
ALGEBRAIC INTEGRATION THEORY 

IRVING SEGAL 

1. Introduction. Although the theory of the abstract Lebesgue 
integral has strong intrinsic architectural articulation, the very im­
portance of the theory for a variety of mathematical applications 
has tended to cloud its basic simplicity and elegance. The large num­
ber of approaches and formalisms, each justified by its appropriate­
ness in connection with particular applications, has given the theory 
as a whole an appearance of heterogeneous complexity which is in 
fact significantly specious and a hindrance to a deeper understanding 
of the theory and to its further application. While it would probably 
be widely granted that integration serves as a focal point for real 
analysis, the focus has been more virtual than real; the ultimate con­
vergence of the multitude of generally similar but technically distinct 
theories has been felt rather than proved. 

On the other hand, the coherence and algebraic simplicity of the 
basic theory has been visible and virtually taken for granted for a 
long time by those working in abstract analysis. The replacement of 
the sigma-ring of all measurable sets by the abstract Boolean ring of 
measurable sets modulo null sets is natural from a fundamental sta­
tistical viewpoint, and provides probably the earliest approach dis­
playing such features. This Boolean ring approach, which has now 
been elaborated by many publications, most notably those of Cara-
théodory and his associates, is, however, an inconvenient one for most 
applications, inasmuch as these deal mainly with functions, which 
enter into the Boolean ring approach only in a rather circumlocutory 
fashion. Around the later thirties there appeared, as a fruit of the 
spectral and representation theory originating in the well-known work 
of von Neumann, Stone, and Gelfand, simple abstract characteriza­
tions of measure-theoretic function spaces, as ring and/or lattices. 
However, no comprehensive development of integration theory along 
such lines took place at that time. 

It was the development of a variety of new theories, rather than 
the desire to embellish old ones, which primarily has led to the de­
velopment of a complex of results, methods, and ideas here somewhat 
loosely referred to as 'algebraic integration theory.' The introduction 
of a new term such as this requires some explanation and justifica-
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tion, in the light of the rapidly increasing burden which mathemati­
cians must bear. To this end we point out that one almost universal 
feature of applied work is a tendency to overlook mathematical iso­
morphisms. In theoretical physics, for example, although analogies 
are frequently invoked, the concept of a rigorous isomorphism rarely 
occurs in a non tri vial form, although it is relevant in a number of 
significant ways in contemporary work. The result of this is, natu­
rally, a tendency toward a variety of babel ; each special context tends 
to acquire a distinctive terminology and notation, and close connec­
tions or even virtual identities between superficially distinct develop­
ments, are rendered quite obscure. This is, of course, not only un­
economical, in the duplication of labor involved, but brings a sub­
stantial linguistic encumbrance to bear on the scientific commerce 
between different areas and the development of interdisciplinary sub­
jects. Even in probability theory, the most notably successful of 
originally applied subjects in achieving mathematical clarity and 
emerging in this century as a distinctive branch of mathematics, 
cases could be cited in which quite wrong conclusions were reached 
as to the relation between certain work and earlier extant theories. 
While the use of analogies is a partial substitute in heuristic work, it 
has the disadvantage of making it impossible to determine whether 
the results are merely plausible or actually quite correct; on occasion 
it even makes it difficult to determine whether the results are mean­
ingful. 

The obvious corrective for this situation is a closer adherence to a 
formulation of integration theory which is relatively independent of 
particularities and revealing of features independent of the notation. 
This might be called invariant integration theory, but this term 
might well suggest a subject quite different from this one, namely 
that of invariant integrals. Since the setting of the theory is naturally 
algebraic, in its concern with features independent of isomorphisms, 
the term algebraic integration theory is reasonable—although the 
subject is distinctly more distant from conventional algebra than is 
algebraic topology. Such a theory is necessarily abstract, but the term 
'abstract integration theory' has already a different meaning, sig­
nifying usually the theory in which integrals are considered not neces­
sarily over subsets of euclidean space, but over relatively general 
spaces, and is a more limited and quite distinct notion from that of 
the theory considered here, whose distinctive description as algebraic 
seems therefore practical. 

Earliest and probably foremost among the new developments sug­
gestive of a materially more algebraic approach to integration theory 
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was the systematization of commutative spectral theory in Hubert 
space. The well-known highly penetrating work of von Neumann in 
the thirties contained many arguments and methods having an in­
triguing similarity to some of those in integration theory. It was 
partly an interest in explicating this similarity which led to a cul­
mination of the commutative theory in the early fifties in the deter­
mination of the structure of the general commutative ring of oper­
ators on Hilbert space, and, as a corollary, to a relatively definitive 
and complete form for spectral multiplicity theory in Hilbert space. 
It became clear that the cited similarity was not at all coincidental, 
but that commutative spectral theory is essentially a direct applica­
tion of integration theory. The simplest, as well as a quite important, 
instance of this, is in the spectral resolution of a set of commuting 
self-adjoint operators in Hilbert space. For bounded operators this 
is an immediate consequence of the identification (within a transpar­
ent type of isomorphism, i.e., unitary equivalence) of a maximal 
abelian self-adjoint ring of operators in a Hilbert space with the ring 
of multiplications by bounded measurable functions (modulo null 
functions) on a measure space. 

The substantial identity of hermitian operators in Hilbert space 
with real measurable functions on a measure space (with however a 
different notion of equivalence from that involved in the similar 
identification of random variables) led to the elucidation in related 
terms of an important part the theory of operator rings developed 
by von Neumann, partly in collaboration with Murray. This beauti­
ful theory, undoubtedly one of this century's most original scientific 
achievements, had in a number of respects a striking but elusive 
similarity to various developments in integration theory. Some of this 
similarity, notably that between the construction of the dimension 
function in the work of Murray and von Neumann and the construc­
tion of group-invariant measures due to Haar, remains fundamentally 
elusive and may well be specious, except in the sense that Haar's 
discovery appears to have strongly stimulated von Neumann. On the 
other hand, the major part of the similarity has been thoroughly 
explicated by the development of a theory applicable to any operator 
ring on the projections of which an analogue to a measure is defined, 
which is basically co-extensive with the general theory of the abstract 
Lebesgue integral when the ring in question is commutative. The 
latter connection comes about precisely through the identification of 
hermitian operators with measurable functions; in the case of a gen­
eral ring, the hermitian operators will in general not commute, and 
so cannot possibly be simultaneously represented by measurable 
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functions, but they may nevertheless be integrated and, apart from 
their noncommutativity, otherwise be treated much like the measura­
ble functions on a measure space. 

The other major part of the general theory of Murray and von 
Neumann consists in the construction of the dimension function on 
the 'factors' which are in a sense complementary to the abelian rings, 
factors being characterized among operator rings as having trivial 
centers. This construction may be regarded as related to the general 
theory of integration in operator rings—or 'noncommutative integra­
tion/ for short—in a fashion fairly analogous to the relation between 
the construction of Haar measure in a locally compact group and the 
general theory of abstract Lebesgue integration. The simplest and 
most important nontrivial factor is that of all bounded linear oper­
ators on Hubert space. The relevant noncommutative measure—or 
'g&ge>' for short—is that which assigns to each projection the dimen­
sion of its range, or + oo if the dimension is infinite. This is countably 
additive, as is an abstract Lebesgue measure, and has one additional 
feature which compensates for the circumstance that the lattice of 
all projections is not Boolean, which circumstance originates in the 
noncommutativity of the ring; namely, this gage is unitarily invari­
ant. These two properties are essentially the only ones required for 
the development of an effective integration theory parallel to and 
essentially inclusive of the abstract Lebesgue theory. 

Naturally, instead of integrating functions, in the more general 
theory one integrates operators; one normally speaks, in place of the 
integral of a function, of the trace of an operator, in the case of the ring 
B of all bounded linear operators, as well as for factors in general. 
The Lebesgue LP spaces have their close analogues, which are quite 
familiar in the case of the ring B, for the indices p = l, 2, and <». 
The space L2(B) is identical with that of all so-called 'Hilbert-
Schmidt' or, in the terminology of [102], 'finite norm' operators in 
the Hilbert space, with the Z,2-norm identical with the Hilbert-
Schmidt norm. The space Li(B) is precisely that of all operators of 
absolutely convergent trace, with the corresponding so-called trace 
norm. The space LW(B) dual to Li(B) turns out to be precisely the 
ring B itself, the L» norm being identical with the usual operator 
bound. Simple instances of results in pure operator theory discernible 
from the analogy with integration theory are the forms of the con­
tinuous linear functionals on the spaces of all completely continuous 
operators and of all operators of absolutely convergent trace. The 
Riesz representation theorem for continuous linear functionals on 
the space of all integrable functions on a measure space is, for exam-
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pie, a special case of an analogous result valid for general rings, which 
specializes in the case of the ring B to that indicated. Results of this 
type were obtained by Schatten [82] and Dixmier [15] in a purely 
operator-theoretic fashion, and actually the ring B is such a relatively 
simple and special one that the general integration theory does not 
add a great deal to what can be seen otherwise. It does, however, 
serve to correlate a variety of results in integration and operator 
theory, as well as to provide a general theory suggestive of further 
useful results. 

On the other hand, if the interesting concrete implications of the 
theory were confined to conventional integration theory and to anal­
ogous results concerning the ring of all bounded operators, it would 
appear to be possibly expendable as an instrument for further in­
vestigation of concrete systems. One broad class of examples combin­
ing features of integration theory with the analogous theory for B, 
or for factors in general, is provided by the generalized Plancherel 
theory for locally compact unimodular groups. In the particularly 
interesting case of an open simple Lie group, this theory turns out to 
concern integration relative to a ring which may ultimately be iden­
tified with the direct product of the multiplication ring of a measure 
space with the ring B. The extension by Weil [113] of the classical 
Plancherel theorem to the case of an arbitrary locally compact abelian 
group proceeded from the structure theorems of Pontrjagin and van 
Kampen for these groups, and did not cogently display the theorem 
as one establishing a new species of integration on the group. The 
later proof by Kreïn of the Plancherel-Weil theorem, and especially 
the still later proof of Rykov [79], put this rather strongly in evi­
dence, and at the same time freed the proof from dependence on the 
duality theory, which Rykov showed then followed in a natural way. 
Roughly speaking, what is involved in Rykov's proof is the develop­
ment of a kind of integration theory for convolution operators on the 
group, together with the representation of the integral in a conven­
tional way in terms of Haar measure on the dual group. More specif­
ically, if A is the operator of convolution with the function ƒ on the 
group, where ƒ is assumed smooth and of compact support, then the 
map A—>f(e), where e is the group unit, has a variety of nontrivial 
properties quite analogous to those of an integral; and it may, in fact, 
be represented as the integral over the dual group of the Fourier 
transform of/. This might appear as a perhaps unduly sophisticated 
way of looking at the theorem, were it not that the basic result is 
equally applicable to compact non-abelian groups, by virtue of the 
Peter-Weyl theorem, and is, in fact, equivalent to the theorem, if 
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this is regarded as a means of expressing the Z*-norm of a function 
on the group in terms of the (matrix) Fourier coefficients of the 
function. 

It was natural to surmise that for any locally compact unimodular 
group, there might be an analogous means of expressing the square-
integral of a function ƒ on the group in terms of the integral over an 
appropriate dual object of a quadratic expression in the suitably 
defined operator-valued Fourier transform of the function. This was 
indeed the substance of a formula obtained by Gelfand and Naïmark 
in the special case of the Lorentz group [29] by algebraically highly 
novel but analytically relatively classical methods. A general result 
of this type appeared, however, to require a theory of noncommuta-
tive integration (cf. [84]). The treatment in [112] of unitarily in­
variant positive linear functionals with the attainment of simple re­
sults suggested the exploration of the possible unitary invariance of 
the functional/^), or, rather, of some suitable modification thereof. 
This functional was clearly invariant under the unitary transforma­
tions corresponding to group translations, but its invariance under 
the much larger group of all unitary transformations in the ring of 
operators generated by the translations was not mathematically well-
defined, since in general such a unitary transformation will carry a 
continuous function of compact support into one devoid of any special 
regularity or support properties. What was needed turned out to be a 
more strictly Hilbert-space than geometrical viewpoint;/(e) had to 
be thought of as an inner product between two elements of L^ and 
for the projections which play the central role in [112], the cor­
responding gage (of left convolution by ƒ) had essentially to be re­
defined as the inner product (ƒ,ƒ*), where ƒ*(#) =7(*"~1)> to which it is 
formally equal. This redefinition makes the additivity of the func­
tional less manifest, but it is nevertheless maintained, and from this 
point the close connection between the von Neumann theory and 
the generalized Plancherel theorem was clear. The derivation of the 
latter in [86] along these lines was, as noted there, in considerable 
part applicable to general abstract algebras, as has been further 
substantiated by work in [88] and [lOl]. A less complete result, 
based also on the idea sketched, was given shortly afterwards in [62] ; 
it must be noted, however, that the proof offered contains several 
essential gaps (cf. below). 

The algebraic approach to integration theory was not at all con­
fined to the cited examples, and, in the commutative case especially, 
took many forms, as indicated by the applications envisaged. The 
approach of Bourbaki [4A], in which the basic datum is not a mea-
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sure on a sigma-ring but a positive linear functional on the algebra of 
continuous functions of compact support on a locally compact topo­
logical space, led to a useful theory whose development involved a 
number of technical simplifications. It was particularly well adapted 
to the treatment of invariant measures in locally compact spaces, 
whose formulation as invariant integrals (i.e., linear functionals) 
served to circumvent difficult measurability problems which other­
wise appeared and to facilitate the treatment of the existence and 
uniqueness of invariant measures (cf. notably [113]). Variants of this 
approach, which may itself be regarded as a particularly felicitous 
variant of developments due to Daniell [13], Banach [80 ], and others, 
have been given by many authors (McShane [64], Stone [105], to 
cite two readily accessible treatments), but without the local com­
pactness of the underlying space a substantial part of the technical 
incisiveness is lost. 

On the other hand, while this approach was quite adequate for the 
general treatment of integration in the geometrical types of spaces 
whose consideration appears to have motivated the approach, it 
seemed out of place in a number of other connections. In probability 
theory and in the mathematical theory of quantum fields, integra­
tion over infinite-dimensional spaces is involved, and the local com­
pactness condition is out of place. To be sure, with any finite measure 
space, an integration-theoretically largely equivalent compact space 
may be associated, in fact it may be uniquely chosen so as to have the 
property that any bounded measurable function class, modulo the 
class of null functions—or, for short, bounded measurable—on the 
original space corresponds to a unique continuous function on the 
compact space. Such 'perfect' [93] or 'Stonian' [16] spaces are on 
occasion useful in circumventing measurability difficulties, but the 
apparent impossibility of describing them in explicit terms and the 
burden of carrying an isomorphism, rather than the identity map, 
throughout a problem, strongly limits their usefulness. Thus the 
Wiener integral, substantially over the space C[0, l ] of continuous 
functions in the interval [0,1 ], gains nothing, so far as is visible at this 
point at least, through its transfer to an associated compact space, 
and in fact loses explicitness; the same is true in fact of most sto­
chastic processes, which generally involve integration over some 
infinite-dimensional linear space. 

Probability theory relates, however, to algebraic integration theory 
in quite another way. In a sense, the early probabilists, such as the 
Bernoullis, may be regarded as primitive exponents of a variety of 
algebraic integration theory. The random variables with which they 
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worked directly were never constructed mathematically but rather 
treated in a highly implicit axiomatic, and in essence algebraic, 
fashion. In retrospect, and employing modern terminology, their 
basic informal axiom may be formulated as follows: the random vari­
ables form (or may be regarded as generators of) a real commutative 
associative algebra, on which a distinguished linear functional, the 
'expectation' functional (determined frequently through the mo­
ments of generating random variables), is defined. However, thirty 
years ago such axioms were not quite so readily formulated, and, 
more significantly, if formulated would have been difficult to take 
seriously as a possible basis for the theory. The subsumption of the 
basic parts of probability theory under the theory of the abstract 
Lebesgue integral by Kolmogoroff in 1933 [50 ] relieved mathematical 
probabilists of a substantial burden of insecurity concerning the 
foundations of their subject, and in fact marked the beginning of the 
era of the truly mathematical development of the subject; any alter­
native to the fundamental idea that a random variable was simply 
a measurable function on a probability measure space (i.e., one of 
total measure unity) would have had to have the clearest kind of 
practicability and utility to have received any significant considera­
tion. The mathematical viability of an algebraic approach such as 
that indicated was visible only at the end of the decade, following the 
development of the representation theory by Stone, Gelfand, and 
many others, while its utility did not appear until more than another 
decade later. 

The idea that a random variable is a measurable function has 
therefore, despite a certain lack of physical intuitiveness, dominated 
probability theory in the past thirty years, and quite naturally so. 
While the definition in terms of an algebra-cum-linear functional may 
throw some light on the foundations of the subject, it is mathe­
matically equivalent to the earlier definition, and it is only within the 
past decade or so that some material technical advantages for the 
algebraic approach have been visible. These advantages have to do 
with the related subjects of the general theory of analysis in Wiener 
space, developed principally by Cameron and Martin, and the theory 
of the free Bose-Einstein quantum field, which are linked through 
their common close connection with analysis in Hubert space. The 
theory of the homogeneous chaos due to Wiener [ l l ö ] , for example, 
acquires both greater generality and simplicity through its formula­
tion in terms of analysis in Hubert space rather than Wiener space— 
a quite material change, being based on a certain duality between 
Wiener and Hilbert space based in turn on the Wiener stochastic 
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integral, rather than on the obvious possibility of imbedding Wiener 
in Hubert space. At the same time, this formulation makes it possible 
to bring the theory into explicit relation with relativistic quantum 
field theory in a way which has not been possible with Wiener space 
itself, which is not in any natural way a relativistic object; in these 
terms, for example, the Hubert space counterpart to Wiener's chaos 
of degree n corresponds to what, in theoretical physics, is described 
as the subspace (of state vectors) in which there is present at most n 
particles. It is extraordinary, in a way, that the wave-particle duality 
in a Bose-Einstein field should be partly implicit in the essentially 
mathematically and classically motivated development of the homo­
geneous chaos, but this connection might not have been observed, 
nor could it be made so transparent, without the algebraic approach. 

In the same way, the 'Fourier' transform in Wiener space studied 
by Cameron and Martin, which at first glance appears to have a 
rather limited analogy with the classical Fourier transform may 
be seen via the connection with Hubert space to be a natural gen­
eralization of the Fourier-Plancherel theory from a finite-dimensional 
euclidean space to Hubert space. The important question, for ap­
plications both to quantum field theory and stochastic processes of 
the absolute continuity of affine transformations in Wiener and 
related spaces, has a much simpler and more readily attainable resolu­
tion in the algebraic theory; the result may then be transformed into a 
corresponding one for any given stochastic process, of a more special­
ized nature. The theory of Gaussian integration in Hilbert space 
which is central here is most economically derived from an algebra-
cum-linear functional approach in which the algebra is that of all 
polynomials (in the naive sense) and the expectation functional that 
given by the Gaussian integral. 

In addition to its technical advantages, this approach serves to re­
capture the essential spirit of the Bernoulli approach, in its emphasis 
on the mathematical counterparts to the objects which from a con­
ceptual empirical viewpoint are most directly accessible—essentially 
the key random variables and their moments. The axioms required 
for analytical effectiveness turn out to be quite few in number, as 
well as of immediate intuitive acceptability as descriptive of the 
random variables of a probability system. The origin of such axioms, 
in quantum and spectral theory rather than in the mathematical 
theory of probability itself, leads to a certain unification of the con­
cepts of observable in quantum theory and of random variable in 
probability theory, while clarifying the mathematical formulations 
of these concepts and the relations between classical and quantum 
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systems. The somewhat ad hoc and artificial character of the key 
phenomenological assumptions of quantum theory, to the effect that 
an observable is an hermitian operator in Hubert space while a state 
is represented by a vector in (or essentially in) the space (cf., e.g., 
Dirac [14]) led von Neumann in the late twenties and earlier thirties 
to make a searching study of rationalizations or alternatives. This 
culminated in the highly original and very interesting, although 
basically inconclusive, study of a certain set of axioms for the ob­
servables of a quantum system as a structured variety of Jordan alge­
bra, in [HO]. Abandoning the attempt to treat noncommutative 
systems, and with a relatively more purely mathematical motiva­
tion, Stone slightly later studied conceptually simple systems ab­
stracting commutative operator algebras, and succeeded in develop­
ing along these lines a systematic and natural approach to some of 
the basic parts of spectral theory in Hubert space. Following Stone's 
earlier work, the theory had reached a culmination point in Gelfand's 
theory of normed rings; the technical effectiveness of Gelfand's em­
phasis on complex methods more than compensated for a certain lack 
of methodological purity represented by the use of such methods in 
a real-analytical problem, and such complex methods have played a 
virtually dominating role in later work on Banach algebras. At any 
rate, by the early forties there were available several ways of repre­
senting abstract topological-algebraic systems, descriptive of systems 
of random variables, simultaneously observable quantum variables, 
or systems of operators generated by commuting normal operators 
on Hubert space, by the more familiar concrete systems of functions. 
In particular, random variables as implicitly defined in such work as 
that of the Bernoullis could be mathematically identified with the now 
conventional definition of a random variable as a measurable func­
tion, although the first occasion for taking note of this came a decade 
later, in connection with functional integration and invariant Gaus­
sian integration in Hubert space especially. 

This subject has a somewhat curious history. An invariant integral 
in Hubert space was originally sought for on a variety of purely 
mathematical grounds, and then abandoned as a mirage. A decade 
or two later a kind of symbolic functional integral was introduced 
in Hilbert space by theoretical physicists, who noted that it had re­
markable formal possibilities for quantum field theory, but never 
succeeded in attaching any definite numerical value to the pseudo-
integrals that their formalism was concerned with (for early work of 
this nature, see Feynman [21], [22]). The difficulty is that there 
simply is no direct analogue in Hilbert space to the euclidean volume 
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element in n dimensions, n < 00, although this is exactly the element 
of integration the physicists required. The way out of this difficulty 
is, however, indicated by one of the most familiar and fundamental 
results in quantum field theory, or, rather, by its proper mathemati­
cal explication. The fact that a free Bose-Einstein quantum field 
could be 'represented' as an assembly of harmonic oscillators was 
well known. A clear statement of this equivalence led directly to the 
formation of infinite Gaussian integrals (or infinite products of finite 
ones), which in an invariant treatment could only be taken over the 
Hilbert space representing the admissible 'single particle' states, or 
some closely related space identical to it at least in the case of finite-
dimensional systems, and invariantly attached to it. In other terms, 
what was involved was not an analogue to the euclidean volume ele­
ment, but rather an analogue to the isotropic Gaussian distribution 
centered at the origin. 

It was 'well known,' in an informal mathematical way, that no such 
object existed; nevertheless it was clear that there was mathematical 
substance to the equivalence between a Bose-Einstein field and a set 
of harmonic oscillators, and plausible that there should be an in­
variant formulation of this equivalence. Suggested partly by this 
need, and partly by the instance provided by Wiener's stochastic 
integral, the concept of a weak distribution arose. Given a probability 
distribution on a Hilbert space of sequences, say, (xi, x2, • • • ), 
each coordinate Xi becomes a well-defined random variable; con­
versely, if the coordinates are well-defined random variables, in the 
finite-dimensional case—but only in this case—there necessarily 
exists a probability distribution with which they are associated in the 
foregoing manner. The notion of weak distribution defined in this 
way was thus materially more general than that of a conventional 
probability distribution, and the isotropic centered normal distribu­
tion—or, for short, 'isonormal' distribution—fits in nicely as a weak 
distribution; there is an essentially unique way to assign to each 
vector x of a given real Hilbert space a random variable R(x) such 
that for any orthonormal set of vectors eu eu • • • , en, the random 
variables R(ei), R(e2)f • • • , R(en) have independent and identical 
Gaussian distributions centered at the origin. 

It is clear that the isonormal distribution is an attribute of the 
Hilbert space itself, and independent of its concrete representation. 
The Wiener stochastic integral, in which x(t) represents the Wiener-
Brownian motion process, 

ƒ(•)-+ƒƒ«) <**(0 
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is a mapping from Li(0, 1) to random variables having the defining 
properties of this distribution, but evidently involves much additional 
structure, which turns out not to be needed for a considerable part 
of the basic theory. But before any theory could be developed, or, in 
fact, the structure of the free Bose-Einstein field fully explicated, it 
was necessary to have a means of integrating relative to weak dis­
tributions. While an ad hoc method was available for the isonormal 
distribution in the light of the theoretical physical results themselves, 
and was construed by Friedrichs as a partial analogue to an integral in 
the Hubert space,1 there was no established general method, such 
as was required if the Bose-Einstein field representation theorem 
was to be successfully related to general mathematical ideas; the 
abstract Lebesgue theory did not appear to apply. It was necessary 
to observe that the bounded measurable functionals on the Hilbert 
space which were dependent only on a finite number of coordinates— 
'tame' functionals for short—formed an integration algebra relative 
to the integral provided by the given weak distribution for such 
tame functionals. In the isonormal case as well as for a fairly broad 
class of other weak distributions the polynomial functionals could 
be used in place of the bounded ones, but the algebra of tame func­
tionals was always available and provided a simple way to connect 
with general integration theory. 

Analysis relative to the isonormal distribution as volume element 
is in many ways as simple—in some ways, perhaps simpler—as analy­
sis based on the euclidean volume element, as it has turned out, 
and leads to considerable mathematical illumination of the theory of 
free and other linear Bose-Einstein fields. It has not in itself yet led 
to the resolution of the problems concerning nonlinear quantum fields 
which in a formal way could be resolved by free use of analysis in 
function space, but important progress has resulted, and much light 
has been thrown on the origin of these problems. To mention one 
aspect, the nonlinear transformations in function space involved in 
these problems not only are not 'absolutely continuous' in the suit­
ably generalized sense, relative to the isonormal distribution, but 
may well, so far as is now known, and unlike general linear trans­
formations which may also fail to be absolutely continuous, trans­
form the isonormal distribution into any other well-defined weak dis­
tribution at all. The weakness of a distribution involves a whole 
complex of significant technical differences, and while the notion 

1 Specifically, the representation of the eigenstates of the harmonic oscillator in a 
boson field as Hermite functionals (cf., e.g., von Neumann [109]) gives an inner 
product between such functionals, and hence between linear combinations thereof. 
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has been found useful in the theory of stochastic processes (see e.g., 
Prohorov [76]) as well as in quantum field theory, it is far from being 
a panacea. In fact, the theory could possibly also be presented in 
terms of conventional measure theory, at the cost of considerable 
circumlocution, loss of manifest invariance, and, in our opinion, gen­
eral transparency. 

That the algebraic approach is, however, materially more than 
merely a convenient and invariant way to present the theory is rather 
strikingly indicated by the parallel consideration of the free Fermi-
Dirac quantum field. There is present an analogy between the two 
types of fields which, it develops, is of a remarkably far-reaching 
mathematical character, and is visible only from the integration-
algebra standpoint. This is because in the Fermi- Dirac case there is 
no invariant conventional measure space in terms of which the theory 
may be presented; the integration algebra in question is noncom-
mutative, and is, in fact, the 'Clifford algebra' over a Hubert space. 
This circumstance represents, incidentally, one of the very few in­
trusions into concrete analysis of the exceptional factors of Murray 
and von Neumann, inasmuch as this algebra is an approximately 
finite factor of type Hi, in their terminology. The penetrating char­
acter of the analogy between the two types of fields is visible in a 
purely mathematical way from its having led in an incidental way 
to the construction of an analogue for the symplectic group to the 
spin representation for the orthogonal group ([95A], [99]), quite 
unsuspected by algebraists, in advance of the independent discovery 
of the representation, in a different context, not revealing of the 
analogy with the spin representation, as the basis for the understand­
ing and extension of recent developments in number theory by Weil 
[114]. The utility of the concept of weak distribution is confirmed by 
its applicability to the noncommutative case, the 'Clifford1 distribu­
tion which intervenes having many formal properties in common with 
the isonormal distribution, despite the lack of any formal resemblence 
or invariant connection whatsoever of this distribution to a conven­
tional countably additive measure on a sigma-ring. 

Thus the algebraic viewpoint in integration theory is a natural, 
and, in some important respects, an indispensible guide and tool in 
connection with a variety of applications. There are other areas where 
similar ideas are at first glance less clearly indicated, but where it 
has turned out that they provide a deeper understanding of important 
results. The direct integral theory of von Neumann [112], for exam­
ple, originally quite involved, appears as regards some of its most 
applicable (but by no means all) features as a simple deduction from 
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commutative spectral theory via integration-algebra methods. The 
fundamental theory of harmonic analysis on locally compact abelian 
groups develops naturally and, probably maximally, rapidly from 
the same line. 

Representation theory for more general locally compact groups is 
related to these matters, the theory of so-called 'states' of operator 
algebras or positive definite functions on groups having many of the 
features of algebraic integration theory. The general lack, however, 
of one of the essential properties indicated earlier, namely, the unitary 
invariance (or, essentially, centrality, i.e., the property of the positive 
linear functional E that E(AB) =E(BA)), is an important limitation, 
as a consequence of which the general integration theory for states 
is relatively rudimentary. For this reason it seems appropriate for 
the present treatment to draw its demarcation line just short of such 
considerations, insofar as it treats analysis on locally compact 
groups. Also treated only quite marginally is the general theory of 
rings of operators, except insofar as it is related to the more struc­
tured situations involving an integral which are our central concern. 

With this brief bird's-eye view of algebraic integration theory, we 
turn now to specifics. Our approach will be, as already suggested, to 
treat the fundamental theory and to present selected illustrative 
material, rather than to give a compendium of all remotely relevant 
research with brief descriptions of each item. This means that much 
highly significant work must be passed over or given only marginal 
attention. It is believed, however, that the bibliography is sufficiently 
extensive to enable the interested reader to track down fairly readily 
the literature on matters of special concern to him which relate 
materially to the present subject. We apologize in advance both to 
those who might prefer more of a compendium arrangement and to 
those who might prefer to have a completely general account un­
interrupted by technical asides and illustrations—as well as to the 
authors of important papers which have been overlooked or con­
sidered to be insufficiently relevant or illustrative to describe or 
mention. 

2. Integration algebras. The simplest prototypical case, as well as 
one which can be considered theoretically basic, is that of the alge­
braic characterization of a finite measure space. As indicated, this is 
readily done in terms which are both mathematically useful and 
probabilistically intuitive. 

THEOREM. Let (A, E) be a system composed of a real commutative 
associative algebra A with unit, and a linear functional E on A, with the 
properties 
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(i) E(A*) è 0 , and = 0 if and only ifA=0 (A £A), 
(ii) for any element B of A there exists a constant b such that 

E(A2B) ^ bE(A*) 
for all A in A. 

Then (A, E) is isomorphic to a dense subalgebra of L^M) for some 
finite measure space M9 with the integral as linear functional. 

Here L*>(M) denotes the algebra of all equivalence classes of 
bounded measurable functions on M—two functions being defined 
as equivalent if they agree except on a null set. 'Finite measure space' 
means, as usual, the system consisting of a set 5, a distinguished 
Boolean sigma-ring S of subsets of S which includes 5 itself, and a real 
non-negative countably additive function s on S. 'Dense' may be 
defined in various ways, the simplest, perhaps, being the usual topo­
logical density relative to that induced on L^M) from the w*-
topology on the dual of the space L\(M) via the well-known isomor­
phism of the dual with LJJ&) ; it would be quite equivalent to say 
that the subalgebra is dense in Li(M) in the L2-metric, or, alterna­
tively, that it is determining, in the sense that the least sigma-ring 
with respect to which every element of the subalgebra is measurable 
includes every measurable set, within a null set. Note that, con­
versely, it is essentially obvious that any subalgebra of L*(M)% with 
the integral as linear functional, does indeed satisfy (i) and (ii). Note 
also that if E(I) = 1, where I denotes the unit, then the postulated 
conditions on E are physically plausible ones for the bounded random 
variables of a probabilistic system, in the light of a moment's reflec­
tion. 

The proof of the Theorem is not at all complicated, but involves in 
an essential way two relatively recent, if now widely known, mathe­
matical developments: (a) the association with a positive linear func­
tional on an algebra of a representation of the algebra by operators 
in a Hilbert space; (b) the elementary theory of Banach algebras. 
With the inner product 

(A, B) - E(BA), 

the algebra A acquires also the structure of an incomplete Hilbert 
space whose completion will be denoted as H. If, for any element A 
of A, <i>o(A) denotes the operator on A, B—+AB, then by (ii) <l>o(A) 
is a bounded linear operator on A, and so extends uniquely by con­
tinuity to a bounded linear operator #(-4) on all of H. The map 
A—*j>(A) is an algebraic isomorphism, and E may be expressed in 
the form E(A) = (</>(A)I, ƒ), by virtue of which observations it is no 
essential loss of generality to assume that A is a commutative algebra 
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of self-ad joint operators on a real Hilbert space H, containing the 
identity operator / , and E has the form E(A) = (Az, z) for some 
vector z in H whose transforms Az under A form a dense subset of H. 

If A and B are bounded self-adjoint operators on a Hilbert space, 
it is readily verified that ||ii2|| =||ii||* and | | . 4 2 -5 2 | | gmax(|[^2|[, 
||JB2||). The general theory of Banach algebras asserts that the closure 
of A is naturally homomorphic to a subalgebra of the algebra of all 
complex-valued continuous functions on a certain compact Hausdorff 
space, the 'spectrum' of A (cf., e.g., [83]). The first property of the 
norm shows that this homomorphism is, in fact, an isomorphism, in 
which the operator bound and the function supremum correspond. 
The second property serves to exclude the case of complex-valued 
functions—as would substantially equally well any of a wide variety 
of other conditions—i.e., the image algebra consists exclusively of 
real functions. The Stone-Weierstrass theorem then implies that the 
image consists of all real-valued continuous functions on the spectrum 
T. Now E extends in an obvious way to A, and so corresponds in the 
isomorphism to a positive linear functional on the real-valued con­
tinuous functions on T. This in turn, by the generalized Riesz theo­
rem, is the integral relative to a finite measure on the Borel subsets 
of r , and the required measure space has been obtained. 

It is natural to raise the question of the uniqueness of the associ­
ated measure space. Indeed it is unique, within so-called weak 
equivalence [93], a simple concept but one not needed for most 
applications of the Theorem. In fact at this point we may postpone 
further consideration of algebraic integration theory and turn to some 
illustrative applications. 

Although probably surprising to any one not familiar with the 
theory of Banach algebras, the Theorem has a rather innocuous if 
reasonably pleasant appearance. It has, however, fairly direct conse­
quences of considerable substance. Most important among these is 
the subsumption of commutative spectral theory in Hilbert space 
under integration theory. This subsumption may conveniently be 
based on 

COROLLARY 1. A maximal abelian self-adjoint algebra of bounded 
linear operators on a complex Hilbert space is unitarily equivalent to 
the multiplication algebra—i.e., the algebra of all muliplications by 
bounded measurable functions, acting on L%—of a measure space. 

This is in a way a definitive formulation for the simultaneous spec­
tral resolution of commuting self-ad joint operators in Hilbert space, 
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and a quite natural one in the context of the other major real-
analytical theory developed around the same time, that of Lebesgue. 
The proper treatment of the continuous spectrum which Hubert dis­
covered is seen to be virtually equivalent to the proper treatment of 
integrals, i.e., continuous sums, which Lebesgue developed. Since any 
commuting set of bounded self-adjoint operators on a Hubert space 
may be imbedded in a maximal such algebra, Corollary 1 implies 
that for all Hubert space purposes, the most general collection of such 
operators is simply a set of multiplications by real bounded measura­
ble functions acting on Z,2 over a measure space. The operators are 
thereby simultaneously 'diagonalized' in a quite explicit sense, a 
materially stronger result than that provided by the familiar formal­
ism of Hubert involving integrals relative to spectral families (reso­
lutions of the identity). 

For the proof, consider first the case in which there exists a cyclic 
vector z for the ring A, i.e., one such that Az is dense in the Hubert 
space H. With the definition E(A) = (Az, z), the system (A, E) is an 
integration algebra, satisfying the conditions of the Theorem, so that 
there exists a measure space M and an isomorphism <£ of A into a 
dense subalgebra of LW(M) such that (Az, z)=fM<t>(A). It follows 
that the map Az—xf>(A) is a well-defined isometry of a dense subset 
of if onto a dense subset of Li(M), and so extends uniquely to a 
unitary transformation U of H onto L^(M). It is straightforward to 
check that TJA U~l is the operation of multiplication by <t>(A). Since 
the multiplication algebra of M is abelian and since TJA Z7"*1 must be 
maximal abelian, as A is, UAU~~l must be all of the multiplication 
algebra, which completes the proof for the case in which there exists 
a cyclic vector. 

The key observation in the reduction of the general case to that 
in which there exists a cyclic vector is that if z is any vector in H, 
then the set AM of all restrictions of elements of A to the closure M 
of Az is again maximal abelian—and, ill addition, possesses the cyclic 
vector z. By transfinite induction, H is a direct sum ]£x H\ of sub-
spaces of this type. Each restriction algebra A\ H\ is maximal abelian 
and has a cyclic vector, so that it is equivalent to the multiplication 
algebra of a measure space M\. It is basically quite straightforward to 
show that A, as the direct sum of the restriction algebras, is equiva­
lent to the multiplication algebra of the direct sum of the measure 
spaces M\, when the latter notion is defined in the obvious way. 

The deduction of the conventional form of the spectral theorem for 
commuting normal operators is fairly well illustrated through the 
consideration of the case of a single self-adjoint operator. 
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COROLLARY 2. For any bounded self-adjoint operator A on a Hubert 
space H, there exists a unique countably additive function E from the 
Borel subsets of the reals to the projections on H such that 

A - f\dE(\), 

in the sense that, for all vectors x and y in H, (Ax, y) = f\ dmXtV, where 
™*,v(B) — (E(B)x, y) for all Borel sets B. Furthermore, E vanishes on 
sets disjoint from the interval [—||i4||,||i4||]. 

For the proof, assume A is the operation of multiplication by the 
real measurable function A on the measure space M, and define 
E(B) for any Borel set B as the operation of multiplication by the 
characteristic function of a~*(x). The countable additivity of E, etc., 
follows straightforwardly from elementary Lebesgue integration 
theory. This shows the existence; the uniqueness follows in a straight­
forward and familiar manner through the development of a theory of 
integrals of the type JfÇK) dEÇK). This, at the same time, serves to 
show the uniqueness of the notion of the Baire function ƒ(-4) defined 
as the operation of multiplication by f(a(x)). 

Many other familiar results are readily derived from Corollary 1, 
of which only a few will be cited. The structure of a compact (or 
completely continuous) self-adjoint operator, i.e., transforming 
bounded into relatively compact sets, is readily deduced from elemen­
tary integration theory, which shows that its proper vectors x, i.e., 
vectors such that Ax=\x for some scalar X, the associated proper 
value, span the Hubert space, which, in fact, has a maximal ortho-
normal set consisting of proper vectors, and that there exist only 
finitely many elements of such a set for which the associated proper 
values exceed any given positive number. The Peter-Weyl theorem, 
to the effect that, for any compact group G, the Hubert space L2(G) 
(relative to Haar measure) is the direct sum of finite-dimensional sub-
spaces each of which is invariant and irreducible under the operations 
f(x)—>f(ax) for all a in G, is readily deduced, in the following manner: 
If the direct sum K of a maximal collection of mutually orthogonal 
such subspaces is not all of Li(G), choose an element ƒ 7*0 which is 
orthogonal to K, let g denote the convolution of ƒ with its adjoint 
ƒ*, where jf*(x)=7(ar"1)f and consider the operation A on L%(G) of 
right convolution by g. It is easily seen that A is distinct from zero, 
and commutes with all left translations; using the compactness of G, 
it follows without difficulty that A is a compact operator. Left trans­
lations therefore leave invariant the finite-dimensional proper space 
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belonging to any nonzero proper value of A, contradicting the maxi­
mally assumption. A simple deduction from the Peter-Weyl theorem 
is the following classical generalization: Any continuous unitary 
representation of a compact group is a direct sum of finite-dimen­
sional irreducible such representations. 

Somewhat more complicated than the foregoing deductions is that 
of the well-known theorem of Stone which can be regarded as the 
analogue of the last result cited for the additive group of the real 
numbers. Instead of discrete sums, continuous ones, i.e., integrals, 
are involved. The relative strength of the full diagonalization result 
(Corollary 1) over the older formulation in terms of spectral meas­
ures, as well as over the highly algebraic results which do not provide 
a unitary equivalence but only an algebraic isomorphism with a ring 
of continuous functions, is illustrated by the simplicity of the deduc­
tion of this fundamental result. The proof serves also to illustrate the 
utility of perfect spaces in circumventing measurability difficulties. 
A finite perfect space may be defined as a pair (I\ m) consisting of a 
compact space Y and a regular (or 'Radon') measure m on the Borel 
subsets of r having the property that, for any bounded measurable 
function, there is a unique continuous function differing from it only 
on a null set. The proof of Corollary 1 establishes, incidentally, the 
somewhat surprising, and occasionally quite useful, 

LEMMA. If the maximal abelian algebra in Corollary 1 has a cyclic 
vector, the corresponding measure space may be chosen so as to be perfect. 

COROLLARY 3. Any continuous one-parameter unitary group on a 
complex Hilbert space is unitarily equivalent to a group of multiplication 
operators of the form 

#(*):ƒ->«*'ƒ (fei*{l£)) 

for some measure space M and real measurable function k. 

It is sufficient to consider the case in which there exists a cyclic 
vector for the given one-parameter group, say £/(/), — oo <t< oo, for 
the entire space is the direct sum of invariant subspaces in each of 
which a cyclic vector exists, and the desired function k(x) for the 
entire space is merely a common extension of the functions associated 
with each constituent space, as in the proof of Corollary 1. Now let 
U(t) be the operation of multiplication by the function ut(K) on the 
perfect space A, which function may be assumed to be continuous on 
A for each U Since U(t) U(t') = U(t+t') for all real / and *', utÇk)ut>(k) 
and #<+i'(X) differ only on a null set, and, being continuous, are 
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identical. It follows that the function xx on the reals defined by the 
equation, 

xx(0 = ut(\), 

is a character of the additive group of the reals; if this character is 
continuous it is of the form xx(0 =eik(>x)t for some real k(\). It suffices 
now to show that xx is continuous for almost all X, since the measura-
bility of k then follows from the observation that 

k(\) = lim n(u1/n(\) - 1) 
n-*oo 

outside the exceptional null set. 
This follows by a familiar smoothing method. Specifically, let ƒ be 

any Lebesgue integrable function on the reals, set Wf~fU(t)f(t) dt 
(where the integral may be defined weakly), and note that U(s)Wf 

= Wfa, where ƒ,(*) = ƒ ( / - $ ) . It results that, for all X, 

Xx(*>o(X) = r,(X), 

where r9 is the continuous function on A corresponding to W/9— 
which operators all commute with each other and the U(s), so that all 
may be simultaneously diagonalized. A simple estimate shows that 

| r«(A) - ro(X) I S I ƒ U(t)f8(t) dt - ƒ U(t)f(t) dt J 

^ ƒ I ƒ(* + *) -ƒ(*)! #->0 

as s—>0, showing that Xx($)fo(X) is a continuous function of s at 5 = 0, 
or that xx(s) is similarly continuous for all X such that r0(X) 5*0; being 
a character, it is then continuous everywhere. It now suffices to show 
that the closed set N of X's such that ro(X) = 0 for all ƒ is a null set. 
If a sequence of ƒ s is chosen which converges to the Dirac delta func­
tion, the corresponding W/s will converge strongly to the identity 
operator, and the corresponding functions r<> to the function which is 
identically one, in a sense which precludes their common vanishing 
except on a null set. 

Stone's theorem naturally suggests two further developments: (i) 
the determination of the structure of the general continuous unitary 
representation of an arbitrary locally compact abelian group; (ii) the 
diagonalization of unbounded self-adjoint operators, such as are in­
volved in the formulation of the theorem as the assertion that U(t) 
--eitH for s o m e self-adjoint operator H. The proof of Corollary 1 
applies essentially without change to the generalized situation in 
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which the additive group of the reals is replaced by a general locally 
compact group. An additional point must, however, be considered in 
the general case in order to deduce the existence of a corresponding 
spectral resolution based on the character group, rather than on some 
measure space—i.e., to deduce the result first obtained by M. A. 
Naïmark: 

COROLLARY 4. Any continuous unitary representation U of a locally 
compact abelian group G on a complex Hubert space H has the form 

U(a) « f x(a) dE(x) 
J Q* 

for some projection-valued measure on the character group G*. 

The character group G* forms a locally compact topological group 
relative to the compact-open topology here envisaged. The projec­
tion-valued measure E may be taken as defined on either the Baire 
or the Borel subsets of G*, and, as before, is countably additive. For 
the proof the real numbers s and t occurring in the preceding proof 
are replaced by elements of G. Now rtt(X) is continuous not only as a 
function of X for fixed a£G, but is a uniformly continuous function 
of a £ G for fixed X, by the estimate given earlier. It is, therefore, a 
jointly continuous function of a and X, and it follows by a familiar 
argument that on the complement of the exceptional null set N, the 
map X—»xx from A into G* is continuous; E(B*) may then be defined 
as the operation of multiplication by the characteristic function of 
the inverse image of B* under this map from A—N into G*, and satis­
fies the indicated equation by elementary integration theory, as earlier. 

The treatment of unbounded self-ad joints is essentially trivially 
reducible to that of the bounded case through the use of the Cayley 
transform, i.e., in a simpler fashion than in the treatments employing 
the older formulation in terms of spectral measures. 

COROLLARY 5. A (partially defined) operator A in a Hubert space is 
unitarily equivalent to the operation of multiplication by a real measura­
ble function on L% over a measure space (with the domain of all square-
integràble functions for which the resulting function is again in L2) if 
and only if A =A*. 

The "only if" part is a matter of elementary integration theory; we 
indicate therefore only the "if * part. 

The unitary Cayley transform U~(A+iI)(A— il)~l may be as­
sumed to be the operation of multiplication by a function of absolute 
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value one, which can attain the value one only on a null set, since U 
can leave no vector except zero strictly invariant. The inverse Cayley 
transform i(£/+I)(Z7—I)"1 therefore exists and is a multiplication 
operator which is readily identified with A. 

There is one further result concerning maximal abelian algebras 
which is essential in multiplicity theory as well as generally useful.8 

SCHOLIUM. TWO maximal abelian self-adjoint algebras of operators on 
Hubert space which are algebraically isomorphic—or whose Boolean 
rings of projections are such—are unitarily equivalent. 

A purely Hilbert-space proof may be given, but the original 
integration-theoretic proof is more illuminating. It may be assumed 
that the algebras in question are the multiplication algebras of meas­
ure spaces M and M', each of which is a direct sum of finite measure 
spaces. The isomorphism </> of L*(M) onto L^M') carries the measure 
m on M into a measure m\ on M' which is mutually absolutely con­
tinuous with the given measure m' on M\ and the mapping 

ƒ->*(ƒ) (dtm/dm') <x'2> 

is then an isometry of a dense submanifold of L2(M) onto a dense 
submanifold of L2(AO whose unique unitary extension may be seen 
to implement the stated unitary equivalence. 

There is a delicate point in this argument in the applicability of 
the Radon-Nikod^m theorem, whose statement in textbooks is 
usually restricted to sigma-finite spaces. It is, however, not difficult to 
show that for any direct sum of finite measure spaces (not necessarily 
countable) the theorem is applicable, provided that any set of finite 
measure relative to one measure is at most a countable union of sets 
of finite measure relative to the other, apart from a null set. This 
condition is satisfied here. In the case of an algebraic isomorphism 
between corresponding Boolean rings, the same proof, slightly modi­
fied so as to apply to simple functions rather than arbitrary bounded 
and square-integrable ones, is effective. 

The reduction theory here presented for abelian algebras can be 
extended to more general algebras to some extent, and provides a 
simplified approach to the reduction theory of von Neumann [112]. 
In [87,1] and slightly later in [36] the reduction of the Hilbert space 
as a direct integral of subspaces is carried out as a corollary to the 

1 This Scholium and the earlier Corollary 1 form the major part of the theory not 
contained in the work of H. Nakano and F. Wecken on multiplicity theory in Hilbert 
space which was needed for the development of the general structure theory for 
abelian rings given in [87,1]. 
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simpler and analytically more convenient decomposition of a positive 
linear functional as an integral of more elementary functionals, via 
the Radon-Nikod^m theorem. The same approach clarifies the theory 
of eigenfunction expansions for differential and other suitable oper­
ators, as pointed out by Mautner [63], and developed in later re­
search in the theory of partial differential equations. 

3. Abelian harmonic analysis on locally compact groups. There is 
no very sharp line between the theory of group representations and 
of general harmonic analysis. However, the former is mainly con­
cerned with the determination and study of the irreducible or other 
elementary representations of the group, while the latter has to do 
with functions and function spaces on the group or homogeneous 
spaces thereof, and, especially, with the decomposition and trans­
formation of function spaces in such manners as to decompose a 
given function space into elementary constituents or to provide an ex­
plicit diagonalization or analogue thereof for given operators of inter­
est in these function spaces. Roughly speaking, harmonic analysis 
usually involves qualitatively more structure than the theory of 
group representations per se, the additional structure being basically 
of an integration-theoretic character. For this reason it is appropri­
ately considered here, without undue overlapping with the recent 
exhaustive article of Mackey entitled Infinite-dimensional group repre­
sentations, Bull. Amer. Math. Soc. 69 (1963), 628-686. 

Again, there is no very sharp distinction between abelian and non-
abelian aspects of harmonic analysis. Even in the case of abelian 
groups, some noncommutativity is involved, that of group transla­
tions and of multiplication operators, for example, while in the case 
of quite non-abelian, e.g., simple Lie groups, an abelian problem 
such as the diagonalization of a given set of commuting operators 
may be rather fundamental. As used here, 'abelian' is a descriptive 
word indicating that an abelian set of operators plays an important 
part, which means in practice that the theory of abelian systems in 
Hilbert space is relevant; it is intended as a convenient term for 
analytical purposes, rather than as one indicative of a fundamental 
distinction. 

There is another distinction which should perhaps be mentioned 
before the relations with integration theory are gone into, namely 
that between the Zi- and Ztf-theories. The former theory is a rela­
tively highly refined one, some of whose key questions are still un­
resolved—and quite conceivably incapable of simple resolution—in 
the simplest case of analysis on the line. In contrast, the Za-theory 
has made substantial progress in the past two decades in the case of 
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fairly general groups, including open simple Lie groups, and has 
significant relationships with a number of broad scientific areas, in­
cluding quantum mechanics, number theory, and the theory of group 
representations already cited; it is, however, a relatively simple 
theory in the case of the real line, having been basically complete by 
the middle thirties. Apart from the obvious connection of an Li-
space with integration, the Li-theory is not related, so far as is now 
visible, to integration theory, being rather associated with the theory 
of Banach algebras. For these reasons and also because only the most 
rudimentary aspects of the Zi-theory are relevant to the £2-theory, 
only the latter will be discussed here. The general Lp-theory is more 
closely related to the L2-theory, but for reasons of brevity it also will 
not be considered here. 

The crucial L2-theorems in the case of the real line (or, more gen­
erally, a real vector group) have frequently been considered to be 
those of Plancherel [74] and of Stone [102A] or Bochner [2A], which 
latter result is from a contemporary viewpoint essentially equivalent 
to that of Stone. There is, however, a third theorem which is natu­
rally bracketed with these; it has escaped general attention until 
recently because its primary applications have been to quantum 
mechanics. This is the theorem of von Neumann [107] on the unique­
ness of the Schrödinger representation for the Heisenberg commuta­
tion relations. In the later thirties, the theorems of Plancherel and 
Bochner were extended to general locally compact abelian groups by 
Weil, who basically (and ingeniously) combined classical methods 
with strong use of the Pontrjagin-van Kampen structure theorem for 
such groups. The later proofs of the Plancherel theorem by Kreïn and 
Rykov were independent of this theory, and, in fact, provided an 
alternative and economical approach to the Pontrjagin-van Kampen 
duality theory. At the same time, these proofs may be regarded as 
indicative of a basically integration-theoretic character to the gen­
eralized Plancherel theorem. Around a decade later, von Neumann's 
result was extended to separable locally compact abelian groups by 
Mackey [SS], employing an altogether different method which made 
strong use of results of and ideas related to abelian operator ring 
theory. Slightly later, Loomis [54] gave a proof which avoided the 
separability hypothesis and was technically more elementary, but 
relatively intricate, requiring in fact the pieceing together of locally 
defined equivalences, in a manner surely possible but tiresome to 
carry out in detail ; and indeed it is not carried out in the cited paper. 
The result could be formulated and proved in a basically similar 
manner for non-abelian groups as well. 
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The von Neumann theorem and its generalization have now been 
seen to play a role not only in quantum mechanics, but also in number 
theory, prediction and scattering theory; at the same time, they are 
basically more powerful than the Plancherel theorem and its gen­
eralization. Neither the Mackey proof nor the Loomis proof makes 
use of the latter or of duality theory, while, on the other hand, the 
Z/2-Fourier transform may be defined through the use of the general­
ized von Neumann theorem. It requires only the identification of the 
transform as thus defined with that given by the usual integral formula 
as in the Plancherel theorem, therefore, to subsume the Plancherel 
and duality theorems under the generalized von Neumann theorem, 
and a simple means to establish this identification has been given by 
Nakamura and Umegaki [69]. Together with the following simple 
deduction of the basic case of the generalized von Neumann theorem 
from algebraic integration theory, these notions provide a most eco­
nomical approach to the L2-theory on a locally compact abelian 
group, which emerges in a natural way as a corollary to the basic 
results and ideas of the preceding section. 

SCHOLIUM. Let G be a locally compact topological group, let U be a 
continuous unitary representation of G on a Hilbert space H, and let <f> 
be a homomorphism of the algebra A of all continuous f unctions of com­
pact support on G into the continuous linear operators on H, taking real 
functions into self-adjoint operators, and continuous relative to the uni­
form topologies. Suppose that 

U(a)<f>(f)U(a)-i - <t>(fa), where ƒ.(*) = f((T*x), 

for all a in G and ƒ in A, and that, in addition, <f> has simple spectrum 
{i.e., its range generates a maximal abelian algebra). Then the system 
(U,4>, H) is unitarily equivalent to the system (Z70, <f>o, L^{G)), with 

Uo(a) : h(x) -* h(a^x)9 <t>*(f)h(x) = f(x)h{x) (h G L2(G)). 

There is no essential difference between a homomorphism such as 
4> and a spectral measure on the Baire subsets of G, and in the state­
ments given by Mackey and Loomis the latter formulation is em­
ployed. For any spectral measure E on the Baire subsets of a locally 
compact Hausdorff space X (assumed as always to be countably 
additive), there is a homomorphism <j> defined by the equation <j>(f) 
*=ffdE, and, conversely, every <j> with the indicated properties has 
this form for a unique spectral measure E. One of the key lemmas is 
perhaps more illuminatingly stated in terms of a spectral measure. In 
this connection a spectral measure £ on a space X will be said to be 
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quasi-invariant under a continuous group S of invertible measurable 
transformations if for every transformation / £ S there exists a unitary 
transformation W(t) such that 

E(t(B)) = W(t)E(B)W(fy-1 

for all Baire sets B in X, and if, in addition, the mapping /—>W(t) 
is a continuous representation of 5. 

LEMMA. A spectral measure on a locally compact group G which is 
quasi-invariant under G is absolutely continuous relative to Hoar meas­
ure. 

That is, for any Baire null set N in G, £(N)=0, where E is the 
spectral measure in question. A result of this general nature appears 
first for the case of the additive group of the reals in the work of 
Plessner [75] and for more general groups in Mackey [55], who deals 
with ordinary measures on separable groups. Although the following 
proof is brief, the lemma represents one of the two crucial analytical 
points in the proof in the present and related scholiums, apart from 
general integration and Hilbert-space theory, and from a broader 
viewpoint may be regarded as the analogue for spectral measures of 
the uniqueness of Haar measure (which plays roughly a comparable 
role in Loomis' proof). 

First note that it suffices to consider the case in which G is a 
countable union of compact subsets, for any group G has an open and 
closed subgroup of this character, say Go, and the result for the sigma-
compact case would imply absolute continuity of the restriction to 
Go as well as the restriction to each translate of Go, which yields the 
more comprehensive result stated in the Lemma inasmuch as every 
Baire set is a countable union of sets contained in such translates. 
Note next that it suffices to consider the subcase in which there exists 
a countable set of vectors #»• in H such that if P is any projection in 
the image of E which annihilates all the xi9 then P = 0. For if N is 
a null set for which £(N)r*0, then EQX)x?*Q for some x, say X\. 
Now G is the union of compact subsets Cn, and the W(Cn)x% are com­
pact and hence separable subsets of H. If now xi, #2, • • • is a se­
quence of elements in these subsets which are dense in their union, 
the closed linear subspace K spanned by the Pxi as P ranges over the 
range of E and i = l, 2, • • • is invariant both under the P and the 
W(a). Now setting E'(B)«£(5)\Kand W(a) = W(a)|K, E' is again 
a quasi-invariant spectral measure on G, whose representation space 
contains a countable set of the stated type. If the result is established 
in this case, it therefore follows that E'=0 and hence that E(J3)x = 0, 
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a contradiction, completing the proof of the reduction to the indi­
cated subcase. 

To deal with the subcase it suffices in turn to show that if B is a 
Baire set of positive Haar measure, then either £ ( 5 ) ^ 0 or else E 
vanishes identically. For if this has been established and if N is any 
null set such that £(N) 5* 0, set Q for the supremum of the 
W(a)EÇH)W(a) =£(aN) as a varies over G; since a countable subset 
of G may be chosen for which these projections have the same union, 
Q has the form E(N') for some null set N'. The new quasi-invariant 
spectral measure E'(B) = QE(B) therefore vanishes on the comple­
ment of the null set N', and hence on some Baire set K of finite posi­
tive Haar measure, as well as on all its left translates. Appealing 
now to the fact that the convolution of the characteristic functions 
of two such sets K is continuous, and so bounds a positive multiple 
of the characteristic function of some nonempty open set, it follows, 
on integrating the relations E(aK)=0, with respect to a over the 
other set that E vanishes on some nonempty open set, which, by 
virtue of its quasi-invariance, implies its identical vanishing. 

The other key analytical point in the proof has to do with the 
measurability aspects of the 'multiplier' and multiplier relations 
which intervene. It follows from the foregoing that the map E is an 
algebraic isomorphism from the Boolean ring of Baire subsets of G 
modulo hull sets into a ring of projections on H of simple spectrum, 
so that there exists a unitary equivalence of H with L2(G) carrying 
the E's and the <£'s into simple multiplication operations. It is, there­
fore, no essential loss of generality to suppose that H=L2(G) and 
0=<Êo. Setting W(a) = U^a^Uia), W(a) commutes with the </>(/), 
which generate a maximal abelian algebra, so that W(a) is the opera­
tion of multiplication by some function K(at x) on L%(G). It is easily 
verified from the group representation property of U that W satisfies 
the equation 

W(ab) = [U*(b)-lW(a)U*(b)]W(b), 

from which the 'multiplier relation' 

K(ab, x) - K(a, bx)K(b, x) 

is valid for each pair a and b for almost all x. To complete the proof 
it suffices to show that K(a, x) can be chosen so as to be measurable 
on GXG, for K(a, arlx) is then likewise measurable (being its trans­
form under a measure-preserving homeomorphism), and the unitary 
operator 5 consisting of multiplication by K(x, x~xa)t where a is 
chosen so that this is a measurable function, is readily seen to trans-
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form U(a) into Uo(a), for all a; the use of the Fubini theorem just 
made may be justified by the reduction to the case of a sigma-com-
pact group as earlier. 

Now W(a) is a continuous function of a in the strong operator 
topology, and is easily seen to have a 'direct integral' K on the Hubert 
space L2(GXG), which may be defined by the equation 

(^^/m#,'U(v))à 
This operator K is easily seen to commute with multiplications of 
functions/(a, x) by arbitrary (bounded measurable) functions of a as 
well as by arbitrary functions of x, which generate the maximal 
abelian multiplication algebra of GXG, so that K is itself multiplica­
tion by some bounded measurable function K(a, x), which may be 
identified with the multiplier previously introduced. 

It is worth noting that no essential use is made in this measurabil-
ity proof of the complex-valued character of K(a, x); it is equally 
applicable to the case in which its values are in a commuting set of 
unitary operators on a Hubert space. With this observation and the 
use of multiplicity theory, the more general imprimitivity theorem 
of Mackey [56] may be treated in the same way. 

A direct consequence of the foregoing is the generalized von Neu­
mann theorem, in the simple spectrum case. 

COROLLARY 1. Let G be a locally compact abelian group with topo­
logical character group (compact-open topology) G*; let U and Vbe con­
tinuous unitary representations of G and G* on the Hilbert space H9 

satisfying the relations 

U(a)V(b*) = b*(a)V(b*)U(a) (a EG,b*e G*), 

and such that the U(a) generate a maximal abelian algebra of operators 
on H. Then ( U, V) is unitarily equivalent to the standard pair ( 27o, V0) 
on the Hilbert space L%(G*) and with 

U0(a) : ƒ(**) -> x*(a)f(x*), V0(b*) : f(x*) ->f(x* + Ô*). 

For the proof, G* here plays the role of G in the Scholium. </> is 
then the homomorphism which the generalized Stone theorem asso­
ciates with the representation Z7, while the present representation V 
plays the role of U in the Scholium. 

The generalized Plancherel theorem now asserts 

COROLLARY 2. Let G be a locally compact abelian group with topo-
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logical character group G*. The mapping from Li(G)r\Li(G) which 
carries f into the function F on G* given by the equation 

F(x*) - f**(a)f(a)da 

is isometric into a dense subset of L2(G*). 

Note first that the operators U(a) :f(x)-*f(x+a) as a totality have 
simple spectrum, for they generate the same ring of operators as 
their smoothed versions fU(a)f(a) da, with ƒ, say, continuous and 
of compact support; these form, in fact, an associative algebra A, 
which, together with the functional E defined by the equation 
E(fU(a)f(a)da)=f(e), forms an integration algebra; for any such, 
the multiplication algebra generated by the defining algebra A has 
simple spectrum by the proof of the Theorem; finally, the map 
ƒ—»ƒ U{a)f{a) da is an isometry from a dense subset of L2(G) onto a 
dense subset of L2(A, £) , carrying the relevant operators on L2(G) 
into the algebra of multiplications by elements of A acting on A. The 
preceding corollary is therefore applicable, and shows the existence 
of a unitary operator F from L2(G) onto L2(G*) which carries U(a) 
into Uo(a) and also the operation V(a*):f{x)—>a*(x)f(x) into V0(a*), 
for all a and a*. As noted by Nakamura and Umegaki [69], F has the 
property that if ƒ and g are any two elements of Li(G)r\L2(G), then 
F(f * tÙ^Î'F&i where ƒ is defined by the integral formula, from 
which it follows by substitution of an approximate identity for ƒ that 
Fg and £ can differ only by a fixed multiplication operator, which is 
easily seen to be necessarily constant. 

Thus the Scholium can be regarded as inclusive of the generalized 
Plancherel theorem in the case of an abelian group; it is, neverthe­
less, basically a commutative theorem even when the group is non-
commutative, and, in this case, quite distinct from the generalized 
Plancherel theorem. This is visible in an elementary fashion in the 
case of a compact non-abelian group, the generalized Plancherel 
theorem then taking the form of the expansion of a general ^-func­
tion on the group which is given by the Peter-Weyl theorem. 

4. Integration in function space. In the preceding section algebraic 
integration theory appeared as an instrument for increasing the com-
prehensibility and for developing in a generally economical way a 
complex of results previously obtained without the use of the theory. 
In the theory of integration in function space, however, algebraic 
integration theory or some near equivalent appears as an essential 
part of the results as well as the method. 
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A pure mathematician comes to the subject perhaps most readily 
from the standpoint of the problem of constructing an invariant func­
tion theory in a real Hilbert space which will as far as possible extend 
the classical theory in «-dimensional euclidean space. Most applied 
mathematicians and probabilists will more naturally proceed from the 
theory of stochastic processes, and, especially, of Brownian motion. 
Still another approach would be natural for the mathematical physi­
cist—that of the theory of the free Bose-Einstein quantum field and 
of the representations of the canonical commutation relations. It 
would be well worth describing all of these approaches and delineat­
ing the nature of their ultimate substantial convergence. For brevity, 
however, a somewhat eclectic approach, conceptually one of the 
simplest, will be followed and the others suggested by the character 
of indicated applications in their respective directions 

The question of the existence of a measure in Hilbert space which is 
invariant under translations has a fairly substantial history. While 
one would naturally like a direct generalization of euclidean measure 
in E„, one would actually settle for much less; however, there is no 
possibility of such a settlement, since nothing of analytical viability 
which is translation-invariant appears to exist. A mathematician 
pondering this state of affairs might be struck by the fact that the 
isomorphism group of a Hilbert space is really the orthogonal rather 
than the translation group, and explore possible invariant integrals 
relative to this group. If, despite uniqueness problems, he persisted, 
he might try to pick out a particular invariant integral by a fur­
ther requirement of an invariant nature. Now there is, indeed, one 
important and obvious property of both the euclidean and the iso­
normal elements of measure in a finite-dimensional space ('isonormal' 
will mean isotropic Gaussian centered at the origin, for brevity, unless 
otherwise specified). This is the independence, from an integration-
theoretic standpoint, of orthogonal subspaces. To be explicit, let a 
function ƒ on a Hilbert space be said to be based on a submanifold M 
if it depends only on the component of the variable in M (i.e., fix) 
=ƒ(-?***));ƒ is then determined by its restriction to M. Now if M 
and JY are orthogonal subspaces of a finite-dimensional Hilbert space 
H, and if/=gA, with g based on M and h on N, then ff^fg-fh, 
evidently; and this simple property is evidently quite a useful one. 
Let us ask then: does there exist an orthogonally invariant integral 
on Hilbert space such that orthogonal manifolds are independent in 
the foregoing sense, and if so, to what extent is it unique? 

In an infinite-dimensional space this requires the measure of the 
entire space to be one, since the function identically one on the space 
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is based on every subspace. With this restriction there is a simple 
answer to the foregoing question : there exists no countably additive 
measure on H of the type indicated; however, there is an invariant 
integral on the bounded tame functions of the type in question, and 
this is unique within multiplication of the associated weak probabil­
ity distribution (i.e., of the associated linear random variables) by a 
constant. This is the isotropic, centered Gaussian integral on Hilbert 
space. Specifically, if ƒ is based on the finite-dimensional manifold M, 
then 

E<J) = c f fe~*dx 
JM 

where Q = c'(#, x), x denoting a variable vector in M and c' a positive 
constant, and where c is a normalization constant. 

At first glance this may seem quite a different object from that 
originally sought, which was to be translation invariant. It has, how­
ever, a property which the abstract harmonic analyst will recognize 
as being almost as useful for many applications—it is quasi-invariant. 
There is, to be sure, an elusive quality to this quasi-invariance; the 
familiar definition employed, e.g., in the last section, requiring invari­
ance of null sets or relative absolute continuity of the integral and its 
translates is meaningless as it stands, in the case of integration alge­
bras. But it may, nevertheless, be defined in a conceptually simple 
fashion, which extends the notion as it has been used on conventional 
measure spaces. 

For generality, let (A, E) denote an arbitrary integration algebra, 
and let (A, F) denote another with the same algebra. Then F may 
be said to be 'absolutely continuous' with respect to E in case there 
exists an abstract non-negative measurable function, or, for short, 
'measurable' D relative to (A, E) such that 

F(X) = E(XD), XEA. 

It may be asked: 'On which of the infinity of measure spaces afford­
ing concrete representations of (A, E) is D to be defined?' but the 
answer is simply 'It doesn't matter'; if the equation holds in any 
one space, then it holds in all, and the various 'derivatives' of concrete 
representatives for F relative to concrete representatives for E are 
carried into one another by the equivalences between the correspond­
ing concrete spaces. Alternatively, these equivalences could be 
avoided by working in a completely abstract way, defining the meas-
urables as the elements of the completion of A, or, more precisely, its 
quotient algebra modulo elements of vanishing square integral, in 
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any of various topologies (all leading to complete linear spaces which 
are essentially the same as linear sets). While this is conceptually 
the simplest way, to carry out all the proofs without the use of repre­
sentation theory would be largely to indulge in a lengthy paraphrase 
of conventional integration-theoretic procedures. A more concrete 
approach than this, while at the same time distinctly less circumlocu­
tory than the first, is to represent A by the corresponding algebra of 
bounded operators on the Z,2-space described earlier. The measurables 
may then be identified with the self-adjoint operators commuting 
with every element of A, and the product XD with the closure of the 
usual product. The required extension of the domain of definition of 
E may be obtained in a variety of ways; for example, by the pre­
liminary extension of E to all bounded linear operators in the ring 
generated by A, followed by the extension to the non-negative un­
bounded self-ad joint operators whose spectral projections are in this 
ring (it is no essential alteration to limit the X in the defining equa­
tion for D to non-negative elements of A). 

Adopting now any of these means of defining absolute continuity, 
an absolutely continuous transformation on the finite integration 
algebra (A, E) is naturally defined as an homomorphism x of A into 
itself such that the transformed functional F given by the equation 
F(X)=E(x(X)) is absolutely continuous relative to E. If there is 
given a group G acting via automorphisms on A, a quasi-invariant 
integration algebra relative to this representation of G may be de­
fined as one such that the various functionals obtained by transforma­
tion of E via the action of G are mutually absolutely continuous. By 
the same argument as indicated in the preceding section, this is 
equivalent to the existence of a unitary representation U of G on 
L2(-4, -E) having the property that 

U^XUix)'1 = x(X) 

for all the automorphisms corresponding to the elements of G (which 
it is no essential loss of generality here to identify with the automor­
phism group itself). In practice, it may be a non trivial problem to 
identify a convenient subalgebra of L*(A, E) which a given group 
of geometrical transformations leaves invariant through its induced 
action, and which determines the same integration algebra—this is 
especially the case with non-linear transformations, which will, in 
general, carry tame functions into nontame functions, and whose ab­
solute continuity is thereby defined only if the transformed functions 
can be approximated sufficiently closely by tame or other amenable 
functions—but in the case of the group of translations on a Hilbert 
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space, relative to the algebra of tame functions, say, there is no such 
problem, nor is there any even for the larger affine group. For any 
affine transformation S: x—>Tx+a on a linear space L, in fact, a 
given weak distribution n on L—i.e., a linear map from L* to random 
variables (or rather an equivalence class of such)—is quasi-invariant 
(or the transformation is absolutely continuous relative to the dis­
tribution) according to this definition in case there exists a unitary 
transformation U such that 

Un(f)U-* = »*(ƒ), 

where ns is the weak distribution given by the equation fts(f) 

In the case of the isonormal distribution on a Hilbert space, there 
is no great complication in writing down explicitly such unitary trans­
formations for given translations. Now there is a distinguished uni­
tary transformation corresponding to a given absolutely continuous 
transformation—a unique one which is the product of the induced 
automorphism of A with a non-negative factor—and this correspond­
ence is, in fact, a group homomorphism. In the isonormal case there 
results in this way a unitary representation, say [/(•)» of the additive 
group of the Hilbert space, which is, moreover, continuous (in the 
strong operator topology). Denoting by V(x) the unique unitary 
transformation which carries n(J) into eifix)n(f) for all ƒ, the pair 
(U, V) then satisfies the 'Weyl relations' 

U(f)V(x) = eV™V(x)U(f), 

and so provides an analogue for the Hilbert space to that associated 
with a locally compact abelian group. They lead also to analogues to 
the important canonical p's and q's which operate on L^{E^) by differ­
entiation in a given direction and multiplication by a given linear 
functional; specifically, P(x) and Q(x) may be defined as the self-
adjoint generators of the continuous one-parameter groups [U(tx), 
t real] and [F(/#), / real] (identifying the real Hilbert space with its 
dual). These satisfy the usual commutation relations: 

[P(*)f P(y)] - 0 = [Q(x), Q(y)h [P(«), Q(y)] - *'(*, y)I, 

and there are many further analogies with the finite-dimensional 
euclidean situation, one of which will be described shortly. However, 
the use of the Gaussian integral has the effect that the restriction of 
the theory to the finite-dimensional case is merely readily transforma­
ble into, and not actually identical with, the classical theory. This 
shows up, for example, in the fact that iP(x) is not simply the opera-



452 IRVING SEGAL [May 

tion of differentiation in the direction x, in the case, say, of its ap­
plication to a smooth tame function, which is not self-adjoint as an 
operation on the Hilbert space in question, but differs from this 
differentiation through the addition of a simple multiplication opera­
tion, which is precisely that required to yield a self-adjoint operator 
without disturbing the commutation relations, and to satisfy the 
positivity requirement earlier indicated. 

The theory of the Fourier transform is, on the other hand, basically 
parallel to the usual one. The utility of the Gaussian integral in the 
treatment of the Plancherel theory has long been known and is 
emphasized in Wiener's treatment [117]. Its fundamental role in the 
present situation carries with it substantial incidental simplifica­
tions that can best be understood in terms of unitary as opposed 
to mere orthogonal and translation invariance of the conventional 
approach (see below) ; among these are the elimination of an arbitrary 
scale factor in the expression of the Fourier transform, the convenience 
of working with the polynomial algebra which also makes possible the 
isolation of the purely algebraic aspects of the theory and facilitates 
the understanding of the 'Feynman integral,' and the elimination 
of the need for any nontrivial computations other than that of the 
integral f±Ze~x* dx. A quite closely related transform was introduced 
originally in Wiener space in the work of Cameron and Martin [9], 
and it seems appropriate as well as convenient to call the modified 
Fourier transform in Hilbert space the Wiener transform; when the 
space is finite-dimensional this transform is the similarity transform 
of the Fourier transform via multiplication by a Gaussian factor 
(which, however, becomes infinite with the dimension of the space). 

The Wiener transform of a square-integrable functional on Hilbert 
space H relative to the isonormal distribution may be defined by first 
defining the transform Wf of a polynomial ƒ by the equation 

Wf(x) = E\f(2U*x + iy)], 

where the polynomial character of ƒ is made strong use of through the 
use of a complex argument for it; it is evident that Wf is again a 
polynomial, and demonstrable that it has the same £2-norm, so that 
this transform may be uniquely extended to an isometric trans­
formation on all of L2(H) which is, in fact, unitary, since the inverse 
of the indicated mapping on polynomials may be shown to exist, 
and to be represented, in fact, by the same expression with the sub­
stitution of a — for the + sign. The transformation W has the vir­
tually definitive property that 

WP(x)W-1 « Q(x), WQ(x)W~l - - P(x), xEH. 
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Unlike the Fourier transform, W is applicable to the function iden­
tically one and leaves it invariant; in quantum-field-theoretic lan­
guage, incidentally, this means IF leaves the standard vacuum (state 
representative) invariant. The Fourier transform in function space 
is a natural tool for quantum field theory and in connection with cer­
tain stochastic processes. It is, however, a highly distinguished case 
of an important transform associated with an arbitrary unitary trans­
formation on a complex Hubert space, namely, that associated with 
multiplication by i. 

Not only does the Gaussian integral provide an adequate substi­
tute for many purposes to the euclidean volume element, it actually 
has a higher degree of invariance than the euclidean measure, but 
relative to a partially different group, this unitary group, which is 
asymptotically substantially higher in dimension than the combined 
orthogonal and translation groups. At first glance, the action of the 
unitary group on the functions over a real space is likely to appear 
baffling, but in a finite number of dimensions it is a special case of the 
action of the symplectic group indicated in the previous section. It 
is, however, an ordinary representation in the case of the unitary 
group rather than a projective one as in the case of the symplectic 
group. 

To describe the action of the unitary group, let H denote the real 
Hubert space in question, and let H' = H+iH denote its complexi-
fication, so that every vector z in H' has the form x+iy for unique 
vectors x and y in H. To each unitary transformation U on H there 
is then a unitary transformation r(£7) on L%{H) which is determined 
within a scale factor by the property that it transforms the so-called 
'canonical' P(x) and Q(y) in the natural fashion. This transformation 
rule may be expressed most simply through the introduction of the 
so-called 'creation' operators C(z), which have the advantage of com­
plex linearity; setting 

C(z) = ^-;(P(x) + iP(y) + Q(y) - iQ(x)) 
v 2 

the non-normal operator C(z) is analytically troublesome but has 
convenient algebraic properties, including complex-linearity: C(az) 
— aC{z) for any complex number a, and commutation relations which 
depend only on the complex Hilbert space: 

[c(z), coo] = 0 = [c(z)*t coo*], [c(z), c(«o*] = («, «0 
(for simplicity of exposition we are ignoring the presently irrelevant 
matters of closures of the unbounded operators involved here. The 
relations involving the C(s) are obviously invariant under any iso-
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morphism of the complex Hilbert space, and it is natural that 
for any given such isomorphism—i.e., unitary transformation U— 
there should exist a unitary transformation T(U) on Lz(H) which 
transforms C(z) into C(Uz): T(U)~-lC(z)T(U) = C{Uz). In fact, this 
property determines T(U) within a constant factor; observing that 
r ( U) necessarily carries the unit functional on H into a constant func­
tional, it is naturally normalized so as to leave fixed the unit func­
tional, and the map T is then a unitary representation of the unitary 
group on H. T(U) is familiar in two cases: (i) that in which U is the 
extension to the complex space of an orthogonal transformation O 
on the real space; in this case T(U) is simply the induced action on 
L%{H) of this orthogonal (essentially measure-preserving) trans­
formation, i.e., carries a given tame functional, say fix), intof(0~lx) 
and (ii) that in which U is the direct sum of multiplication by i on 
a certain subspace of H' with the identity on the orthocomplement 
of the subspace; in this case T(U) is the Wiener (or transformed 
Fourier) transform relative to the variables forming coordinates for 
the vectors in the subspace. 

The unitary group differs, of course, from the euclidean group in 
that it does not operate directly on the real space H itself. Its action 
is, however, of fundamental importance both in quantum field theory 
and the general theory of Brownian motion. From a purely mathe­
matical standpoint the surprising fact that such a relatively large 
group may be made to act on such a relatively small space, in a 
fashion extending the actions indicated in (i) and (ii), may be re­
garded as the group-theoretic clue to the remarkable utility which 
expansions into Hermite functions have found in a number of real-
analytical situations in which symmetry considerations, although 
present, are rather hidden. 

The most notable role of the Hermite functions in this regard has 
been in connection with the 'homogeneous chaos' of Wiener [116], 
whose utility in a variety of connections has been emphasized in later 
work by Wiener. It was developed further by Kakutani [48], who 
showed that the closure of the orthocomplement of the chaos of order 
n — 1 in that of order n was unitarily equivalent to the space of sym­
metric square-integrable functions over £n . The unitary equivalence 
in question carried temporal displacement in the Wiener process, or 
rather, its induced action on square-integrable functionals, into a cor­
responding displacement ƒ(xi, • • • , xn)—>f(xi+t, • • • , xn+t) of the 
symmetric functions on En, enabling the completion of work of 
Wiener and Anzai on the spectrum of Brownian motion. This is a 
highly special case of a result giving the group-theoretic reduction of 
the representation T; only the abstract Hilbert space character of Li 
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on the reals and the unitary character of the displacement f(x) 
—*f(x+t) are relevant. The proof of this more general result is actually 
simpler than that for the special case treated by Kakutani, which is 
clearly applicable only to the treatment of the restriction of T to the 
cited one-parameter orthogonal group. Indeed, the unitary equiva­
lence in question is far from unique; if formulated properly, however, 
it not only gives the explicit reduction of T but serves to correlate 
the operators C(z) with the so-called creation operators of Fock and 
Cook [l2A], and because of the irreducibility of these operators is 
then unique, within a scalar factor.8 

The group-theoretic structure of the representation T and its re­
striction to the orthogonal subgroup are similar to their structures 
in the case of a finite-dimensional space as revealed in the classical 
work of Schur and Weyl on the reduction of induced tensor represen­
tations. The behavior of the representation of the full unitary group 
is particularly simple. The generator N of the one-parameter group 
T(e2ritI) has integral proper values by virtue of the periodicity of 
the exponential function ; it turns out that only non-negative proper 
values occur, each with multiplicity one. The corresponding eigen-
spaces are then invariant under T, and, as it turns out, irreducibly 
so; the subspace corresponding to the eigenvalue n is unitarily equiv­
alent (as far as the action of Y is concerned) to the action of the 
unitary group on the symmetric tensors of rank n over the underlying 
complex Hilbert space H. Parenthetically, let us note for those inter­
ested in relations with quantum field theory that the non-negative 
integral character of the generator Np of the groups T(e2ritp), where 
P is an arbitrary projection on H, makes possible an interpretation 
of Np as 'the number of particles with wave function in the range of 
P, ' which interpretation is further substantiated by statistical fea­
tures corollary to the group-theoretic properties of I \ 

In fact, useful as the representation T and its reduction into irre­
ducible constituents are in probability and flow theory, they are 
more fundamental in the quantum field theory. The abstract char­
acter of the underlying space H is rather essential here because the 
underlying symmetry group does not act simply by point trans­
formations on an Z,2-space, but in a more complicated manner (cf., 
e.g., Segal [97]). The physical interpretation is mathematically 
illuminating in important respects. For example, the operator N 
described in the preceding paragraph has no special significance from 
a probability viewpoint, appearing simply as a means of describing 

8 In the later article [48A] this is taken advantage of to extend the reduction to the 
case of r(0) for an arbitrary orthogonal 0; the results here are, however, consequences 
of those cited, taken from [90] (applicable to T(U) for arbitrary unitary U). 
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certain subspaces; its interpretation as the 'number of particles' 
variable for a 'Bose-Einstein field' serves to rationalize the otherwise 
fortuitous non-negativity of the operator, and to suggest further 
interesting mathematical relationships. In physical terms, the repre­
sentation T is precisely that which transforms a 'free single-particle 
motion' U into the corresponding motion of the quantum field con­
sisting of an indefinite number of particles. Considerably more could 
be said on this subject, but we shall not interrupt the present basically 
purely mathematical exposition. 

We have now arrived, in a preliminary way, at a partial, but ex 
post facto fairly natural, analogue to the euclidean integral for the 
case of an infinite-dimensional real Hubert space, which compensates 
for its differences from the euclidean volume element with some dis­
tinctive uses of its own. Now one of the most important aspects of an 
integral from the standpoint of practical analysis is its behavior 
under transformations of the underlying space, other than those pre­
serving the underlying geometry, which have already been discussed. 
The simplest and most basic case is that of a general nonsingular 
linear transformation, say x—>Tx. In the finite-dimensional case this 
alters the integral only by a constant factor, the determinant of T\ 
inasmuch as the determinant is undefined for general nonsingular 
transformations on a Hubert space, there is some difficulty in extend­
ing this result to Hubert space. There is, however, an important and 
natural class of operators having well-defined and well-behaved de­
terminants, namely, those of the form I+X, where X is an operator 
of absolutely convergent trace (cf. [99]). It is reassuring that, despite 
the replacement of the euclidean by the Gaussian volume element, 
there is a simple rule for the transformation of the integral corre­
sponding to such a linear transformation on the space, which extends 
the usual one for a finite-dimensional space. More specifically, the 
transformation T is absolutely continuous, so that there exists an 
abstract measurable D ( = D(T)) such that 

f h = f fD 
JH J H 

for any tame function ƒ, where fr indicates the transformed function 
f(Tx); in fact, a simple expression for D(T) entirely analogous to 
the usual one for the transformation of the Gaussian integral in a 
finite-dimensional space may be given. 

While this development is highly natural from a formal viewpoint, 
a rigorous development first appeared in quite another way, in the 
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course of the exploration of the analytical properties of Wiener space 
by Cameron and Martin [8] some years before any effective explora­
tion of the idea of integration in Hubert space took place. For a 
general class of transformations defined by integral operators, it was 
shown that Wiener measure transformed in absolutely continuous 
fashion, and the Radon-Nikod^m derivative was given in a closed 
form involving the determinant of the operator in question. The prob­
lem of the absolute continuity of linear transformations on Gaussian 
stochastic processes arises in a number of applications, and the ques­
tion has continued to receive attention in other settings (cf. [78] and 
below). The Hilbert space result was established in [94], which also 
indicated the connection with the theory of Brownian motion. The 
proliferation of formalisms and the difficulty in applied work of deal­
ing with isomorphisms has led to a good deal of misunderstanding of 
the relations between varieties of integrals in function spaces which is 
quite marked in connection with this relatively simple but important 
absolute continuity result for linear transformations, which may 
therefore be an appropriate point for a more explicit consideration of 
these matters. 

The foreword to the work of Friedrichs and collaborators [25] 
states, in slightly paraphrased form: 'No attention is given to the 
work of I. E. Segal . . . .' While this could be (and was) construed as a 
concession to the needs of brevity and prompt publication, it was in a 
way surprising, inasmuch as most of the nontrivial results contained 
in these notes were already contained, apart from quite straightfor­
ward questions of specialization, in a different and more general 
formalism, in the indicated work. Later developments, however, made 
it rather clear that the nature of the relationship between the two 
'theories' was quite obscure to the cited authors, and that it was in 
fact apparently believed that no significant rigorous mathematical 
connection existed (see especially [98] and below). Since our work 
had been available in advance of publication, and had been exposed 
verbally on several occasions (indeed, in part at the request of some 
of these authors), a need for a more thoroughgoing exposition of the 
relationship between different formalisms dealing with integration 
in function space was clearly indicated, and represents one of the 
purposes which this article hopes to accomplish. Although the essen­
tial mathematical inclusion of the formalism of the cited work as well 
as later work by some of the authors has now been apprehended (cf. 
the correction in [98]), the fundamental simplicity of the relations 
between the three best-known mathematical approaches to analysis 
in function spaces seems to remain somewhat obscure; in the recent 
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fairly comprehensive and topical review article of McShane [65] (to 
whose useful bibliography on integration in function space we refer 
the reader for material supplementary to that cited here), it is again 
suggested that the developments described by Friedrichs and his 
associates are mathematically disjoint from the theory originated in 
[89] and developed initially chiefly in [90 ] and [94]—as well as 
from the theory of analysis in Wiener space. 

There are basically two stages involved in the verification of the 
essential identity of integration theories, which it will suffice for 
present purposes to describe in the case of those corresponding to 
finite measure spaces: (i) the formulation of a convenient algebra of 
bounded abstract measurables which determine the full algebra (i.e., 
are dense in the w*-topology in £«>); (ii) the establishment of an 
algebraic isomorphism which is at the same time integral preserving. 

Conditions on a subalgebra equivalent to its w*-density are that 
it be dense in L2, or that it generate the full abstract measure ring 
for the space in question [89]; in practice, the first of these two 
conditions is at least as simple to establish as the others. Now in the 
case of Wiener space, formulated as the space C0[0, l ] of all continu­
ous functions on the interval [0, l ] which vanish at 0, the algebra of 
all polynomials in the random variables x(t) representing values of the 
Wiener process at arbitrary points / in the interval forms such an 
algebra. These are, of course, unbounded functions, and to employ the 
foregoing general approach, it is necessary to approximate them by 
bounded functions. (In the case at hand, it would be possible to deal 
directly with the algebras of unbounded elements, but, in general, iso­
morphism of subalgebras of not necessarily bounded elements of Lj 
would be insufficient to establish the essential identity of the asso­
ciated integration theories.) This might suggest the use of the algebra 
of all polynomials in bounded functions of the x(t), which is likewise 
dense in Z,2, but for present purposes a slightly larger algebra is con­
venient. This is the algebra of all bounded Baire functions4 of finite 
ordered sets of the Wiener stochastic integrals ff(t) dx(t), where the 
functions ƒ are chosen arbitrarily in Z,2(0, 1). 

The mapping f—*ff(t) dx(t) from L2(0t 1) into random variables 
is ready-made for establishing an isomorphism between the foregoing 
algebra and the algebra of bounded tame functions over £2(0, 1) 
relative to the Gaussian distribution. This is the case because the 
weak distribution defined by the indicated mapping is precisely the 
Gaussian distribution itself. Thus, if F is such a bounded tame func-

4 There would be no essential difference if continuous rather than Baire functions 
were employed. 
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tion, so that F(f) =<{>[(/,/i), (ƒ,/2), • • • , (ƒ ,ƒ«) ] for some bounded 
Baire function <t> on En and some ordered set jfi, /2, • • • , /n of orthog­
onal functions in 1/2(0, 1), then the mapping 

is well-defined into the algebra defined at the end of the preceding 
paragraph, and the integral of F relative to the isonormal distribution 
has an expression essentially identical to that for the integral of its 
transform over Wiener space; the material identity of the two 
integrals follows trivially. Since the mapping is an algebraic iso­
morphism, this means that Wiener space and a countably dimen­
sional Hubert space relative to the isonormal distribution are integra-
tion-theoretically equivalent. Any theorem on, or property of, one 
space which deals only with abstract measurables, i.e., does not de­
pend on a specific choice of a concrete 'version' for a measurable, or 
function in the residue class defining the measurable, thereby implies 
immediately a corresponding result for the other space. 

Which of the two spaces to employ, when either is possible, is a func­
tion of the tactical scientific situation. In general, the use of Wiener 
space is advantageous only when the problem is phrased in terms of 
Wiener space and troublesome nonlinearities are involved in the 
transition to Hilbert space. On the other hand, there are problems 
which may appear to be of the latter type, such as the determination 
of the spectrum of the flow of Brownian motion, but in which the 
additional structure involved in the use of a concrete Hilbert space 
and explicit transformations thereon turns out to be immaterial and, 
in fact, an encumbrance. It should be noted that many of the ques­
tions of the theory of stochastic processes concerning Brownian mo­
tion refer specifically to its formulation in terms of Wiener space, for 
example, such questions as the differentiability of sample functions, 
and for these it is to be expected that the simplest treatment will be 
in terms of this formulation. 

The treatment of integration in Hilbert space due to Friedrichs has 
gone through a process of development whose final stage only clearly 
provides an integral of the type considered here. In [23] a section 
entitled 'Hermite functionals and integration over the Hilbert space' 
discusses the question of an integral in Hilbert space and defines, 
relative to any choice of orthonormal basis for the space, the notion 
of Hermite functional and an inner product between two such func­
tionals; this inner product is the same as that obtained in the repre­
sentation of a boson field given in the theoretical literature (cf., e.g., 
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Dirac [14]) in terms of an assembly of harmonic oscillators. This is 
as far as the theory is carried here and the author remarks that it 
it is not entirely satisfactory and indicates that a forthcoming treat­
ment, including, in particular, work of J. Milkman, will illuminate 
the parallel with the usual type of integration. In fact, inasmuch as 
the product of Hermite functionals is not again a Hermite functional, 
or linear combination thereof, there is no natural way to define the 
corresponding integrable, measurable, or Lp functions for any p5*2. 
In the work of Milkman [65A] in elucidation of this approach it is 
shown that a certain associated measure on Hilbert space is count-
ably additive on subsets which are direct sums with a fixed co-finite-
dimensional subspace; in the light of later developments it is visible 
that this result is tantamount to the countable additivity of the in­
definite integral of e~x* in a finite-dimensional euclidean space, which, 
of course, does not require a special proof; thus at this stage the rela­
tion of the theory to conventional theory of integration was still 
somewhat obscure. 

The definitive statement appears in the later notes [25], together 
with the article [24] whose aim is to show the material orthogonal in­
variance of the theory despite the essential use of a particular basis 
of the Hilbert space for its formulation. In present terms, let eu &u • • • 
be a basis for the real Hilbert space H; the mapping of any vector into 
into its sequence of components carries H into the denumerable di­
rect product of lines, which is then endowed with the direct product 
of copies of standard one-dimensional Gaussian distributions; in prob­
abilistic terms, the measure is obtained by assuming that the Hilbert 
space coordinates form a sequence of identically distributed inde­
pendent random variables each of which has the standard Gaussian 
distribution. This is, of course, not a measure on the Hilbert space 
itself, but a functional on the Hilbert space which depends only on a 
finite number of coordinates determines in an obvious way a func­
tion on the associated direct product space, and can thereby be 
given an integral, which can be extended to more general functions 
by a process of approximation and completion. 

It is evident that this is a theory definable by the algebra of all 
functions which depend only on a finite number of coordinates with 
respect to the given basis and are suitably restricted in growth, all 
bounded Baire such functions, for example, relative to the integral 
provided by the isonormal distribution in a finite number of dimen­
sions. This shows that the integral is a sub-integral of the standard 
Gaussian integral treated earlier (i.e., from a conventional measure-
theoretic standpoint, it can be regarded as based on the same con-
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crete measure space and measure function, but with a possibly smaller 
class of measurable sets), and the demonstration of its equivalence 
with this integral reduces basically to showing that the cited sub-
algebra, dependent on the basis ei, e2, • • • , is L2-dense in the space 
L2(H) previously defined. This fact, which, incidentally, serves to 
establish the orthogonal invariance of the Friedrichs theory, and 
whose demonstration is the main goal of [24], follows by entirely ele­
mentary approximations, e.g., as follows. 

It is required to approximate in L2(2f) an arbitrary bounded tame 
function, say/ , on H by a bounded Baire function of a finite number 
of the coordinates. Since, however, any function in Z,2 over En relative 
to the isonormal distribution may be approximated in L2 by a finite 
linear combination of products of bounded functions of the single 
variables constituting coordinates relative to any orthonormal basis, 
it is sufficient to show that any such product, say A, may be ap­
proximated arbitrarily closely in Lp for all sufficiently large p by tame 
functions h0 relative to the original given basis; the Holder inequality 
then shows that the monomials in these functions may be approxi­
mated arbitrarily closely by the corresponding monomials in the h0. 
Thus it must be shown that if e' is any vector in H, then (x, e') may 
be approximated in Lp for all large p by a function of a finite number 
of the inner products (xf 0»). Expanding e' in terms of the eiy 

e' = 2Z»a^,-, then ]£?„i a»xt—>(x, e') in Lp for all finite p, since, for 
arbitrary u and v in H, 

||(*,*) - (x,v)\\p = ||(*,«i - *)||, - {2Tky-lfrexp[-P/2k]d$, 

with k = ||« - T;||2, 

= Cpfri* -> 0 as k -> 0; 

here, the case « = ]C?-i a&% an<^ v = er is in question. 
Thus there are explicit natural isomorphisms between dense classes 

of functions in the theory presented in [25], in the Wiener space 
theory, and in that for the isonormal distribution in a Hubert space, 
so that any result about integration over one space implies as corol­
laries corresponding results about integration in the other spaces. 
However, depending on the result, its statement and/or its proof may 
be significantly simpler in one formalism or the other. This may be 
illustrated by some examples of importance for applications. 

The absolute continuity of translation in Hubert space, relative to 
the isonormal distribution, does not imply that in C[0, l ] the map 
f—*f+g is absolutely continuous, and, in fact, this is false. The map 
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ƒ—»ƒ+£ in £2(0, 1) carries the functional of u, (u, ƒ), into (u, ƒ) + («, g), 
which is to say, in terms of the Wiener representation x(t) of Brownian 
motion, 

ƒ ƒ(/) dx{t) -> ƒ ƒ(*) dx(f) + ƒ ƒ(*) <*G(/), 

where G is the indefinite integral of g, G(t) =/o g{s) ds. In other terms, 
there exists an isomorphism of the set of all random variables on 
Wiener space which acts in the indicated fashion on the basic linear 
random variables indicated. 

To rephrase the existence of an isomorphism <f> of the algebra of 
random variables over a probability space as a result on the absolute 
continuity of a point transformation on the space, it is necessary to 
determine such a measurable point transformation T which induces 
<p, in the sense that [4>(f)(x)]=f(Tx)9 for almost all points x of the 
measure space and all measurable functions/. In a formal sense, Tx is 
the point whose characteristic function (i.e., of the set consisting of 
the point) is the image of the characteristic function of x ; this is by no 
means strictly true, for general probability spaces, but it is true for all 
separable spaces admitting quite mild regularity properties (by virtue 
of results which, in a crude form, appeared in the work of F. Riesz 50 
years ago; the results of many refinements appear in the rather gen­
eral result due to Mackey [59]). It is, however, not at all necessary 
to appeal to this general theorem in the present or other linear cases; 
the relevant transformation T is readily explicitly determined. I t suf­
fices if the foregoing relation between <j> and T holds for the generators 
of a dense subalgebra of L2, for it then follows for the subalgebra alge­
braically, and then for sequential limits of the algebra, and ulti­
mately a l l / . The indicated linear expressions in the x(t), ff(t) dx(t), 
form such a set of generators, and the required equality is indicated 
above for the transformation 

T:f->f+G. 

Thus it is not a general displacement in Co [0, 1 ] which corresponds to 
a general displacement in Hubert space, but rather displacement 
through an element which is absolutely continuous and has a square-
integrable derivative. 

The absolute continuity of vector displacements in Hubert space 
relative to the isonormal distribution thus implies only the absolute 
continuity of such special displacements in Co[0, l ] . This, however, 
is all that is valid. Indeed, in the original work of Cameron and Mar­
tin [6] the stronger assumption is made that the displacement be by 
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an absolutely continuous element whose derivative has bounded vari­
ation. The formula for the derivative which they obtained suggested 
that square-integrability of the derivative should suffice; however, 
this result was first obtained as a corollary to the Hilbert space re­
sult, in the fashion just indicated, following which it was obtained 
by direct analysis in Wiener space. 

The form of the Radon-Nikod^m derivative of the transformed 
distribution with respect to the original one may, however, be dis­
tinctly misleading on occasion, as the more complex example of a 
linear transformation shows. Let T be a given linear transformation 
on the real Hilbert space H\ then the general theory, as already indi­
cated, shows that the transform of the isonormal distribution n by 
(the induced action of) T, say nr, is equivalent to n in the sense of 
mutual absolute continuity if and only if T is nonsingular and T*T 
differs from the identity operator J by a Hilbert-Schmidt operator. 
When the difference is additionally of absolutely convergent trace, 
the Radon-Nikod^m derivative has the form (when suitably inter­
preted in terms of limits of tame functions in the manner indicated 
earlier) 

(det A)-"* exp[-((A~l - I)x, x)], A = T*T. 

Since the determinant has an invariant unambiguous meaning only 
for operators differing from I by an absolutely convergent trace 
operator, and since the quadratic functional (Bx, x) on a Hilbert 
space appears to define a random variable with respect to the iso­
normal distribution only when B is of absolutely convergent trace 
(which, with B = A~l — J, implies the same for A—I), it gives a 
specious indication for the necessity of this condition. 

How the Hilbert-Schmidt condition comes to suffice may be seen 
more explicitly as follows. Suppose that C=A~1 — I has the proper 
values Xn relative to the basis {en (n = l, 2, • • • ) } , and that the xn 

are the coordinates relative to the latter; then, as random variables 
relative to the isonormal distribution, Xi, x2, • • • form a sequence of 
independent identically distributed normal random variable of mean 
0 and constant variance. If C has absolutely convergent trace, then, 
by familiar probability theory, *£„ \nx\ is convergent almost every­
where to a well-defined random variable. On the other hand, assum­
ing for simplicity that C^O, this is an if and only if proposition; the 
indicated series is convergent in any reasonable sense only if ]>jXn 

is convergent; otherwise ^>2n^n%l= °° a.e. The actual absolute con­
tinuity in the Hilbert-Schmidt case is associated with the existence 
of a sequence of constants cn—* °° such that the differences / JL1 Xn#n 
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—cn converge to a finite random variable, in terms of which the de­
rivative may be expressed.5 

In the case of the Wiener space theory, the corresponding result in­
volves the determination of a point transformation S in C0[0, l ] 
which will induce the isomorphism which extends the mapping 

f fit) dx(t) -> h{t) dx(t). 

For simplicity of exposition, consider the case of a transformation 5 
of the form 

x(t) -> x(t) + f Kit, s)x(s) ds, 
J 0 

where K is continuous on the unit square and, moreover, absolutely 
continuous as a function of t for almost all fixed s, with a partial 
derivative L(s, t) with respect to t which is square-integrable. Then 
L is a Hilbert-Schmidt kernel, so that the transformation 

T:f(t)->f(f)+ f L(s,t)f(s)ds 

is absolutely continuous relative to the isonormal distribution. The 
identity 

ƒ ' [/(0 + ƒ ̂ t)f(s) ds] dx(t) 

= ƒ fit) dt lx(t) + ƒ Kit, s) dx(s)\ 

then implies by the same argument as in the case of vector transla­
tions the absolute continuity of the transformation S on Wiener 

* A physicist might say here that Yin Xn*î exists and is well-defined apart from 
'an infinite constant,' which is related to the infinite constant involved in the 
formation of the determinant of A in such a way that there is cancellation, and the 
expression given for the derivative previously is still essentially correct. Mathe­
matically, if the infinite product H» (1+Xn) is conditionally convergent, the same 
expression for the derivative applies and cn may be taken as zero. More generally, the 
Radon-Nikod^m derivative is by the general theory the limit, both in L\ and a.e., of 
the Radon-Nikod^m derivatives of the corresponding restrictions to the subspaces 
spanned by e\f • • • , e„, as »—•«>, so that if det An1 is convergent, where An1 is the 
finite-dimensional approximant to A~\ then necessarily {[Anl—I)Xn, Xn) is cor­
respondingly convergent, where Xn is the projection of x on the same subspace, to a 
measurable functional, and the expression for the derivative remains applicable. 
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space. Again, the Hubert space result, when transferred to Wiener 
space, proves more powerful than the original result due to Cameron 
and Martin [8], which is far from simple to formulate or to prove 
directly. 

The question of absolute continuity of linear transformations rela­
tive to the isonormal distribution has also been considered somewhat 
later within the framework of the Friedrich notes [25], and repre­
sents probably the farthest point to which this framework has been 
applied. Unfortunately, in this work of Seidman [98], the result is 
not mathematically meaningful as stated, for reasons illustrative of 
some of the difficulties which tend to arise in the use of concrete 
countably additive measure-space models for weak distributions. This 
work involves a Hubert space H, an orthonormal basis {e»}, an em­
bedding of H in the space / of all real sequences via the map 22» x*ei 
—>(*i, #2, • • • ), which space / is endowed with the direct product 
measure corresponding to the element of measure 
in each factor; the corresponding integral functional is denoted as I. 
The set A of operators is defined as those Hilbert-Schmidt operators 
for which the series ^j» (Ae^ £,) is convergent, and A(̂ 4) denotes the 
determinant of I+A. The result as stated is as follows: 

'THEOREM. Let AC. A and let f be a function defined a.e. on /, meas­
urable and integrable over I. Let 

E(x) = £(*; A) = exp[-(*, Tx)/2v*], T = r(^) = A + A* + A*A, 

and let 

g(x) = g(x; A) =f(x + Ax)A(A)E(x; A). 

Then E(x) is defined a.e. on /, g(x) is defined a.e. on l, g is measurable 
and integrable over I and 1(g) = 1"(ƒ).' 

Now the indicated embedding of H into / maps it into a set of 
measure zero. If the values of ƒ on this null set are redefined as 0, ƒ is 
not altered as a random variable, but g becomes identically 0 on H. 
Thus the definition of g is technically possible but there can be no 
relation between g and the integral of ƒ. The further statement that 
' . . . is defined a.e. on V becomes technically meaningful if altered to 
1 . . . is definable a.e. on /' but there is no indication in the statement 
as to how the extended definition is to be made, and, in view of the 
first comment, there is no possible means of extending the definition 
of g so that the final equality, 'J(g) =/(ƒ)' is, in general, correct. 

From the vantage point of the general theory of the isonormal dis­
tribution in Hubert space it is readily seen how to make a correct 
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statement along similar lines. Because A acts only on H and not on /, 
and because H is a set of measure zero in /, it is necessary to take ƒ 
as a functional on H rather than I (if lengthy and doubtfully useful 
complications and circumlocutions are to be avoided). At the same 
time, ƒ must have unique integration-theoretic properties, so that it 
must either be a tame function or one approximable integration-
theoretically by such, and there is no real advantage in the employ­
ment of the latter, for an equality of the form '1(g) ==I(ƒ) , for all tame 
ƒ will imply a corresponding one for all integrable ƒ. Assuming, then, 
that ƒ is a tame function on H, and E{x) and g(x) are denned in the 
indicated fashion on H% it is meaningful to assert that these are meas­
urable with respect to the isonormal distribution, in a sense which 
must further be specified through approximation by tame functions, 
and that g and ƒ have the same integral over H. In this statement the 
role of / has, however, been virtually eliminated; its introduction is 
merely a corollary to the result just indicated together with the 
earlier-indicated integration-theoretic equivalence between the iso­
normal distribution on Hand the cited distribution on /; it is not even 
possible to state the result in question without, in essence, including 
the statement for the isonormal distribution.6 

Thus the absolute continuity of the measures in question under 
suitable linear transformations is readily stated for the case of Wiener 
space as well as for the isonormal distribution but can be asserted in 
the space / only through a highly tautological procedure essentially 
requiring the transference of the result from some other model for 
the measure space. This should not be surprising since, where rather 
general linear transformations occur, the use of a fixed basis tends to 
lead to complications. 

The abstract Hilbert-space approach has a clear advantage in the 
treatment of the absolute continuity question, as well as, in general, 
as regards conceptual simplicity and broad applicability, but special 
care and ingenuity are required for its effective use because of the 
countable additivity problem. On the other hand, the utilization of 
the sequence space / is, in essence, the point of departure for the treat-

6 To what extent the argument given in [98, I ] supplies a proof of the present 
reformulation is not entirely clear; it appears to include some elements of such a 
proof. The later article [98, II], which appeared since the completion of the present 
exposition, proceeds generally along lines indicated above (as well as in our corre­
spondence with the author); it seems correct, apart from its indication of greater 
generality in the expression for the derivative; the 'abstract' expression applies to the 
general case when suitably interpreted, as indicated in footnote 5 ; a special interpre­
tation is required also in the 'concrete' case treated in [98]. 
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ment in [72] of Wiener space, and there are few if any problems of 
a more sophisticated sort where it appears to have an advantage over 
either of the other two models. Wiener space itself is the natural 
model for employment in situations structured additionally by a 
special role for the Laplacian; similar 'sample' spaces are natural 
where a distinguished second-order linear elliptic differential oper­
ator occurs. This is the case, in particular, in the theory of the func­
tional integral representations for the elementary solutions of the 
Schrödinger and heat equations, and variants thereof. The applica­
tion of probability methods to the theory of differential equations 
has frequently been illuminating, and is interesting in itself in con­
necting two superficially independent disciplines. Functional integral 
solutions of integral equations were given first by Cameron and Mar­
tin [7], employing Wiener space; later, Feynman gave a quite heu­
ristic approach to the Schrödinger equation involving complex proba­
bilities; a formally similar development employing real probabilities 
associated with Wiener space was made later by Kac, and put on a 
quite rigorous basis by Ray (cf. [45]). More recently, Cameron, Ito, 
Babbitt, Feldman, Nelson and others have considered in a rigorous 
way the original situation discussed by Feynman. The two last-
named authors have obtained thereby results of interest and power 
from a real-variable viewpoint concerning operators of the form 
A—• F, where F is a given potential which may be so singular that the 
domain in L2 of A and multiplication by F have only 0 in common ; 
remarkably enough, many such formal operators have natural inter­
pretations as self-adjoint operators in Hubert space. On the other 
hand, in the course of this work it has become apparent that what is 
basically involved is analytic continuation on a complex parameter on 
which the differential operator in question may be made to depend, 
rather than the utilization of a new integral. 

The so-called 'Feynman integral' is, in fact, despite the virtual 
mystique which has grown up around it, from the abstract Hilbert-
space standpoint, a very simple variant of the integral associated 
with the isonormal distribution. The isonormal distribution with 
variance parameter X is defined by a certain positive linear functional 
E\ on the algebra P of all polynomials over the Hilbert space H, 
where, specifically, 

EySJ) = (2TTA)-(*'2> f f(x)f-Ji»dx, 
J M 

where M is any finite-dimensional subspace on which ƒ is based and 
n is the dimension of M. I t is clear that -Ex(/) is a polynomial in X for 
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any fixed ƒ, which is trivially applicable to all complex values of X. 
The 'Feynman integral' with variance parameter Xo is simply the 
isonormal integral with variance parameter ik0, computed in the 
indicated fashion for any polynomial functional, and obtainable for 
other suitable functional by approximation with polynomial func­
tional. In particular, if ƒ is a bounded tame function, the integral 
defining E\ is convergent if X has positive real part, and represents 
a holomorphic function of X in the right half-plane whose boundary 
values on the imaginary axis, if continuous, give more explicitly the 
Feynman integrals of ƒ for variable variance parameters as thus de­
fined. 

While the relation of the Feynman integral to the Wiener integral 
is basically equally close, Wiener space loses one of its chief advan­
tages when employed as a model for the (indefinite) functionals E\ 
in that, as first noted by Cameron, the corresponding complex meas­
ure is not countably additive in Wiener space. On the other hand, the 
Brownian motion intervenes directly in the functional integral repre­
senting the elementary solution for the differential operator A— V, 
which is given by the expectation values of expressions of the form 
e-fv{x(t))dt^ where x{f) indicates the Wiener Brownian motion. The 
formal analysis is thus naturally carried out in Wiener space, although 
the analyticity of this expectation value as a function of X for suitable 
V is more easily understood in the abstract Hilbert-space setting. 
The integral fV(x(t)) dt is approximable by Riemann sums represent­
ing tame functions, which remain tame after substitution in the ex­
ponential, and so have expectations which are holomorphic functions 
of X in the right half-plane. But, as noted, the Feynman integral has 
been more of a stimulus than a tool in the cited work of Feldman and 
Nelson, who use Wiener space in establishing a one-parameter semi­
group, and then continue analytically on the parameters on this 
semi-group in a basically operator-theoretic spirit. 

For applications to nonlinear quantum fields, as well as nonlinear 
systems of a stochastic character, the transformation properties of 
functional integrals under nonlinear transformations are important. 
The first work on this question was that of Cameron and Martin [l l ], 
whose work may be qualitatively summarized as follows: if the non­
linear transformation on Wiener space is infinitesimally (i.e., if its 
Fréchet differential is) of an absolutely continuous character, and if 
there is adequate smoothness and uniformity, then the nonlinear 
transformation itself is absolutely continuous. The counterpart to this 
for the isonormal distribution remains true, as shown by Gross [39], 
but requires delicacy in its formulation since a nonlinear transform of 
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a weak distribution is not automatically defined. In the case of a 
strict, countably additive distribution, the measure of the inverse 
image provides, as is well known, an appropriate and viable definition 
of the transformed distribution. But the image of a weak distribution 
under even the smoothest type of nonlinear map need not be defin­
able in any generally effective way, as is shown by the case (to which 
the general case is reducible) of a map into a one-dimensional space, 
i.e., of a numerical function. For example, the function e{^x) on a 
Hubert space is infinitely differentiable, even analytic in most reason­
able senses, but meaningless as a random variable relative to the iso­
normal distribution because, as noted earlier, (x, x) corresponds to 
the random variable which is identically + 00. 

Recourse to approximation by tame functions is again necessary; 
in general, there is no unique answer to the question of the random-
variable interpretation of a given smooth function on a linear space, 
relative to a given weak distribution theorem, except for tame func­
tions. There exist a certain number of ad hoc procedures for treating 
special classes of functions, but these special results are in all known 
cases identical with those obtained from approximation with tame 
functions. For example, if A is a self-adjoint operator of absolutely 
convergent trace on the Hubert space H> the functional (Ax, x) cor­
responds to the random variable ^ n ^n%l, where the Xn are the proper 
values of A and the xn are the coordinates in H for the corresponding 
proper vectors; and the superposition of the tilde ~ indicates the 
structuring of xn as a random variable relative to the isonormal dis­
tribution. This represents it as a limit, in both the classical and inte­
gration-theoretic senses, of the tame functionals representing the 
partial sums of the indicated series. The form of this simplest meas­
urable nonlinear functional and also of the derivative in the case of 
linear transformations suggest a special role for absolutely convergent 
trace operators, which has been well substantiated in the effective­
ness of the topology in Hubert space definable in terms of these oper­
ators introduced by Gross. Functions with suitable uniform con­
tinuity properties relative to this topology are, indeed, limits of se­
quences of tame functions in both classical and integration-theoretic 
senses, and correspond thereby to unique random variables, rela­
tive to any 'bounded' weak distribution, i.e., distribution d on Hubert 
space H such that ||d(#)||z,2^const ||x||. The generalization of these 
results in [40 ] clarifies and provides a practical solution in a wide 
class of cases to the problem of interpreting a given smooth functional 
as a random variable relative to a weak distribution. A clear general 
exposition is given in [42 ]. 
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Following shortly after the beginnings of the work described on the 
theory of weak distributions in Hilbert space, intensive developments 
in related directions took place in the Soviet Union. The work of Gel-
fand and his collaborators is largely concerned with measures in 
relation to nuclear spaces, and is crowned by the characterization of 
such spaces as those for which any continuous weak distribution 
( = generalized random process in the sense of Gelfand) determines a 
countably additive measure (on the dual). A comprehensive account 
of this work is given in [33]. The work of Sazonov [81 ], Prohorov 
[76] and other probabilists are in the direction of applications to the 
theory of stochastic processes, rather than to relativistic physics. 
There is again an emphasis on the formulation of suitable spaces for 
the representation of a given weak distribution as a countably addi­
tive measure, and on the analysis of countably additive probability 
measures in function space. Group-invariance features in function 
space tend to become lost when countable additivity is insisted on, 
and the principal application to quantum field theory made is to the 
treatment of the representation problem for the canonical commuta­
tion relations made in [33 ] ; this is generally similar to the treatment 
of the same subject given in [94]. 

The cited Gross topology in Hilbert space was employed by 
Sazonov [81 ] shortly after the completion of Grosse dissertation (at 
the University of Chicago) to characterize the Fourier-Stieltjes trans­
form of a countably additive probability measure on Hilbert space 
by the usual positive-definite conditions together with continuity in 
the Gross topology. The most recent work in this direction is the ex­
tension of the Levy continuity theorem by Gross [41] to Hilbert 
space, from which the Sazonov result is readily deducible. Results on 
analysis in Hilbert space are also deducible from the nuclear space 
developments in [33] and, conversely, many of the results on analysis 
in general locally convex linear topological spaces, within which con­
text the Soviet school tends to work, may be readily reformulated in 
terms of weak distributions in Hilbert space. In fact, a nuclear space 
is defined by a sequence of mappings by operators of absolutely con­
vergent trace, and so implicitly involves Hilbert space and relates to 
the Gross topology. The nuclear space viewpoint is, of course, related 
to the use of distributions in the sense of Schwartz, and is involved 
also in some recent American work. 

There are important applications of the foregoing developments to 
quantum field theory, although many significant questions involving 
functional integration remain unresolved ; one of these is indicated in 
the introduction. 
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5. Integration on operator rings. The algebra-cum-positive linear 
functional approach to integration theory is naturally extended, from 
a mathematical viewpoint, to the consideration of algebras which are 
not necessarily commutative. In this case algebraic experience sug­
gests the enrichment of the structure by the postulation of an adjunc­
tion operation a—>a* for the algebra with the property that E(a*a) ^ 0 
for the integral (functional) E. Actually, specific systems of this type 
arise frequently in functional analysis. Both from the concrete and 
the theoretical side, the additional assumption that E be 'central/ 
i.e., tha t E{ab) =E(ba) for arbitrary a and b, plays an important role. 
I t is a prominent feature of many important systems, and appears 
also as the crucial additional assumption needed for the extension of 
the abstract Lebesgue integration theory to what appears essentially 
to be its natural algebraic limits. 

To describe the noncommutative theory, let A be a complex asso­
ciative algebra with an adjunction operation * (i.e., involutory anti-
automorphism), and let £ be a complex linear functional (called the 
integral in the Lebesgue context, and the trace in the operator-
theoretic one) with the properties: 

E(a*a) à 0, E(a*a) = E(aa*), E(a*ba) ^ const* E(a*a) 

for arbitrary a and bin A; then (A, E) may be called a (noncommuta­
tive) integration algebra. To remove the possibly singular part of the 
algebra in which all products vanish, which is devoid of interest, it is 
desirable to add the assumption that A2 is dense in A in the norm-
topology with the norm ||a|| =(E(a*a)) 1 / 2 , and it will be assumed in 
the following that the algebra is nonsingular in this sense. 

Any self-con jugate subalgebra of the bounded integrable functions 
on a conventional measure space, with E as the integral and the * as 
complex conjugation, provide an example of an obvious sort. Con­
versely, the theory described earlier shows that any commutative 
integration algebra has this form, and that, moreover, the measure 
space in question is essentially unique, if the algebra is required to be 
dense in L\. The simplest noncommutative example is a simple com­
plex matrix algebra with E defined as the trace and * as hermitian 
conjugation. This is essentially the simplest instance of the 'factor' 
( = central simple operator ring7)-dimension function system treated 
by Murray and von Neumann; the dimension function, although 
strictly defined only for projections, may be extended by linearity to 

7 'Operator ring' is used in this section to mean a 'ring' in the sense of Murray and 
von Neumann, i.e., a weakly closed self-adjoint algebra of linear operators, on a com­
plex Hubert space, which includes the identity. 
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a linear set of operators which, in the matrix case, includes all oper­
ators. In brief, any factor has defined on its projections a completely 
additive function with values in [0, oo ] which is unitarily invariant 
and unique within proportionality if some slight further condition to 
exclude trivial cases is imposed; this function is called the dimension 
function for the ring. Its construction is similar to that of Haar 
measure, with the notion of congruence replaced by that of 'equiva­
lence' of projections relative to a ring—where this is not, in general, 
the same as unitary equivalence, which is not additive, but may be 
described as the minimal coarsening of unitary equivalence which is 
such, and is, indeed, completely additive and has the corresponding 
property that projections have the same dimension if and only if 
they are equivalent. For example, in the case of the ring of all 
bounded linear operators on Hubert space, the dimension of a pro­
jection equals the conventional dimension of its range (i.e., cardinal 
number of an orthonormal basis for it—where infinite cardinals may 
be replaced by oo to obtain a function of the type indicated below). 
Those operators whose range is of finite dimension form an algebra A 
to which the dimension function may be uniquely extended by linear­
ity and positivity to yield a functional E satisfying the indicated 
conditions. Another example, which will be used later, is that in which 
A is the convolution algebra of all continuous functions of compact 
support on a unimodular locally compact group, with E(J) defined 
as the value of ƒ at the group unit. 

To continue with the general theory, the space L^A, E) is readily 
defined as the completion of A relative to the norm: ||a||2=(E(a*a))(1/2) ; 
the space Li(A, E) may be similarly defined, following the develop­
ment of properties of the norm ||a||i = supnoiiwsi |£(a&)|, where ||&||̂  
denotes the usual bound for the operator a; analogous Lp spaces may 
also be defined. However, this is not very satisfactory; there is no 
explicit interpretation analogous to that derived from the use of the 
unbounded measurable functions in conventional integration theory 
to represent points of the completion—which means, for example, 
that it is, prime facie, undetermined when two elements of different 
Lp spaces are the same—and, in general, this approach provides too 
shallow a base for the construction of an effective analogue to the ab­
stract Lebesgue theory. It is perhaps most logical to begin with the 
treatment of the concept of 'measurable' element of the extended 
integration algebra defined by (A, E), designed so as to play the same 
role as the measurable functions in the conventional case and to re­
duce essentially to them in that case. Such measurable elements 
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could presumably be introduced as elements of the completion of A 
relative to such a topology as convergence almost everywhere; while 
there are no actual points in a noncommutative measure space, this 
mode of convergence can be extended to the noncommutative case 
essentially by turning the criterion provided by Egoroff's theorem 
into a definition. Such a development has, however, never been 
carried out in detail, because it turns out to be possible to take advan­
tage of operator theory in Hubert space to introduce measurable ele­
ments as unbounded operators, in a way suggested by the earlier 
treatment of the commutative case; extreme methodological purity 
is thus sacrified for substantial technical advantages. 

The well-known elementary algebraic difficulties concerning un­
bounded operators in Hubert space, which might seem overriding, 
or at least to limit strongly the effectiveness of such a theory, turn 
out to disappear, essentially, within the domain of measurable oper­
ators. This circumstance can be regarded as a natural extension of 
similar circumstances in the special case of Hi factors treated in [68] 
and in commutative spectral theory. It should, perhaps, be men­
tioned, however, that the facility with which unbounded measurable 
operators may be treated does not at all resolve the old question— 
which is probably not effectively resoluble at all, according to present 
indications—of a unique calculus of variable coefficient differential 
operators in Hubert space; in general, such operators are associated 
with rings which are isomorphic to all bounded operators, for which 
the only measurable operators are the bounded ones; on occasion, 
however, nontrivial Hilbert-space properties of differential operators 
are derivable from their measurability relative to other types of rings, 
as in [95] (for the case of integral operators, see below). 

For any ring of operators R there is a notion of equivalence of 
projections defined in the same way as in the case of a factor, as well 
as the notion of a 'finite' projection, defined as one equivalent to no 
projection which it bounds other than itself. The concept of a 'strongly 
dense' domain in the Hilbert space JET, relative to the ring Rt is 
definable in these terms as one containing an increasing sequence of 
closed linear subspaces Kn such that the corresponding projections 
P» belong to R and have finite orthocomplements I—Pn—>0. For 
example, in the case of the multiplication algebra of a conventional 
measure space, if {Sn} is any sequence of measurable subsets ex­
hausting the space, the domain in i 2 consisting of all elements sup­
ported by some Sn is strongly dense. In contrast to the situation for 
dense subsets, the intersection of two strongly dense subsets cannot 
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consist only of the zero vector, but is, in fact, again strongly dense; 
indeed, the same is true of a countable intersection of strongly dense 
sets. 

A measurable operator relative to a given ring R may now be de­
fined as a closed operator T with a strongly dense domain, which is 
'affiliated' with R in the sense, e.g., that it commutes with every 
unitary operator which commutes with every element of R. (Equiv-
alently, T is affiliated with R if the partially isometric constituent 
and the spectral projections of the self-adjoint constituent in its polar 
decomposition are in R.) A sequence {Tn} of measurable operators 
relative to R may be said to converge 'almost everywhere' to a closed 
operator T in case for every e>0 there exists a sequence of projec­
tions Pn(e) in R such that: (a) the operator (Tn—T)Pn(€) is bounded 
by e; (b) 7—Pn(e) is finite and J, 0 as n Î oo. This extends the usual 
notion on a conventional measure space—for which, as already indi­
cated, the measurable operators are essentially the measurable func­
tions (i.e., the measurable operators relative to the multiplication 
ring are the multiplications by such). In terms of this definition, the 
measurable operators may alternatively be defined as the limits under 
almost everywhere convergence of the simple operators, in an ap­
propriate sense, in further close analogy with the conventional case. 
The central facts about measurable operators may be summarized in 
the statement that they form a topological ring with an involution, 
relative to the 'star' topology associated with convergence a.e. ; this 
statement is for rings satisfying a certain weak countability condi­
tion, to which, in practice, more general rings may always be reduced. 

The measurable operators are then entirely independent of the 
measure, being dependent only on the ring JR, just as in conventional 
measure theory measurability is independent of the measure function 
and depends only on the sigma-ring on which it is defined. To return 
to integration proper, let us suppose given, in analogy with conven­
tional measure theory, a completely additive, unitarily invariant 
non-negative functional on the projections in R—for short, a 'gage.' 
(In conventional theory, the measure, although only countably addi­
tive on a sigma-ring, induces a completely additive measure on the 
factor-Boolean-algebra of all measurable sets modulo the ideal of null 
sets; it is this factor algebra which corresponds to the algebra of 
projections in R, rather than the algebra of sets itself.) The integral 
may then be defined in an obvious way for finite linear combinations 
of projections of finite gage (although it is technically very difficult to 
establish the uniqueness of the extension by linearity—i.e., that if a 
linear combination ]T)*a*J\' of projections in R vanishes, then so 
also does the putative integral ]Cta*w(P*)> where m is the gage-
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function). Because the set of all such linear combinations is not closed 
under multiplication when R is noncommutative, it is more con­
venient to proceed somewhat differently, and define the integral on 
the ring E of the elementary operators in R consisting of those whose 
range is contained in that of a projection of finite gage. This may be 
done in various ways, but most commonly by defining the integral of 
the self-adjoint elementary operator T with spectral resolution J\dE\ 
essentially as J\ dm{E\) ; the uniqueness difficulty cited earlier then 
appears as a difficulty in establishing additivity. The argument given 
by Murray and von Neumann in [67] to this end for Hi factors is one 
which extends readily, but it is one of the most involved in their 
series of papers; it is plausible that there should exist a basically 
simpler argument, but none is known.8 Actually, in practice, the 
gages which occur are associated with explicitly given functionals 
whose additivity is clear, except in the one instance of the dimension 
function. From the standpoint of applications the difficulty may 
therefore be regarded as primarily one in the theory of the dimension 
function rather than in integration theory proper. 

At this stage there has been obtained, in one way or another, a 
central positive linear functional E on a dense ideal, that of the ele­
mentary operators, E, in the ring R (the density comes from the 
further assumption, which is no essential loss of generality as far as 
integration theory is concerned, that only the zero projection has 
vanishing gage). An integrable operator T may now be defined as one 
which is integrable, and which is the limit almost everywhere of a 
sequence of elementary operators, { Tn}, which is a Cauchy sequence 
relative to the L\ norm. The latter may be defined, on elementary 
operators, by the equation 

11511!= sup [EÇSX)\. 
11X11*1 

8 The argument depends on unitary invariance, but it may plausibly be conjec­
tured that any positive functional on a factor which is completely additive on com­
muting elements is universally additive, if the linear dimension of the factor exceeds 4 
(or, correspondingly, on rings, if they include no so-called type I2 component, which is 
exceptional). On the other hand, the argument employed by Gleason [35] to establish 
this, in the simplest nontrivial case of the ring of all bounded operators, is again 
notably intricate and apparently incapable of extension. These circumstances might 
suggest the existence of some fundamental difficulty if not the unsoundness of the 
conjecture. However, major unanticipated simplifications in the von Neumann-
Murray factor theory were made by Dye [19] regarding their trace formula and 
Griffin [38] concerning the spatial classification of type III rings, so that their treat­
ment cannot be regarded as definitive. The discussion of the additivity question by 
Kadison [46] provides a simplified and improved exposition of the Murray-von 
Neumann argument. 
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This definition is analogous to a familiar one in conventional measure 
theory. The proof of the uniqueness of the integral requires some 
delicacy but is basically parallel to that applicable in the conventional 
case. On the other hand, the proof of the positivity of the integral is 
relatively arduous, in distinction to its triviality in the conventional 
case. It might, therefore, be attempted to approach the integral 
differently, defining the integral of a positive measurable function, 
for example, as the supremum of the integrals of the positive ele­
mentary operators which it bounds. The problem of establishing addi­
tivity is, however, then of at least comparable difficulty to the proof 
of positivity with the first indicated approach. 

The main formal properties of the integral then follow. There are 
effective extensions to the convergence theorems, the construction of 
the Lp spaces, etc., from the conventional to the present case. While 
novel and substantial difficulties arise in establishing the noncommu-
tative extensions of the classical theorems of Riesz-Fischer, Radon-
Nikod^m, Riesz, etc., they are all valid. More specifically, for exam­
ple, (a) the Lp spaces are complete; (b) the indefinite integral of an 
integrable operator may be characterized by a simple continuity prop­
erty which is equivalent to that of countable additivity (and absolute 
continuity) in the conventional case; (c) the dual of the space Li(Rt m) 
of all integrable operators is canonically isomorphic with LJJR, m), 
which is to say with R itself. On the other hand, it is far from true 
that naturally conjectured extensions to results in the conventional 
theory have virtually all been established ; even in the simplest non-
trivial case, that of the ring of all bounded operators, some remain 
unresolved. 

To consider in a more concrete way the situation in this ring B, 
the general hermitian element T of LP(B) for finite p is a compact 
operator, so that there exists a basis {en} such that Ten=\nent where 
the Xn are the proper values of T, and such an operator is in LP(B) 
if and only if J^n |Xn |p<°°, this sum being identical with ||r| |j. 
Now if T is integrable, its indefinite integral is the functional F on B 
defined by the equation 

F(X) - tr(XT), 

where 'tr' is used to signify the trace, which is the integral in this 
case. The Radon-Nikod^m theorem as extended then states that if, 
conversely, F is a lineair functional on B which is strongly continuous 
relative to the unit sphere—the necessity of which property is easily 
seen—then it has the foregoing form. The Riesz theorem correspond­
ingly states that every continuous linear functional on L\(B) has the 
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form X—>tr(XS) for some element 5 of £, whose bound equals that 
of the functional. This and some related results for the ring B were 
obtained by Dixmier [15] shortly before the development of the 
general theory [88]. However, as an example of a simple natural ques­
tion which remains unresolved even in this particularly simple case, 
consider the notion of the indefinite integral of a non-negative self-
adjoint operator F, which may be defined as the completely additive 
functional v on projections given by the equation v(P)=tr(VP) (or 
+ 00 if VP does not have absolutely convergent trace in the usual 
sense). (This differs slightly but quite inessentially from the defini­
tion which is more convenient for the treatment of integrable oper­
ators.) Is it true, conversely, that every completely additive func­
tional on the projections in B is the indefinite integral of a non-
negative self-adjoint operator? Only when the values are all finite 
is the answer known to be affirmative, although in conventional 
integration theory this supposition is not needed. 

A much less simple case, although the simplest of all factors other 
than B, is the so-called 'approximately finite' Hi factor of Murray 
and von Neumann. It may be defined as a rather natural type of limit 
of matrix algebras, more specifically as follows. First, any directed 
system of integration algebras has a direct limit which is again an 
integration algebra, by a basically straightforward extension of the 
general topological notion of direct limit to the situation at hand. 
Now consider the following directed system of matrix algebras: An 

is the ring of all complex matrices of order 2n, and is mapped into 
An+i by the isomorphism 

- e :)• 
Let An be formulated as an integration algebra relative to the trace, 
which is, indeed, the only gage-functional on An, since it is simple. 
If the trace is normalized in the usual way, so that tr(7) =2n , where 
«T is the identity operator in Ant then, as would be expected, the direct 
limit is naturally identifiable with the integration algebra for B. If, 
however, the trace is normalized so that tr(Z) = 1, then, in the limit, 
tr(7) = l, so that the limiting integration algebra cannot be B. It is 
not difficult to see that the direct limit of the centers of such a direct 
limit is the center of the direct limit, when tr(7) = 1 in each approxi­
mating integration algebra, so that the ring of the direct limit is cer­
tainly a factor. In [109A] a variety of other constructions related to, 
although less simple than, the present one are given and shown to 
lead to the same factor. 



478 IRVING SEGAL [May 

Further concrete examples of noncommutative integration algebras 
occur notably in the theory of harmonic analysis on locally compact 
groups, in ergodic theory, and in the theory of the Fermi-Dirac quan­
tum field. I t is not difficult in practice to determine whether a given 
system is an integration algebra, and a substantial complex of useful 
results otherwise obtainable only with considerable difficulty, and, 
in some cases, not a t all, then follows ([88] and, slightly later, in [36] 
regarding the elementary aspects). The rings L and R generated, 
respectively, by the left and right multiplications by the elements of 
an integration algebra, acting on the corresponding L2 space, say 
H, obviously commute; what is less obvious, though relevant in 
several connections in harmonic analysis (a rather key point, e.g., 
in [57]), is that each exhausts the commutor of the other, i.e., con­
sists of all bounded linear operators commuting with the other. The 
canonical adjunction on the integration algebra a—>a* induces a con­
jugation on H which obviously carries L into R but, less obviously, 
leaves fixed the self-adjoint elements of the common center LP\7?. 
Conversely, if S is any ring of operators with a gage m and if J is a 
conjugation such that JSJ = S', where S' denotes the commutor of S, 
with JTJ= T* for TÇzSr^iS', then the system (S, m, / ) is essentially 
a system of the type just indicated, with S = L , obtainable from an 
integration algebra. Such special systems or 'standard spaces' (S, tn, J) 
play much the same role in the structure theory of general rings of 
operators on Hubert space as do conventional measure spaces in the 
case of commutative rings, or, more precisely, the system (S, mt J) 
associated with the measure space, where S is the multiplication ring 
of the space, m assigns to any projection in S the measure of the cor­
responding set, and J is ordinary complex conjugation. Any two 
(nonsingular) gages are mutually absolutely continuous, as in the 
conventional situation (for the so-called 'localizable spaces' [93] 
which are relevant in spectral theory), and similarly the correspond­
ing left-multiplication algebras, consisting of the left multiplications 
by elements of S acting on L2(S, m), are unitarily equivalent. Any 
ring on which a nonsingular gage is defined—i.e., ring with no 
so-called type III component, in a representation of the ring as a 
direct sum of two rings—is algebraically isomorphic with its left 
multiplication ring formed in this way. This means that it is, within 
'multiplicity/ a standard ring, obtained by removal of the specific 
gage from the standard space structure, just as any abelian ring is, 
apart from multiplicity, a maximal abelian ring; and just as the latter 
is unique within unitary equivalence, so is the associated standard 
ring in the general case. In the case of type III rings, multiplicity 
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questions are essentially trivial (see [38]), so that in this way the 
problem of the structure of general rings of operators may be reduced 
to the corresponding problem for standard rings together with the 
analysis of the multiplicity, which proceeds also in a fashion anal­
ogous to that previously established in the abelian case. 

The calculus of measurable operators [88] also makes possible the 
effective treatment of certain unbounded operators which occur in 
specific analytical connections. Any vector x in the Hubert space 
H=L2(A, E) associated with an integration algebra determines oper­
ators of left and right multiplication, definable as the closures of the 
applications of the operators to the image of A in H, definable, in 
turn, by approximation with the multiplication given in A. A special 
case of this is, for example, the operation of convolution by a square-
integrable function ƒ on a locally compact unimodular group G, acting 
on L2(G). Il f is integrable it is easily seen that the adjoint of this 
operation is convolution by /* , where f*(x) =/(^""1)» but it is not easy 
to deduce this for general elements of Z,2(G).9 This follows immedi­
ately from the measurability of all such operators, relative to the 
standard ring associated with (A, E). This measurability also implies 
the much deeper result, apparently unobtainable in any direct 
fashion, that all such operators form a *-algebra relative to the usual 
algebraic operations for partially defined operators followed by the 
operation of closure. In particular, any formally hermitian poly­
nomial in these convolution operators is essentially self-adjoint on 
any of a wide class of domains; on the other hand, purely from the 
standpoint of general harmonic analysis, it is far from clear that the 
domain of such a polynomial has any nonzero vector. 

Concepts similar to that of the integration algebra have developed 
from the theory of rings of operators, harmonic analysis on groups, 
and measure and ergodic theory. The work of von Neumann and 
Murray is frequently suggestive of the introduction of algebraic-
integration-theoretic concepts, and in [67] they write of their re­
sults: 'This leads to an interesting and entirely new type of infinite 
hypercomplex system, which is a t the same time a Hubert space. A 
subsequent paper will be devoted to their independent s tudy/ How­
ever, the indicated article did not appear. The abstract by Rokhlin 
[77A] introduced a system termed a 'unitary r ing/ based on a Hubert 
space some of whose elements were unbounded as multiplication oper­
ators. The 'iJ-system' introduced by Ambrose in [ l ] for the treat-

9 Cf., e.g., the direct proof of the self-adjointness of the operation of convolution 
by a self-adjoint element of Lz(fi) which is given in [86], 
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ment of the Z,2-convolution algebra of a unimodular locally compact 
group differed from the unitary ring primarily in its non-abelian char­
acter. The axioms for an ü-system are difficult to verify in practice 
and the proof offered in [ l ] that L^G) is an i?-system is in error. In 
[88], the term 'Hubert algebra' was introduced for a concept equiva­
lent to that of the integration algebra on which the present exposition 
is based. The general theory of such algebras combined with the 
obvious Hubert algebra character associated with LÏ{G) showed that 
it was indeed an iî-system also, but the implications of this by virtue 
of [ l ] were subsumable under the elementary theory of Hubert alge­
bras on which the deduction was based. 

In [37] Godement introduced shortly afterwards the notion of 
'algèbre unitaire' which was likewise equivalent to that of integration 
algebra. The elementary theory was developed, along lines basically 
similar to those of the corresponding section in [88], and applied to 
the correlation of the notion with that of if-system in [73]. The cases 
of nonunimodular groups and type III rings, which do not provide 
integration algebras, suggested the generalization by Dixmier [17A] 
to 'algèbres quasi-unitaires.' They bear a non trivial integration-theo­
retic structure only to the extent that the 'quasi' may be deleted, so 
that, while useful for algebraic purposes, they are logically excludable 
from the present exposition. 

The theory of rings of operators in relation to conventional integra­
tion theory was thus far from being the only stimulus to the develop­
ment of noncommutative integration theory. Some basic results in 
the theory of integration algebras were first proved in the context of 
harmonic analysis on groups. For example, the commutor theorem, 
to the effect that any operator which commutes with all right multi­
plications in an integration algebra is in the ring generated by the 
left multiplications, was first proved in a form in which it asserted 
that for any unimodular group G, any operator which commutes 
with any right translation is in the ring generated by the left trans­
lations [85]. The proof of the general integration algebra theorem 
( [88] ; the proof in [36] is essentially the same) is similar to the central 
part of the proof of the cited group-theoretic result. The most im­
portant example, as well as the most significantly integration-theo­
retic, is that of the problem of the development of an effective com­
mon extension to the Plancherel theorem for abelian groups and the 
Peter-Weyl theorem for compact ones. This had been under con­
sideration for some time (cf. [84]) before the appearance of von 
Neumann's paper [112] on direct integral theory supplied the crucial 
theory for making the connection with the general theory of rings of 
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operators.10 This paper showed that a gage, or 'weight' function, in 
von Neumann's terminology, could be decomposed into a direct inte­
gral of dimension functions into which the given ring decomposed 
relative to its center. Much consideration had previously been given 
to the linear functional E(L/)=f(e), where L/ denotes left convolu­
tion by the smooth function ƒ on L2(G)t G being the given group, 
which had been shown to have a number of properties qualitatively 
describable as those of a noncommutative integral. The connection 
came about through the reformulation and extension of E as follows. 
Let P be any projection in the ring of operators generated by left 
translation; then if P has the form L/ for some element /£Z,2(G), 
m(P) is defined as ||/||2; if P does not have this form, then m(P) is 
defined as + 00. (In a formal way, m{P) may be identified with E(P).) 
It could then be shown that m was a nonsingular gage and the von 
Neumann reduction theory for weights brought to bear. 

In the meantime, Gelfand and Naïmark in their highly germinal 
paper [29] had formulated an analogue to the Plancherel theorem in 
the case of the Lorentz group, proceeding along quite different and 
Relatively classical lines. In later work [30 ], [3l] this result was ex­
tended by them to the complex classical groups and, in part, to the 
real groups. Their formulas were of a highly explicit character which 
did not, however, make fully clear the connection with the general 
theory of semi-simple Lie algebras, as did the later work of Harish-
Chandra [43] applicable to all the semi-simple complex groups. 
Probably the deepest successes of the extensive recent development 
of the theory of infinite-dimensional representations of Lie groups 
lie in the development of these formulas. It should be realized, how­
ever, that once a classification of the irreducible unitary representa­
tions of a semi-simple Lie group G has been made, the derivation of 
a 'Plancherel formula' for the group consists precisely in the com­
putation of a certain measure on the subsets of the parameter-space 
in terms of which the representations are labelled. The existence and 
basic properties of this measure are known from the general Plancherel 
theorem, in which formulation it is also known to be unique. 

To describe this result, it should be recalled that the von Neumann 

10 The existence of this work, whose publication was delayed for a decade, had 
been indicated in earlier published work, but without any indication of the primarily 
relevant part dealing with weight functions. Von Neumann was aware of the interest 
in extending Plancherel's theorem, but expressed doubt as to its feasibility on the 
grounds that the real unimodular group in two dimensions had no unitary representa­
tions into finite factors. 
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theory showed that the system (L, m), where L is the ring generated 
by the left translations, was a direct integral—symbolically, 

(L, m) = J (Lx, mx) dfi(\), 

where (Lx, m\) is a factorial ring-cum-gage, and X a real parameter. 
From this it is deducible ( [86] ; u see also below) that if ƒ is a function 
in Li(G)ni2(G), then 

ƒ | f(x) \>dx = f trx(Fx*Fx) dn(\), 

where F denotes the operator of left convolution by ƒ, F\ the com­
ponent of this operator in the constituent Lx, and trx the trace func­
tion corresponding to the gage m\. This is basically the content of the 
Plancherel formula except that the parameter X is not yet a label for 
a group representation. In a formal way, however, it determines a 
group representation, inasmuch as the formal map F-+F\ is a repre­
sentation. This is readily done with the help of a later approach to 
reduction theory ( [87,1 ]) which exploited the use of states and simple 
integration-theoretic ideas (cf. also the slightly later work [36] which 
is, in part, based on similar ideas). The use of real parameters X was 
eliminated in favor of one in any of a variety of spaces, which could 
in particular be chosen as perfect, in which case the highly intricate 
measurability problems involved in the von Neumann theory were 
greatly reduced. There is then for all X a corresponding continuous 
unitary representation of G, R\f and the formula then becomes vir­
tually of the classical type with F\ having the form 

Fx= f Ri(a)f(a) da. 
JG 

11 In [62] essentially the same result is given, but only the simplest of the four 
lemmas providing the offered proof is correctly established. Among the difficulties are 
the following. Both in the proofs of Lemmas 7.1 and 7.4 (p. 551, lines 13-14 and 
p. 553, lines 9-10 from bottom) it is tacitly assumed as obvious that if ƒ is an element of 
L2(G) defining a bounded convolution operator, then the same is true of ƒ*. This 
follows from [88], but no independent proof was offered in the reply to our com­
munication pointing out this deficiency in [62]. In the proof of Lemma 7.3 it is simi­
larly assumed that if ƒ is an element of L2, convolution by which agrees on LiC\La with 
a bounded operator on Z,2, then the convolution operator as defined by the usual 
integral is itself bounded. The interested reader may compare the submission dates 
of [62] and [86] and note that the otherwise exhaustive introduction to [62] contains 
no mention of the material in it just described, which is placed at the end of the paper 
and has no organic connection with its earlier parts. 
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It may also be extended to arbitrary functions in L2(G), as in the case 
of the classical Plancherel theorem. The integral over the parameter 
space may be formulated as an integral over the space P of all con­
tinuous irreducible representations of G by forming the measure-
theoretic quotient of the parameter space modulo the equivalence 
relation of corresponding to unitarily equivalent representations. I t 
then has the form, identical with that usually employed in connection 
with semi-simple Lie groups, although for slightly more general func­
tions ƒ, 

f I ƒ(*) I2 dx = f trR(F%FR) d»(R), where FR = f R(a)f(a) da. 
J Q J p J Q 

Moreover, the measure JJL is essentially unique. 
What is involved in the derivation of explicit such formulas for 

particular groups is thus, basically, computation of the measure JJL 
in terms of the parameters in terms of which the representations have 
been labelled. In principle, there is no uniqueness to these labels— 
other than the trivial label given by the identity map—so far as is 
presently known, nor is there any uniqueness to the corresponding 
reference measure in the parameter-space, in terms of which the 
Plancherel measure is usually given by its density function. There is 
naturally a corresponding ambiguity in the Plancherel measure, but 
it is of the same type as that discussed in the previous section, involv­
ing only a transference from one space to another of the measure. 

From the viewpoint of general understanding rather than explicit 
computation the Plancherel measure may be best regarded as a gage 
on the center C of the ring of operators L generated by left (or, equiv-
alently, of right) translations. Any set S of factorial unitary repre­
sentations determines a projection in C—namely that on the sub-
space of all elements of L2(G) which transform in accordance with a 
direct integral of elements of the representations—and the Plancherel 
measure of 5 is the gage of the corresponding projection.12 The com­
plete Boolean algebra of these projections is naturally representable, 
for separable groups, as a Boolean algebra of sets of factorial repre­
sentations, on which a measure is defined in this way. There is, in 
general, an ambiguity in the normalization of the trace functions 
tTR, but there is a natural normalization except in the case in which 

12 When G is abelian these projections are in one-to-one correspondence with the 
measurable sets modulo null sets in the dual group G*, and the Plancherel measure is 
the Haar measure; in [79], Haar measure on G* is constructed in essentially this 
fashion. Thus A* is in a sense dual to m, which is the origin of the term "dual gage" used 
for p in [86]. 
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factorial components of type II» are present, which is rare (in fact, 
a set of type I I* of positive measure has not yet been observed for 
any group, though there is no special reason to doubt that Lie groups 
will eventually be found for which they exist). In particular, in the 
cases of abelian, compact, discrete, and semi-simple Lie groups, such 
components cannot arise. For the especially interesting, though ana­
lytically most complicated, case of a semi-simple Lie group or any 
other so-called 'type I' group, the Plancherel measure fi9 with the 
standard normalization of the trace functions, is readily given directly 
in terms of the gage w, e.g., in the following fashion. A projection P 
in the ring L may be called relatively minimal in case it has the prop­
erty that if Q is any other projection in L such that Q ^ P , then neces­
sarily Q = PK with K in C; and relatively nonsingular if PK = 0 with 
K in C only when K = 0. Projections with both of these properties 
exist, on the basis of the general theory of type I rings ([87, I I ] ; also 
in [18]), and if PQ is any one of them, the Plancherel measure is 
given by the formula 

n(E) « tn(EPo), EEC, 

as is also clear from the general theory. On the other hand, an explicit 
determination of an operator P 0 , which is highly nonunique although 
the corresponding measure is unique, is not easy. In the nature of the 
situation, it is not to be expected that there exists any explicit ex­
pression for the Plancherel measure which is applicable to broad 
classes of groups, but a conjecture emerging from the work of 
Gelfand and his associates, of a conceptually quite simple if analyti­
cally implicit character, is given in the paper of Kirillov [49]; its 
applicability to nilpotent groups is established there, by methods 
quite distinct from those involved in establishing it in the semi-
simple case treated earlier by Gelfand and collaborators, and it may 
quite conceivably be valid for arbitrary connected Lie groups, or a t 
least those of type I. 

A completely different concrete analytical situation in which non-
commutative integration theory naturally arises, the theory of Fermi-
Dirac quantization, is described in [91 ], [94], and [ l00]. The ap­
proximately finite factor of type Hi arises here in a natural way 
from a weak distribution on Hubert space, the Clifford distribu­
tion, which is noncommutative but nevertheless has a role closely 
analogous to that of the isonormal distribution, from which, in a cer­
tain sense, it differs only in sign. This approach to the Fermi-Dirac 
quantum field makes possible a more general and explicitly invariant 
treatment of it than has yet been attained by other methods; it 
seems well suited to the rigorous treatment of the Dirac hole theory, 
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which has not yet been given in the literature; it is planned that this 
will be detailed elsewhere. 
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