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1. Introduction. In [ l ] we exhibited electron spin as a nonrelativ-
istic geometric property of (a model of) Euclidean 3-space. We now 
extend our model to one of space-time. The connections between 2 
and 4 component spinors become lucid, while the Dirac equation and 
its relativistic "invariance" properties undergo a fundamental sim­
plification and clarification. 

2. Abstract space-time. We need first an axiomatic foundation 
strong enough to support both our mathematical considerations and 
their applications to physics. 

DEFINITION. An n+1 dimensional space-time (n*tl) consists of 
(A) An n+1 dimensional vector space V over the real numbers plus 

a symmetric bilinear real form A »B (inner product) such that: 
(1) There exists a vector A with A -A <0 . 
(2) Any 2-dimensional sub space of V contains a vector A with 

A-A>0. 
(B) A set x of objects p,q, • • • (points or "events") plus a mapping 

{pi <Ù~*P~Q. °f x X x into V such that: 
(1) (p-a) + <St-r)=p-r. 
(2) p—q = 0 implies p = q. 
(3) Given any point q and any vector A there exists a point p with 

p-q = A. 
Any V satisfying (A) yields a model of space-time (vector space-

time) on setting x = V. The Minkowski model V—X^^M1 consists 
of all w + 1-tuples of real numbers x = (xiy • • • , xn, xn+i) with x-y 
s=#iyi+ • • • +%nyn—xn+iyn+i. (When n = 3, X4 = ct, where t is time 
and c is the velocity of light.) Every n+l dimensional vector space-
time is isomorphic to R?M1, but this result is physically misleading. 
Eventually we set n = 3, x = the physical space-time continuum, and 
F=(§4, the spin model of (vector) space-time we shall construct. 

3. The models @3 and W^ In [ l ] we defined the spin model S3 of 
Euclidean 3-space as the vector space of self-adjoint linear trans­
formations of trace 0 in a 2-dimensional unitary space H2 (spin space) 
plus the operations A-B = (1/2)(AB+BA) and AXB = (l/2i) 
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• (AB—BA). (We identify a scalar c with cl, where I is the identity 
transformation in JEf2.) In general we denote the algebra of linear 
transformations in a vector space E by B(E). We summarize some 
results of [ l ] that we need: 

Relative to an arbitrary orthonormal basis #1, 4>2 for H2 any vector 
A in @s has the matrix representation 

( %z X\ — ix2\ 

I = Xi<ri + x2a2 + Xz<ri, 
Xi+tx2 —xz / 

where 

"1 = C J)' " " C o)' *3 = (o-i)' 
are the Pauli matrices. Then @3 is 3-dimensional and 

2 2 2 2 

A-A = A = xi + x2 + Xz = — det A. 

Let SU(2) denote the group of unitary transformations in H2 of 
determinant 1 and SO (3), the group of rotations or orthogonal trans­
formations of determinant 1 in (S3. Given U in SU(2) set RuA 
= TJA U"1 (A G 63). Then Ru is a linear transformation in ®8, and the 
mapping U—>Ru is a 2-to-l homomorphism of SU(2) onto SO(3). 

The obvious extension of (£3 is the vector space WA consisting of 
all self-ad joint linear transformations in H2. Then for any A in WA 

( XA + XZ XI— ix2\ 
I - *l<Tl + *20-2 + #30-3 + #4 

Xi+tX2 XA — XZ/ 

and — det-4=*i+tf2+*3—oft^A -A. WA is then a 3 + 1-dimensional 
vector space-time, but the corresponding inner product is hybrid: 

A-B = \{AB + £ 4 ) - |(trace B)A - £(trace A)B. 

One can now extend the covering map above by setting SL(2, C) 
= the group of linear transformations in H2 of determinant 1, S$\. 
= the homogeneous proper orthochronous Lorentz group; i.e., the 
linear transformations in WA that preserve the inner product, have 
determinant 1, and don't exchange past and future. Given S in 
SL(2, O set MSA =SAS* (AEWA). Then Ms is a linear transforma­
tion in WA, and one has the extended 

THEOREM 3.1. The mapping S—>MS is a 2-to-l homomorphism of 
SL(2, C) onto JB|. 

This result is essentially known in matrix disguise, but the co-
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ordinate-free methods of [l ] afford a simpler and more incisive proof 
than is to be found in the literature. 

Although its inner product lacks the Jordan form substituting in 
(S3, the model W* is appropriate to analysis of the Maxwell equations 
and the Weyl neutrino, as we shall show in a later paper. 

4. The antiquaternion unit J. What one wants is an element / in 
B(H2) with real square and anticommuting with S3. But the only ele­
ment of B(H2) that anticommutes with (S3 is 0. For the same reason 
no nonsingular £7 in B(H2) yields the space inversion P: RuA = TJA U"1 

=*—A (4GSs). We are thus led to the following 
PROBLEM. Find all antilinear transformations / in H% anticom­

muting with (S3, in particular those such that J2 = ± 1 . 
In an equivalent guise (commutativity of J with the quaternion 

algebra Q= [kU: ifeèO, U&UÇ2)] (cf. [2])) we obtained in [4] the 
following 

SOLUTION. Given an arbitrary orthonormal basis <£i, <£2 in H2, 
identify a vector a?i0i+#202 with the column vector 

Then every such / is of the form 

» ©-'O-O-CX)-
whence J 2 = - | c o | 2 ^ l and / 2 = - l iff |co| =1—i.e., iff J is anti-
unitary. 

The normalized J, J 2 = — 1, thus obtained is unique up to a phase 
factor and may be identified with Wigner's nonrelativistic time-inver­
sion operator for particles of spin J, but the idea goes back to Möbius: 
The space inversion operator RjA =JAJ~l= —A (-4 E (S3) arising is 
independent of the scalar co 5^0, whence one can regard (1) as an anti-
projective transformation in homogeneous coordinates. Set z = xi/x2, 
2!=x{ /xj to obtain 

(2) T! = - lr\ 

Now map onto the Riemann sphere, z—»£, and note that £' is anti­
podal to £. 

We can now rewrite the defining properties of (S3 as follows: 
(S3 consists of all T in B{H2) such that 

(3) %T « T*iy JT - - ZV, 
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while the identity A*JA = (det A)"J for A in B(H2) translates the 
defining properties of SU(2) into: 

SU(2) consists of all T in B(H2) such that 

(4) W T - *' 
T*JT = J. 

These formulae are independent of the phase factor for the normalized 
/ . We now pick a distinguished J. This amounts to putting a complex 
orientation on H2 (cf. [4]). 

5. The spin model g4 and the group g | . Now let E4 be H2 con­
sidered as a real vector space plus the new inner product 

(5) <*|y>+= <R«*|y». 

E4 is a 4-dimensional Euclidean vector space. Linear and antilinear 
transformations in H2 are then on the same footing as linear trans­
formations in @4, betraying their origin only in commutativity or 
anticommutativity with the now distinguished linear transformation 
i. S=T* in B(H2) implies S=T* in 5(E4) , while the new and old 
trace and determinant of a T from B(H2) are connected as follows: 

trace4 T = 2(R(trace2 T), 

d e t 4 T = | d e t 2 r | 2 . 

DEFINITION. @4 consists of all linear transformations in E4 satisfying 
(3). 

Clearly (S4 is a subspace of JB(£ 4 ) containing ©3 and closed under *. 

THEOREM 5.1. @4 consists of all elements of 5(E4) of the form 

T = A + aJ {A £ (g3, a real). 

Then T2=A2-a2 and we can set Ti-Tt^ïiT^+TtTi) t oob t a ina 
3 + 1 dimensional model of vector space-time. 

Let X = ( l + J ) / 2 1 / 2 . Then K is orthogonal, X 2 = J , and X 8 = l. 

THEOREM 5.2. The mapping r: A—>KAK is an isomorphism of WA 

onto (£4 leaving S3 pointwise fixed and preserving the inner product. 

Since every T in B(EA) admits a unique decomposition T= Ti+T2, 
where 7\, T2 are respectively linear and antilinear transformations in 
iJ2, the space-time S4 splits naturally into space and time. 

DEFINITION. 9+ consists of all linear transformations Tin E4 satisfy­
ing (4). 

THEOREM 5.3. QI is a group containing SU(2) and closed under *. 
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If r e 9 + set LTA^TAT-1 ( 4 e g 4 ) . Then LT is a linear trans­
formation in @4, and 

THEOREM 5.4. The mapping T—>LT is a 2-/0-1 homomorphism of 
g | onto £>l. 

Space-inversion P and time-reversal T arise as follows: P : 
A-^JAJ"1, T: A—nAi~x. Let 9 be the group of linear transformations 
in E4 generated by g | , J, and i. 

The connection between 2- and 4-component spinors is then con­
tained in 

THEOREM 5.5. The mapping v: S—^KSK~1 is an isomorphism of 
SL(2, C) onto 9+ leaving SU(2) pointwise fixed. 

THEOREM 5.6. The following diagram is commutative: 

h 4 

' 
T 

r 

(F-

Ms 

LKSK"1 

W* 

' 
T 

rs. 
vs.* 

Note tha t det4 KSKr1 = det4 5 = | det2 S | 2 = 1, while det J = det K 
= 1 and det4 i = l, whence 9+ ( o r 9) and SL(2, C) are subgroups of 
SL(4, R) whose intersection is SU(2). 

(§4 is also remarkable in that it admits an explicit coordinate-free 
oriented volume function 6{Ai, A2, Az, 4 4 ) = | trace4 {iA\A2AzA^J), 
reducing to (l/2i) trace2(^41^2^3) = (^1X^2) • Az when A^ = J and 
Au A2, Az lie in @3 (cf. [3]). Finally, the (Clifford) algebra generated 
by @4 is just B(E4). 

6. The Dirac operator. Let (g*y)=diag(l, 1, 1, —1). Then an 
ordered orthonormal basis (e) for @4 is characterized by the identity 

(7) e&j + ejei = 2gy. 

Let Ei and S4 be the respective complexifications of £ 4 and S4 and 
consider the expression {Au, v), where A runs over @4 and u, v run 
over £4. Since this expression is real linear in A, complex linear in u, 
and complex antilinear in v, there exists a unique mapping F: El 
XEÎ->®1 such that 

(8) (Au\ v) = A-F(u, v), 
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and F(u, v) is complex linear in u and complex antilinear in v. In 
particular, F(u, Ju) lies in (S4. 

Given now any ordered o.n. basis eu • • • • £4 for @4 consider smooth 
functions \[/: (S^-EÎ and let 

\p(x + he,) — Mx) 
(9) («WX») = lim ^ '' • 

DEFINITION. The Dirac operator ^^eidx+e^+ezdz—e^d^ Then 
£>2 = dl+dl+dl—dl, the d'Alembertian, while the Dirac equation 
takes the form 

(10) Stf + top = 0 (K = «*/*)> 

and the associated charge-current vector — F(^, J#) satisfies the con­
tinuity equation 

(11) d ivF(* , /*) = 0. 

Finally the relativistic "invariance" properties of the Dirac equa­
tion reduce to simple properties of the Dirac operator £>. 

THEOREM 6.1 (PASSIVE INVARIANCE). (3>^|w) = div F(\p,u) (uÇEEi). 

If TGS, let (fy)(x) = T^LT-IX) = TyPiT-^xT). 

THEOREM 6.2 (ACTIVE INVARIANCE). 3D!? =ƒ'£>. 

Proofs of the above theorems and some related results will appear 
elsewhere. 
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