Kac, May 17, 1965

- 1. Introduction. In [1] we exhibited electron spin as a nonrelativistic geometric property of (a model of) Euclidean 3-space. We now extend our model to one of space-time. The connections between 2 and 4 component spinors become lucid, while the Dirac equation and its relativistic "invariance" properties undergo a fundamental simplification and clarification.
- 2. Abstract space-time. We need first an axiomatic foundation strong enough to support both our mathematical considerations and their applications to physics.

DEFINITION. An n+1 dimensional space-time $(n \ge 1)$ consists of

- (A) An n+1 dimensional vector space V over the real numbers plus a symmetric bilinear real form $A \cdot B$ (inner product) such that:
 - (1) There exists a vector A with $A \cdot A < 0$.
- (2) Any 2-dimensional subspace of V contains a vector A with $A \cdot A > 0$.
- (B) A set χ of objects p, q, \cdots (points or "events") plus a mapping $(p, q) \rightarrow p q$ of $\chi \times \chi$ into V such that:
 - (1) (p-q)+(q-r)=p-r.
 - (2) p-q=0 implies p=q.
- (3) Given any point q and any vector A there exists a point p with p-q=A.

Any V satisfying (A) yields a model of space-time (vector space-time) on setting $\chi = V$. The Minkowski model $V = \chi = R_M^{n+1}$ consists of all n+1-tuples of real numbers $x = (x_1, \dots, x_n, x_{n+1})$ with $x \cdot y = x_1y_1 + \dots + x_ny_n - x_{n+1}y_{n+1}$. (When n=3, $x_4 = ct$, where t is time and c is the velocity of light.) Every n+1 dimensional vector space-time is isomorphic to R_M^{n+1} , but this result is physically misleading. Eventually we set n=3, $\chi=$ the physical space-time continuum, and $V=\mathfrak{E}_4$, the spin model of (vector) space-time we shall construct.

3. The models \mathfrak{E}_3 and W_4 . In [1] we defined the spin model \mathfrak{E}_3 of Euclidean 3-space as the vector space of self-adjoint linear transformations of trace 0 in a 2-dimensional unitary space H_2 (spin space) plus the operations $A \cdot B = (1/2)(AB + BA)$ and $A \times B = (1/2i)$

¹ Work supported by National Science Foundation Grant NSF G-17774.

 $\cdot (AB-BA)$. (We identify a scalar c with cI, where I is the identity transformation in H_2 .) In general we denote the algebra of linear transformations in a vector space E by B(E). We summarize some results of [1] that we need:

Relative to an arbitrary orthonormal basis ϕ_1 , ϕ_2 for H_2 any vector A in \mathfrak{E}_3 has the matrix representation

$$A \longleftrightarrow \begin{pmatrix} x_3 & x_1 - ix_2 \\ x_1 + ix_2 & -x_3 \end{pmatrix} = x_1\sigma_1 + x_2\sigma_2 + x_3\sigma_3,$$

where

$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \qquad \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \qquad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix},$$

are the Pauli matrices. Then & is 3-dimensional and

$$A \cdot A = A^2 = x_1^2 + x_2^2 + x_3^2 = -\det A.$$

Let SU(2) denote the group of unitary transformations in H_2 of determinant 1 and SO(3), the group of rotations or orthogonal transformations of determinant 1 in \mathfrak{E}_3 . Given U in SU(2) set $R_UA = UAU^{-1}$ ($A \in \mathfrak{E}_3$). Then R_U is a linear transformation in \mathfrak{E}_3 , and the mapping $U \to R_U$ is a 2-to-1 homomorphism of SU(2) onto SO(3).

The obvious extension of \mathfrak{E}_3 is the vector space W_4 consisting of all self-adjoint linear transformations in H_2 . Then for any A in W_4

$$A \longleftrightarrow \begin{pmatrix} x_4 + x_3 & x_1 - ix_2 \\ x_1 + ix_2 & x_4 - x_3 \end{pmatrix} = x_1\sigma_1 + x_2\sigma_2 + x_3\sigma_3 + x_4$$

and $-\det A = x_1^2 + x_2^2 + x_3^2 - x_4^2 \equiv A \cdot A$. W_4 is then a 3+1-dimensional vector space-time, but the corresponding inner product is hybrid:

$$A \cdot B = \frac{1}{2}(AB + BA) - \frac{1}{2}(\operatorname{trace} B)A - \frac{1}{2}(\operatorname{trace} A)B.$$

One can now extend the covering map above by setting SL(2, C) = the group of linear transformations in H_2 of determinant 1, \pounds^{\downarrow}_{+} = the homogeneous proper orthochronous Lorentz group; i.e., the linear transformations in W_4 that preserve the inner product, have determinant 1, and don't exchange past and future. Given S in SL(2, C) set $M_SA = SAS^*$ ($A \subseteq W_4$). Then M_S is a linear transformation in W_4 , and one has the extended

THEOREM 3.1. The mapping $S \rightarrow M_S$ is a 2-to-1 homomorphism of SL(2, C) onto \mathcal{L}^{\uparrow} .

This result is essentially known in matrix disguise, but the co-

ordinate-free methods of [1] afford a simpler and more incisive proof than is to be found in the literature.

Although its inner product lacks the Jordan form substituting in \mathfrak{E}_3 , the model W_4 is appropriate to analysis of the Maxwell equations and the Weyl neutrino, as we shall show in a later paper.

4. The antiquaternion unit J. What one wants is an element J in $B(H_2)$ with real square and anticommuting with \mathfrak{E}_3 . But the only element of $B(H_2)$ that anticommutes with \mathfrak{E}_3 is 0. For the same reason no nonsingular U in $B(H_2)$ yields the space inversion $P: R_U A = UAU^{-1} = -A$ ($A \in \mathfrak{E}_3$). We are thus led to the following

PROBLEM. Find all antilinear transformations J in H_2 anticommuting with \mathfrak{E}_3 , in particular those such that $J^2 = \pm 1$.

In an equivalent guise (commutativity of J with the quaternion algebra $Q = [kU: k \ge 0, U \in SU(2)]$ (cf. [2])) we obtained in [4] the following

Solution. Given an arbitrary orthonormal basis ϕ_1 , ϕ_2 in H_2 , identify a vector $x_1\phi_1+x_2\phi_2$ with the column vector

$$\binom{x_1}{x_2}$$
.

Then every such J is of the form

(1)
$$\begin{pmatrix} x_1' \\ x_2' \end{pmatrix} = J \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \omega \begin{pmatrix} -\bar{x}_2 \\ \bar{x}_1 \end{pmatrix} = \omega \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \bar{x}_1 \\ \bar{x}_2 \end{pmatrix},$$

whence $J^2 = -|\omega|^2 \neq 1$ and $J^2 = -1$ iff $|\omega| = 1$ —i.e., iff J is anti-unitary.

The normalized J, $J^2=-1$, thus obtained is unique up to a phase factor and may be identified with Wigner's nonrelativistic time-inversion operator for particles of spin $\frac{1}{2}$, but the idea goes back to Möbius: The space inversion operator $R_JA = JAJ^{-1} = -A$ ($A \in \mathfrak{C}_3$) arising is independent of the scalar $\omega \neq 0$, whence one can regard (1) as an antiprojective transformation in homogeneous coordinates. Set $z = x_1/x_2$, $z' = x_1'/x_2'$ to obtain

$$z'=-\bar{z}^{-1}.$$

Now map onto the Riemann sphere, $z \rightarrow \xi$, and note that ξ' is antipodal to ξ .

We can now rewrite the defining properties of \mathfrak{E}_3 as follows: \mathfrak{E}_3 consists of all T in $B(H_2)$ such that

$$iT = T^*i, \qquad JT = -T^*J,$$

while the identity $A*JA = (\det A)^-J$ for A in $B(H_2)$ translates the defining properties of SU(2) into:

SU(2) consists of all T in $B(H_2)$ such that

(4)
$$T^*iT = i,$$
$$T^*JT = J.$$

These formulae are independent of the phase factor for the normalized J. We now pick a distinguished J. This amounts to putting a complex orientation on H_2 (cf. [4]).

5. The spin model \mathfrak{E}_4 and the group $\mathfrak{G}_+^{\uparrow}$. Now let E_4 be H_2 considered as a real vector space plus the new inner product

(5)
$$\langle x \mid y \rangle_{+} = \Re(\langle x \mid y \rangle).$$

 E_4 is a 4-dimensional Euclidean vector space. Linear and antilinear transformations in H_2 are then on the same footing as linear transformations in \mathfrak{E}_4 , betraying their origin only in commutativity or anticommutativity with the now distinguished linear transformation i. $S = T^*$ in $B(H_2)$ implies $S = T^*$ in $B(E_4)$, while the new and old trace and determinant of a T from $B(H_2)$ are connected as follows:

(6)
$$\operatorname{trace}_{4} T = 2 \Re(\operatorname{trace}_{2} T),$$

$$\det_{4} T = |\det_{2} T|^{2}.$$

DEFINITION. \mathfrak{C}_4 consists of all linear transformations in E_4 satisfying (3).

Clearly \mathfrak{C}_4 is a subspace of $B(E_4)$ containing \mathfrak{C}_3 and closed under *.

THEOREM 5.1. \mathfrak{E}_4 consists of all elements of $B(E_4)$ of the form

$$T = A + aJ \ (A \in \mathfrak{E}_3, a real).$$

Then $T^2 = A^2 - a^2$ and we can set $T_1 \cdot T_2 = \frac{1}{2}(T_1T_2 + T_2T_1)$ to obtain a 3+1 dimensional model of vector space-time.

Let $K = (1+J)/2^{1/2}$. Then K is orthogonal, $K^2 = J$, and $K^8 = 1$.

THEOREM 5.2. The mapping $\tau: A \rightarrow KAK$ is an isomorphism of W_4 onto \mathfrak{C}_4 leaving \mathfrak{C}_3 pointwise fixed and preserving the inner product.

Since every T in $B(E_4)$ admits a unique decomposition $T = T_1 + T_2$, where T_1 , T_2 are respectively linear and antilinear transformations in H_2 , the space-time \mathfrak{E}_4 splits naturally into space and time.

DEFINITION. g_{+}^{\uparrow} consists of all linear transformations T in E_{4} satisfying (4).

THEOREM 5.3. g_+^{\uparrow} is a group containing SU(2) and closed under *.

If $T \in \mathcal{G}_+^{\uparrow}$ set $L_T A = TAT^{-1}$ $(A \in \mathcal{C}_4)$. Then L_T is a linear transformation in \mathcal{C}_4 , and

THEOREM 5.4. The mapping $T \rightarrow L_T$ is a 2-to-1 homomorphism of $\mathfrak{S}^{\uparrow}_+$ onto $\mathfrak{L}^{\uparrow}_+$.

Space-inversion P and time-reversal T arise as follows: P: $A \rightarrow JAJ^{-1}$, T: $A \rightarrow iAi^{-1}$. Let g be the group of linear transformations in E_4 generated by g^{\uparrow}_+ , J, and i.

The connection between 2- and 4-component spinors is then contained in

THEOREM 5.5. The mapping $\nu: S \rightarrow KSK^{-1}$ is an isomorphism of SL(2, C) onto $\mathcal{G}^{\uparrow}_{+}$ leaving SU(2) pointwise fixed.

THEOREM 5.6. The following diagram is commutative:

Note that $\det_4 KSK^{-1} = \det_4 S = |\det_2 S|^2 = 1$, while $\det J = \det K = 1$ and $\det_4 i = 1$, whence \mathcal{G}^{\uparrow}_+ (or \mathcal{G}) and SL(2, C) are subgroups of SL(4, R) whose intersection is SU(2).

 \mathfrak{E}_4 is also remarkable in that it admits an explicit coordinate-free oriented volume function $\theta(A_1, A_2, A_3, A_4) = \frac{1}{4} \operatorname{trace}_4 (iA_1A_2A_3A_4J)$, reducing to (1/2i) trace₂ $(A_1A_2A_3) = (A_1 \times A_2) \cdot A_3$ when $A_4 = J$ and A_1, A_2, A_3 lie in \mathfrak{E}_3 (cf. [3]). Finally, the (Clifford) algebra generated by \mathfrak{E}_4 is just $B(E_4)$.

6. The Dirac operator. Let $(g_{ij}) = \text{diag}(1, 1, 1, -1)$. Then an ordered orthonormal basis (e) for \mathfrak{C}_4 is characterized by the identity

$$(7) e_i e_j + e_j e_i = 2g_{ij}.$$

Let E_4^c and \mathfrak{E}_4^c be the respective complexifications of E_4 and \mathfrak{E}_4 and consider the expression $\langle Au, v \rangle$, where A runs over \mathfrak{E}_4 and u, v run over E_4^c . Since this expression is real linear in A, complex linear in u, and complex antilinear in v, there exists a unique mapping $F: E_4^c$ $\times E_4^c \to \mathfrak{E}_4^c$ such that

(8)
$$\langle Au \mid v \rangle = A \cdot F(u, v),$$

and F(u, v) is complex linear in u and complex antilinear in v. In particular, F(u, Ju) lies in \mathfrak{E}_4 .

Given now any ordered o.n. basis e_1, \dots, e_4 for \mathfrak{C}_4 consider smooth functions $\psi \colon \mathfrak{C}_4 \to E_4^e$ and let

(9)
$$(\partial_j \psi)(x) = \lim_{h \to 0} \frac{\psi(x + he_j) - \psi(x)}{h}.$$

DEFINITION. The Dirac operator $\mathfrak{D}=e_1\partial_1+e_2\partial_2+e_3\partial_3-e_4\partial_4$. Then $\mathfrak{D}^2=\partial_1^2+\partial_2^2+\partial_3^2-\partial_4^2$, the d'Alembertian, while the Dirac equation takes the form

(10)
$$\mathfrak{D}\psi + \kappa\psi = 0 \qquad (\kappa = mc/\hbar),$$

and the associated charge-current vector $-F(\psi, J\psi)$ satisfies the continuity equation

(11)
$$\operatorname{div} F(\psi, J\psi) = 0.$$

Finally the relativistic "invariance" properties of the Dirac equation reduce to simple properties of the Dirac operator D.

Theorem 6.1 (Passive invariance). $\langle \mathfrak{D}\psi | u \rangle = \text{div } F(\psi, u) \ (u \in E_4^c)$.

If
$$T \in \mathcal{G}$$
, let $(\widehat{T}\psi)(x) = T\psi(L_{T^{-1}}x) = T\psi(T^{-1}xT)$.

Theorem 6.2 (Active invariance). $\mathfrak{D}\hat{T} = \hat{T}\mathfrak{D}$.

Proofs of the above theorems and some related results will appear elsewhere.

References

- 1. W. F. Eberlein, The spin model of Euclidean 3-space, Amer. Math. Monthly 69 (1962), 587-598.
- 2. ——, The geometric theory of quaternions, Amer. Math. Monthly 70 (1963), 952-954.
 - 3. ——, Vector identities in E₃, Amer. Math. Monthly 71 (1964), 302.
 - 4. ——, Axiomatic charge conjugation, J. Math. Phys. (to appear).

University of Rochester