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1. Introduction. In [1] we exhibited electron spin as a nonrelativ-
istic geometric property of (a model of) Euclidean 3-space. We now
extend our model to one of space-time. The connections between 2
and 4 component spinors become lucid, while the Dirac equation and
its relativistic “invariance” properties undergo a fundamental sim-
plification and clarification.

2. Abstract space-time. We need first an axiomatic foundation
strong enough to support both our mathematical considerations and
their applications to physics.

DEFINITION. An n+1 dimensional space-time (n=1) consists of

(A) An n+1 dimensional vector space V over the real numbers plus
a symmetric bilinear real form A - B (inner product) such that:

(1) There exists a vector A with A-A <0.

(2) Any 2-dimensional subspace of V comtains a vector A with
A-4>0.

(B) A setx of objects p, q, + - - (points or “events”) plus a mapping
(p, @)—p—q of xXx into V such that:

(1) =9 +(g—r)=p—r.

(2) p—q=0 implies p=gq.

(3) Given any point g and any vector A there exists a point p with
p—g=4.

Any V satisfying (A) yields a model of space-time (vector space-
time) on setting x = V. The Minkowski model V=yx=Rj" consists
of all n+1-tuples of real numbers x=(x1, « + +, %5, Xnp1) with x-y
=x+ c - FXYn—%np1Vni1. (When #=3, x4=ct, where ¢ is time
and ¢ is the velocity of light.) Every 41 dimensional vector space-
time is isomorphic to R}", but this result is physically misleading.
Eventually we set # =3, x =the physical space-time continuum, and
V =G@,, the spin model of (vector) space-time we shall construct.

3. The models @ and W,. In [1] we defined the spin model @; of
Euclidean 3-space as the vector space of self-adjoint linear trans-
formations of trace 0 in a 2-dimensional unitary space H, (spin space)
plus the operations A4-B=(1/2)(AB+BA) and AXB=(1/2%)
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-(AB—BA). (We identify a scalar ¢ with cI, where I is the identity
transformation in H,.) In general we denote the algebra of linear
transformations in a vector space E by B(E). We summarize some
results of [1] that we need:

Relative to an arbitrary orthonormal basis ¢, ¢, for H; any vector
A in G; has the matrix representation

X3 X1 — 1%

Aw(x + ix x )=x1°'1+x2°'2+xa¢x,
1 2 — X3

-G o) =G ) ()
7\ o) TN o) T\ -1/

are the Pauli matrices. Then €; is 3-dimensional and

where

A-A=A’=x:+x:+x:= — det 4.

Let SU(2) denote the group of unitary transformations in H, of
determinant 1 and SO(3), the group of rotations or orthogonal trans-
formations of determinant 1 in G&;. Given U in SU(2) set Ry4d
=UA U (AEG;). Then Ry is a linear transformation in &, and the
mapping U—Ry is a 2-to-1 homomorphism of SU(2) onto SO(3).
The obvious extension of §; is the vector space W, consisting of
all self-adjoint linear transformations in H,. Then for any 4 in W,

4 (x4+x3 X1 — 1%
(@) \w1t+ixs x(— x5

and —det A=x2+x3+x2—x3=A-A. W, is then a 3+41-dimensional
vector space-time, but the corresponding inner product is hybrid:

A:-B = 3(AB + BA) — %(trace B)A — %(trace 4)B.

One can now extend the covering map above by setting SL(2, C)
=the group of linear transformations in H, of determinant 1, £]
=the homogeneous proper orthochronous Lorentz group; i.e., the
linear transformations in W, that preserve the inner product, have
determinant 1, and don’t exchange past and future. Given S in
SL(2, C) set MgA =SAS* (AEW,). Then My is a linear transforma-
tion in Wy, and one has the extended

) = %101 + %203 + %308 + 24

THEOREM 3.1. The mapping S—Ms is a 2-to-1 homomorphism of
SL(2, C) onto £].

This result is essentially known in matrix disguise, but the co-
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ordinate-free methods of [1] afford a simpler and more incisive proof
than is to be found in the literature.

Although its inner product lacks the Jordan form substituting in
@;, the model W, is appropriate to analysis of the Maxwell equations
and the Weyl neutrino, as we shall show in a later paper.

4. The antiquaternion unit J. What one wants is an element J in
B(H,) with real square and anticommuting with ;. But the only ele-
ment of B(H;) that anticommutes with €; is 0. For the same reason
no nonsingular U in B(H,) yields the space inversion P: Ry4d = U4 U-!
= —A4 (AEGE;). We are thus led to the following

ProBLEM. Find all antilinear transformations J in H; anticom-
muting with @, in particular those such that J2= +1.

In an equivalent guise (commutativity of J with the quaternion
algebra Q=[kU: k20, USSU(2)] (cf. [2])) we obtained in [4] the
following

SoLuTiON. Given an arbitrary orthonormal basis ¢1, ¢2 in Hj,
identify a vector x1¢1+x2¢. with the column vector

(2)
X2 ’
Then every such J is of the form
21 x - % 0 —1\/z
o (G)=s(0)=() -G )G)
24 2 2 1 0/\z
whence J?=—|w|2?5#1 and J?=—1 iff |w| =1—ie., iff J is anti-
unitary.

The normalized J, J*= —1, thus obtained is unique up to a phase
factor and may be identified with Wigner’s nonrelativistic time-inver-
sion operator for particles of spin 3, but the idea goes back to M&bius:
The space inversion operator RyAd =JAJ'=—A (AEG;) arising is
independent of the scalar w0, whence one can regard (1) as an anti-

projective transformation in homogeneous coordinates. Set z=x;/x,,
¢’ =x{ /x{ to obtain

2 d=—z1
Now map onto the Riemann sphere, 2—¥£, and note that £ is anti-
podal to £.

We can now rewrite the defining properties of G; as follows:
G consists of all T in B(H:) such that

®3) iT=1T% JT=—T*,
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while the identity 4*JA4 =(det A)~J for A in B(H,) translates the
defining properties of SU(2) into:
SU(2) consists of all T in B(H,) such that
THT =i
@ . ’
THT = J.
These formulae are independent of the phase factor for the normalized

J. We now pick a distinguished J. This amounts to putting a complex
orientation on H; (cf. [4]).

5. The spin model G, and the group Gl. Now let E, be H, con-
sidered as a real vector space plus the new inner product

() (x| )+ = Qx| 5)).

E, is a 4-dimensional Euclidean vector space. Linear and antilinear
transformations in H; are then on the same footing as linear trans-
formations in @, betraying their origin only in commutativity or
anticommutativity with the now distinguished linear transformation
1. S=T%* in B(H,) implies S=T* in B(E,), while the new and old
trace and determinant of a T from B(H,) are connected as follows:

traces T = 2Q®(trace; T),

6
( ) dety, T = |det2 T|2.

DEFINITION. € consists of all linear transformations in E4 satisfying

3).
Clearly G, is a subspace of B(E,) containing &; and closed under *.

THEOREM 5.1. G, consists of all elements of B(Ey) of the form
T=A4A+4 o] (4 E Gy, area).

Then T2=A42—a?and wecan set Ty- T2 =3(T1T,+T:T1) to obtaina
341 dimensional model of vector space-time.
Let K=(1+J)/2'2 Then K is orthogonal, K2=J, and K8=1.

THEOREM 5.2. The mapping 7: A—KAK 1is an isomorphism of W,
onto €4 leaving &; pointwise fixed and preserving the inner product.

Since every T in B(E,) admits a unique decomposition "= T1+ T3,
where Ti, T are respectively linear and antilinear transformations in
H,, the space-time @, splits naturally into space and time.

DEFINITION. G[ consists of all linear transformations T in E4 satisfy-

ing (4).
THEOREM 5.3. Gl is a group containing SU(2) and closed under *.
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If Tegl set LpA=TAT ' (AEG,). Then Ly is a linear trans-
formation in @,, and

THEOREM 5.4. The mapping T—Ly is a 2-to-1 homomorphism of
gl onto £1.

Space-inversion P and time-reversal T arise as follows: P:
A—JAJ Y, T: A—1Ai 1. Let G be the group of linear transformations
in E, generated by gl, J, and 4.

The connection between 2- and 4-component spinors is then con-
tained in

THEOREM 5.5. The mapping v: S>KSK™! is an isomorphism of
SL(2, C) onto Gl leaving SU(2) pointwise fixed.

THEOREM 5.6. The following diagram is commutative:

Ms
W, W,

L 1
(A KSK G

Note that det, KSK—1=det, S=|det, S|2=1, while det J=det K
=1 and det, i=1, whence g (or ) and SL(2, C) are subgroups of
SL(4, R) whose intersection is SU(2).

@, is also remarkable in that it admits an explicit coordinate-free
oriented volume function 6(4y, A, Az, As) =% traces (1414:43447),
reducing to (1/21) trace.(414.43) =(41XA,)-A; when A4=J and
Ay, Ay, Asglie in G (cf. [3]). Finally, the (Clifford) algebra generated
by G, is just B(Ey).

6. The Dirac operator. Let (g;;) =diag(1, 1, 1, —1). Then an
ordered orthonormal basis (¢) for &, is characterized by the identity

(7 eig; + ejei = 2gi;.

Let E; and @ be the respective complexifications of E; and €, and
consider the expression (Au, v), where 4 runs over §, and %, v run
over Ej. Since this expression is real linear in 4, complex linear in #,
and complex antilinear in v, there exists a unique mapping F: E;
X Eg—@; such that

8) (Au| v) = A-F(u, v),
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and F(u, v) is complex linear in # and complex antilinear in v. In
particular, F(u, Ju) lies in €,.

Given now any ordered o.n. basis ey, * * -, es for €, consider smooth
functions ¢: §,—E; and let

W+ he) = ¥(z)
k

DEFINITION. The Dirac operator D=e101-}e:0:+€3:03—eds. Then
Dr=02+03+05—3;, the d’Alembertian, while the Dirac equation
takes the form

(10) W+ =0 (x=mec/h),

and the associated charge-current vector — F(J, JY) satisfies the con-
tinuity equation

(11) div F(y, J¥) = 0.

Finally the relativistic “invariance” properties of the Dirac equa-
tion reduce to simple properties of the Dirac operator D.

THEOREM 6.1 (PASSIVE INVARIANCE). (Y| u) =div F, u) (¢ EEY).
If TEQG, let (1Y) (x) = TY(Lrx) = TY(T-%T).
THEOREM 6.2 (ACTIVE INVARIANCE). DT =T'D.

® (O4)(x) = lim
10

Proofs of the above theorems and some related results will appear
elsewhere.
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