
FUNCTION SPACES1 

ARTHUR SARD 

1. Introduction. What I shall say is directed towards the explicit 
description and study of individual functional and operators. I first 
consider the function spaces C%{D), B, K, Z (defined below) and 
their adjoints. Then I consider the factorization of operators. 

If X is a normed linear space, its adjoint, or conjugate, or dual, X*, 
is defined as the space of linear continuous functionals on X, with 
norm 

IIFII = sup I F * I, F ex*. 
«ex;IMI-i 

The space X* is determined by X. For some X, our knowledge of 
X* is complete and useful. This is the case if X is a Hilbert space, or 
an L*-space, p*zl, or the space CQ(D) of continuous functions on a 
compact domain D [2, Chapter 4]. For some X, as we shall see, our 
knowledge of -X"* is incomplete. 

Definitive theorems about the spaces Cn(I)*, B*, K*, and Z* are 
given in §2 and §4. These theorems provide accessible standard forms 
for Fx, xÇzX, and explicit procedures for calculating \\F\\, where 
FÇzX* and X is dCO, B, or Z. Theorem 6 provides an accessible 
form, free of Stieltjes integrals, for Fx, xÇzB, where F£K*. 

The theorems of §3 about C£(D)* appear to be new. Theorem 2 
asserts the existence of a standard form for Fx, xÇ.C%(D), where 
FÇzC%(D)*. Theorems 3 and 4 describe the functional 0 as an ele­
ment of C?(/)* and CI(I)*. 

Just as X determines X*, so a pair X, Y of normed linear spaces 
determines the space 3(X, F) of linear continuous operators on X to 
F. If we wish to study an operator T0C:3(X, F), the properties of To 
common to all elements of 3(X, Y) may be insufficient to provide an 
accessible form for ToX, x^X. It is often useful to study T0 as an 
individual and, if possible, to write T0 as a product of linear con­
tinuous operators. Such factorizations and their use in the theory of 
approximation are considered in §5. 

Theorem 10 is a dual of Fubini's theorem. 

2. The space C»(7). Let ƒ be a compact linear interval and n a 
nonnegative integer. The space C«(7) consists of functions on J which 
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are continuous together with their derivatives of order ^n, with 
norm either 

111*| 11 = max sup | Xi(s) | , xE Cn(I)7 
i = 0 , " - , n sel 

or 

||*|| = max[| x{a) | , | xx(a) | , • • • , | xn^(a) | , s y p | xn(s) \ ]; 
sel 

where subscripts indicate derivatives and a is an arbitrary fixed ele­
ment of I. The double and triple norms \\x\\ and | | |x| | | are equivalent: 
either one is majorized by a constant times the other, as is clear from 
the Taylor formulas for # t(s), s £ J , i<n, in terms of x(a), • • • , 
xn_i(a), and xn(s), s £ J. 

A functional FECn(I)* has norms \\F\\ and \\\F\\\ relative to the 
double and triple norm in Cn(I), respectively. The norms \\F\\ and 
III J7! 11 are equivalent. One advantage of ||i<j| is tha t it is given ex­
plicitly in the next theorem, for an arbitrary FÇzCn(I)*, whereas the 
calculation of \\\F\\\ may be awkward. 

If ƒ is a function of bounded variation on I , we agree to extend its 
definition as follows : 

(f(a) if s g a, 

If (a) lis ^ a, 

where 1= {sia^s^a }. We say that ƒ is a normalized function of 
bounded variation if ƒ is of bounded variation and f (a) = 0, / ( s + 0 ) 
—/(s) whenever ST^CL. Thus a normalized function of bounded varia­
tion on I vanishes on the lower boundary of J and is continuous from 
above except possibly on the lower boundary. 

THEOREM 1. Suppose that F(£Cn(I)*- Take a £ I . Then unique con­
stants c°, c1, • • • , cn~l and a unique normalized function X of bounded 
variation exist such that 

n— 1 /• 

Fx = ] £ c*Xi(a) + 1 xn(s)d\(s) for all x G C„(7). 
f'-O JI 

Furthermore, 

ilc* = F[(s - a)*], 

f lim FTn
8B(t, s) ift> a, 

(0 otherwise; 

and 
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W - Z k l +varX. 

Here the i attached to (s—a) is an exponent; T9 is the Taylor 
operator of taking the indefinite integral which vanishes at s = a: 

T»z(s) = I z(s) ds; 
J a 

7? is the n-fold iteration of Ts, which may be expressed as a single 
integral [5, p. 152]; [dv:v = l, 2, • • • } is a monotone sequence of 
continuous functions whose limit is the Heaviside function 6: 

(i) e(t,s)~ \ 
U if S S ty 

and var X is the variation of X. In the equation for \(t), F operates 
on its argument as a function of s. The theorem asserts that the 
limit in the above definition of X exists. 

If w = 0, Theorem 1 reduces to Riesz's theorem on C0(I)*. If n>0, 
Theorem 1 is an immediate consequence of Riesz's theorem. All de­
tails are given in [5, pp. 139, 154]. 

3. The space C™(D). There are many generalizations of Cn(I). One 
is the space C„(D) defined as follows. Let D be a subset of Euclidean 
w-space Rw. A function x on D to R is an element of C™(D) if and only 
if there exists a function y on an open set QZ)Z> which is an extension 
of x and which has continuous nth partial derivatives on 0. The open 
set Q may depend on x. The partial derivatives of x are defined as 
those of one such extension y [ö]. 

We define the triple norm | | |x| | | in C™(D) as 

| | |* | | | = max sup I X(h)(s) | , x G C%(D), 

where 

(s) = (sh • • • , sm), (A) = (*i, • • • , hm), <r(h) = hi + • • • + hm. 

The indices hi, • • • , hm are nonnegative integers, and the compound 
subscript (h) indicates a partial derivative. 

If D is compact, which we shall always assume, then | | |x| | | is finite 
whenever *GCn(X>). 

Let us say that a set D is boundedly connected if any two points of 
D may be joined by a rectifiable curve contained in D, of uniformly 
bounded length. 

Suppose that D is compact and boundedly connected, and that 
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(a) is a fixed element of D. We define the double norm ||#|| in C» (J9) as 

11*11 = max [| x(h)(a) | , sup | xU)(s) | ] , xE Cn(D). 
<r(ft)<ni<rO)-» (8)eD 

Then ||#|| is majorized by |||*||| and, conversely, |||x||| is majorized 
by a constant times ||#||, since we may express #(*)($), (s) ED, a(h) <n, 
in terms of #(*)(#), <r(h) <n, and #(/)($), (s)ED, <r(j)=n, by Whitney's 
form of Taylor's formula along rectifiable curves of bounded length 
[6, equation (4)]. Thus the double and triple norms in C™(P) are 
equivalent if D is boundedly connected. 

THEOREM 2. Suppose that FEC%(D)*, where DQKm is compact and 
boundedly connected. Take (a) ED. Put 

C(») = F[(SI - ax)** • . . ( * , - a»)H/*il ' • ' W, *(*) < ». 

Then f unctions fU), <r(j)=n, of bounded variation on D, exist such that 

(2) F*= E «»>*»>(«) + E f *(/><*) W * ) 
<r(h)<n <r(;)-n ^ D 

and 

(3) IMI- E I*» I + E var/». 
(r(*)<n * ( / ) - » 

The functions / 0 ) may, alternatively, be called bounded signed 
measures. 

A few comments before the proof may be of interest. 
Theorem 2 does not afford a method of calculating the functions 

/ ( / ) , c(j)=n. Nor is any universal method known, even in the case 
in which D is a solid sphere or an w-dimensional interval! In con­
sidering a particular functional F, one may, perhaps, find functions 
ƒ<» for which (2) holds; then (2) would imply that [S, p. 204] 

(4) ||*|| = E | * w | + E varƒ<>•>, 
ff(h)<n *0')—n 

a relation which is weaker than (3). The reason that equality in (4) 
may not be valid is that the partial derivatives *(,-), <r( j) = », of a func­
tion xEC™(D) are somewhat dependent on one another; if Xy9) 
resonates with its integrator dfW in (2), it may be impossible for 
X(k) to resonate with d/(*), <r(k) =». Thus the full resonance indicated 
by (3) instead of (4) may be unattainable and unapproachable for 
xECZ(D), ||*|| = 1. For the f unctions ƒ <» of Theorem 2, however, 
both (2) and (3) hold. 
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The general case is like the particular case m = 2, » = 1, which we 
now discuss, using an alphabetical notation: 

(a, b)EDC R2, 

|J|a;||| = max[sup I x(s, t) | , sup | Xi,o(s, t) | , sup | x0tl(s, t) | ] , 

||*|| = max[ I x(a, b) | , sup | xi,0(s, t) | , sup | x0,i(s, t) | ] , x G Cî(£9; 

where the suprema are taken for (s, t)ÇzD. 
A first attempt to prove Theorem 2 might start with Taylor's 

formula, 

x(s, t) = a(a, 6) + I {(s — a)#i,o[a + #(s — a), 6 + w(/ — b)] 

+ (f- b)x0,i[a + u(s - a), 6 + «(* - ô)]} rfw, (s, t) G £ , 

valid for xÇzC%(D), where, for the moment, we assume that D is con­
vex. If FGC? (£>)*, we may operate with F on both sides of the 
equation, but F of the integral is not readily simplified. One may not 
interchange F and ƒ, since the integrand is not necessarily an ele­
ment of (?i(D) for fixed u. Nor may we write F of the integral as the 
sum of two terms of which one is 

F I (s — a)xi,o[a + u(s — a),b + u(t — b)] du, 
Jo 

since the argument of F here is not necessarily an element of C{(D). 
PROOF OF THEOREM 2. The particular case m = 2, « = 1, will indi­

cate the general proof. Let 

F = R X C o X C 2 o = { (7 ,J ,2 ) :7GR, }> G C*o, and s G Co}, 

with 

11(7, 3>, *)||r = max(| y\ , ||;y||c2, y ^ ) , 

where C?= C^CD). The key to the present proof is that if *GC?(-D), 
then (#(a, i ) , #i,0, « o j G ^ 

Let Jlf be the linear set 

{(% y> z) - For some x G Ci(D), y = a;(a, &), ? = xlt0, and 2 = #0.1} C F. 

Define 0 as the map of C%(D) onto M in which 

0(#) = (x(a, b), *if0> #o,i) G M, * G Ci(Z>). 

By Whitney's form of Taylor's formula and our hypothesis on D, 
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<f> is one-to-one. Furthermore, both <f> and <frl are bounded maps 
with bound 1, since 

IkWllr-IHIcjo», *ECl(D). 
Put 

G = F<trK 

Thus G is a linear functional on MQY, and G is bounded with 

\\G\\M* = |M|c2(Z»* < 00. 

By the Hahn-Banach theorem [l, p. 55], there exists a linear con­
tinuous functional H on Y such that 

H(y, y, z) = G(y, y, z) for all (7, y,z) E M 

and 

Now 

ff(r, y, t) = H(T, 0, 0) + 27(0, y, 0) + 27(0, 0, «), 

and the terms on the right are linear continuous functionals on R, 
C?, Co, respectively. Hence 

H(y, y, z) = cy + ƒ ƒ y(s, t) de(s, t) + ƒ ƒ z(s, t) df(s, t), 

(T, y, 2) G F, 

and 

ll^lk* = \c I + var Ö + var/, 

where c = jff(l, 0, 0) = 7r[l]GR, and e,/ are functions of bounded 
variation on D for which explicit formulas in terms of H can be given 
[5, pp. 244, 245]. 

Then 

Fx = G<t>(x) = H<l>(%) = H[x(a, b), #i,o, ffo.i] 

= cx(a, b) + I I ffi.ofa, /) de(s, t) + dual term, x E C\(D). 

This completes the proof. 
In a similar fashion, one may establish the following theorem. 

THEOREM 2'. Suppose that FEC^D)*, where Z>CRm is compact but 
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not necessarily connected. Then f unctions g(A), <r(h) ̂ nf of bounded vari­
ation on D, exist such that 

Fx = E f x(h)(s) dg(h\s) forallxECn(D), 

and 

111*111- £ varg<». 

Here, too, there is no known method of finding the functions g(h\ 
<r(h) ̂ n. Theorem 2', with m = 1, is a partial analogue of Theorem 1. 

An interesting question is this: When can an expression Fx of the 
form (2) vanish for all x£C™(7>)? By taking x(s) to be the polynomial 
(si—ai)hi - • • (sm—am)*™, we see at once that it is necessary that 
c<*> = 0 for all (h) such that <r(h) <n. 

Let 7 be a compact interval which contains D. If dfV\ a(j) = n, are 
given on D, then df(/) may be extended onto J by ascribing zero meas­
ure to all subsets of 7—D. Then 

f zdfW = f 
J D J x 

zdfv>, 

whenever the first integral exists. We shall, therefore, consider ex­
pressions of the form (2) in which D is a compact interval of Rm and 
c<*> = 0, <r(h)<n. 

Let 

7 = { (s) : ai S si ^ ai, • • • , am ^ *m ̂  am} C Rw. 

If ƒ is a function of bounded variation on 7, we agree to extend its 
definition as follows: 

where 

*/ = 

ƒ(*)=ƒ(*') ior all (*) G RM, 

a»- if Si ^ a*-, 

^ if ai ^ Si ^ &i, i = 1, • • • , m. 

ai if ai ^ Si, 

We say that ƒ is a normalized function of bounded variation on 7 if ƒ 
vanishes on the lower boundary of 7 and, except possibly on the lower 
boundary, is continuous from above: ƒ(s) = 0 if for some i, Si = a^ and 
/ ( s + 0 ) =ƒ($) if for all i, st^at-. 

In the following theorem, the operator Di~d/dsi indicates partial 
differentiation, i = l , • • • , m\ the operator 5» indicates the substitu-
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tion of &i for s<; the operator 7\= Tu is the analogue of the Taylor 
operator of Theorem 1 ; and a caret above an operator indicates its 
absence. For example, 

/* «1 /• «3 

SlS2§zTiTzZ(Sif S2, Sz) = I dSi I z($i, «2, 5s) <ft?3. 
»J at • / a. «1 v «S 

THEOREM 3. Suppose that gi,i=l, • • • , m, are normalized functions 
of bounded variation on I. A necessary and sufficient condition that 

£ f (Dix) dgi = 0 for all * G C? (/) 

is that the following conditions hold for all (s)Ç.I: 

Sx • • •& • • • S'.tf'M = 0, i = 1, • • • , m\ 

Si • • -A • • -S, • • • 54ry«*(j) + r t f^)] =0, *<y; ; ,i= 1, • • • , » ; 
5i • • • A • • • S, • • • & • • • s.[2V2V(5) + n r ^ ) + 2W(*)]=o, 

i <j < k\ i,j, k = 1, • • • fm; 

£ Ti . . • ti . . . r^(5) = 0. 
»-i 

We shall give the proof for the case m = 2, where the theorem is the 
following. 

Suppose that I=I9Xlt, I»= [ccf &], I%= [j3, j$], and e,f are normal­
ized functions of bounded variation on I. A necessary and sufficient 
condition that 

(5) ƒ ƒ *i,o(*, 0 de(s, t) + ƒ ƒ xo,i(s, t) df(s, 0 = 0 for all x G C\ (I) 

is that 
e(s} ft) = 0 for all s G / „ 

(6) 
ƒ(«, 0 - 0 for all t G /«, 

and 

(7) f e(*, I) dt + ƒ'ƒ(*> t)ds = 0 for all (s, t) G / . 

PROOF. Denote the left side of (5) by Fx. Suppose that y£.&(I8) 
and that x(s, t) =y(s), (s, t)EI. Then xECÎ(I), and [5, p. 518] 
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Fx = ƒ ƒ yiW de(*f 0 = ƒ yiW * ( J I # • 

This expression vanishes for all y £&( / , ) if and only if é(s, $) =0, by 
Riesz's theorem [5, p. 135; cf. p. 507 also], since our hypothesis that 
e(s, t) is a normalized function of bounded variation on I implies that 
e(s, $) is a normalized function of bounded variation on /,. 

Thus (6) is necessary and sufficient that Fx = Q for all ff£C?(Z) 
which are functions of s alone or / alone. 

Assume (6). We shall show that Fx = Q for all xÇzCKl) if and only 
if (7) holds. Since Cf(J) is dense in C?(7), it will be sufficient to con­
sider C5(7). 

Consider an arbitrary xÇzC%(I). By a simple Taylor expansion, 

(8) x(s, t) = x(a, t)+ f *i,o(J, 0)ds+ \ ds \ xlti(s, t) dt, (s, t) E /• 

This relation is, in fact, equation (56) of [5, p. 184] for the space B 
in which (a, b) = (a, j3) and 

«..«={(1,1)}, S..»={(1, 0)}, «.,«= {(0, 0)}, wo.b = 0. 

Since the first two terms on the right of (8) are functions of s alone 
or / alone, they are zeros of F. Hence 

F# = I I de(s,t) I xi,i(s,t)dt + dual term 

= 1 1 <fe(j,# I xiti(s,t)6(t,t)dt + dual term, 

where 0 is the Heaviside function (1). By Fubini's theorem, 

Fx = f rfJ 1 I *i,i(s, *)0(*, t) de(s, t) + dual 

= \ dt \ \ «1,1(5, 0 de($, 0 + dual 

= f dt f xiti(s, t) [de(s, $) - de(s, t - 0)] + dual 

= - f rfJ f *I,I(J, I) de(s, t) + dual, 
JTj J I. 

by (6) and the fact that e(s, t) and e(s, / —0) differ on a countable set 
which is therefore of Lebesgue measure zero. Hence 
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FX = " J J Xl,1(S' ̂  d8tt I J '̂ ?) dl + ƒ '̂ ̂  *] ' 
by a direct argument. Now the integrator (quantity in brackets) is a 
normalized function of bounded variation on / . Hence Fx = 0 for all 
tfi.iGCoCO if anc* only if the integrator vanishes for all (s, / ) £ / 
[S, p. 244]. This establishes (7) and completes the proof. 

We may construct many forms of OGCi(I)* as follows. Let T be 
an oriented rectifiable closed curve contained in I . Then 

J dx = I Xi,o(s, t) ds + I xo,i(s, t) it = 0 for all x G Ci(7). 

Now express the integral on each partial as a double Stieltjes integral ; 
for example, 

I %1,o(s,t)ds= I I %it*(s,t)de(s,t), 

where e is the normalization [5, p. 532] of the function rj defined as 
follows: T;(5, t) equals the difference in the ^-coordinates of the last 
point of T in [a, s]X \fi, t] and the first point therein. With the dual 
definition of ƒ, we now have an instance of (5). 

Theorem 3 generalizes to C™(7) but both statement and proof be­
come complicated. Perhaps it will be suitable to consider only Cf (/) . 

THEOREM 4. Suppose that e,f, g are normalized f unctions of bounded 
variation on I. A necessary and sufficient condition that 

J J *t.o(*, 0 de(s, t) + ƒ ƒ xltl(s, t) df(s, t) 

(9) ' rr 
+ J J Xo,2(s, t) dg(s, 0 = 0 for all x G c\{I) 

is that 
(10) ƒ(«, jB) - 0, 

(11) e(s, j5) = 0 for all s G / . , g(à, t) = 0 for all t G It, 

T,f(s, £) + I e(s, t) dt = 0 /or a// s G /«, 
(12) 

Ttf(â, t) + ƒ g(5,./) <fe = 0 /or a// / G I«, 
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(13) T%(s, t) + T,Ttf(s, t) + T*9g(s, 0 = 0 for all (s91) G / . 

PROOF. Denote the left side of (9) by Fx. Suppose that y£.C2(I*) 
and that 

x(s, t) = y(s), (s, t) G I. 

Then # £ £ ? ( / ) , and 

Fx = I I y2(s)de(s,t) = J y2(s) de(s,J3). 

This expression vanishes for all yCEC2(I9) if and only if e(s, j3)=0, 
since e(s, 0) is normalized on / , . Thus (11) is necessary and sufficient 
that Fx = 0 for all tfGC^CO which are functions of s alone or of t 
alone. 

Assume (11). Put x(s, t) =st. Then 

F* = ffdf(s,t)=f(«J) = 0 

if and only if (10) holds. Assume (10). Suppose that y(E:C2(I9) and 
that x(s, t) = (t-p)y(s), (s, t)EI. Then 

Fx = ƒ ƒ (t - 0)y2 (s) de(s, t) + ƒ ƒ yi(s) df(s, t) 

= f y2(s) d, f (t - 0) dte(s, t)+ f yi(s) df(s, $ , 

by the dual of Fubini's theorem, given in the appendix of the present 
paper. By parts, using (10) and (11), we see that 

Fx = J y2(s) d8 To - ƒ e(s, t) dt\ + 0 - ƒ f(s,$)y2(s) ds 

= - ƒ y2(s)dJf e(s,t)dt + f'f(s}$)ds^ 

- - ƒ ?•« <*,[ ƒ «(*,*)* + 2Vfr,fl>]. 

Now the integrator is normalized on /, . Hence Fx = 0 for all yÇzC%(I9) 
if and only if the first relation of (12) holds. This and the dual argu­
ment show that Fx = 0 for all XGC2CO which are such that either 
%(s> O — ^—ftyfa), yE:C2(I8) or x is the dual function, if and only if 
(10) and (12) hold. 

Assume (10), (11), and (12). We shall show that Fx = 0 for all 
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xGCtil) if and only if (13) holds. Since Cl(I) is dense in Cf(/), it will 
be sufficient to consider Cl(I). 

Consider an arbitrary #£C^(2). By a simple Taylor expansion, 

x(s, t) = x(a, t) + 7>i,o(s, $) + T,Ttxlfl(a, t) + T\Ttx2tl(s, 0) 

+ TÎT]x2t2(s, /), (s, t) G / . 

This relation is, in fact, equation (56) [S, p. 184] for the space B in 
which (a, b) = (a, j8) and 

* . , , - {(2,2)}, «*.»- {(1,0), (2,1)}, 

S . . I - {(0,0), (1,1)}, fi..»-0. 

Now the terms on the right side of (14), except the last, are zeros of F. 
For example, 7?7>2,i(s, P) = (/-/3)I?**,i(5, J8) and 7?z2,i(s, j8)GC2(/.). 
Hence 

F* - Fr?7Vs2f2(*, 0 

- ƒ ƒ [rî*2.2(*, 0] *(*i 0 + ƒ ƒ [r.7>2f2(s, /)] #(*, t) 

+ dual of first term 

« ƒ ƒ *(* 0 ƒ *t.i(* *)(' - *)»(', *) <# 

+ [ j df(s,t) f f *i,s(j, ï)tf(j, *)«(*, *)£»<# + dual of first term, 

by (1) and [5, p. 152]. By Fubini's theorem, 

Fx = ƒ <*J f f x2,2(s, t)(t - *)«(/, *) &(*,/) 

+ f f *s.a(5, Î) dsdt j f 6(s, $)6(t, t) df(s, t) + dual of first term. 

Now, by the dual of Fubini's theorem, 

ƒ ƒ *i.i(*, M - l)8(f, t) de(sy t) 

= f *I.I(J, Ö * f (* - *)•(/, 0 **(*, /)î 

and, by (11), 
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J (t - ï)6(t, I) ite(s, t) = f (t-t) ite(s, 0 = 0 - f e(s, t) it. 

Also, by (10), 

ffe(s,3)0(t,f)df(s,t) 

- f f 4f(*,0 - - / ( « , ï - o) - ƒ(* - o, jB) +ƒ(* - 0, J - o); 

and the last expression equals —f(&, t)—f(§, i$)+f($f T) except for 
countably many values of S and / [5, p. 524]. Since we may change 
the integrand of a Lebesgue integral on a set of measure zero, 

Fx = f it f *2,2(s, t) i9 j -e(s, t) it 

+ f f x2t2(h t) [f(5, t) - /(5,0) - /(a, ï)]<Ö<# + dual of first term 

= ƒ ƒ «Lifo*)*.*! ƒ * * ƒ -«(*,*)<« 

+ f ƒ |/(5, J) - ƒ($,£) - ƒ(£, *)] <ta«" + dual of first terml, 

by a direct argument. Hence, by (12), 

Fx - ƒ ƒ *,.«(*, t)itti[Tt(T.f(s, 0) + Tte(s, t)) 

+ T9Tt(J(s, t) - f(s, $ - ƒ(<*, /)) + dual of first term] 

" ƒ ƒ *w (* ̂  da-'lT*(s' ̂  + r'r^J *> + r"«^'^ 
It follows that Fx = 0 for all xEC%(I) if and only if (13) holds. 

Thus Theorem 4 is established. 

4. The spaces B, K, Z. Our knowledge of the adjoint X* varies 
with the space X. We have seen that if X= C%(I), standard forms of 
FÇ:CZ(I)* are not accessible to us, if n>0 and m> 1. It is therefore 
of interest to discover spaces X for which standard forms of F£X* 
and of ||F|| are known and utilizable. The spaces Bf K, Z, to be de­
scribed, are of this sort; B is a generalization of Cl(I) and K of 
Cj-xtO; Z is a subset of C ( / ) . 
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There are infinitely many spaces B, K [5, Chapters 6, 7]. I shall 
describe one pair of spaces in which, in the notation of the reference, 

m = 2, p = 1, 9 , = = 2, n = p + q = 3. 

Let I=1,XIt be a compact interval of the (5, /)-plane. Let (a, 6)GJ". 
To define the space 3 , we first define the core of a function # on I as 
the set consisting of the following partial derivatives: 

DtDtDtx = #1,2(5, Ô, (5, t) G / , 
2 1 

*2.o(*i ft), A A ^ J (•.0-(«,6) = *2.l($, ft), J G / * , 

and 
*o.4(^1 0» * G / * . 

The s£ac£ J5 is defined as the set of functions x for which the deriva­
tives in the core exist and are continuous on 7 , J „ It, respectively. We 
denote by o)8,t the set consisting of the sole element #1,2(5, / ) , by 
co,,& the set consisting of the two elements #2,0(5, b) and #2,1(5, &), by 
ù)a,t the set consisting of the sole element #0,4(0, /). The core of x is 
co,,*Uco,,&Wco0,*. We denote by coa,6 the set of derivatives which are 
predecessors of derivatives in the core, each evaluated at (0, ft). Thus 
coa,& is the set of six elements 

#(a, ft), #1,0(0, ft), x0,i(a, J), 

A A 4 M ) - ( « , 6 ) = #1,1(0, * ) j #0,2(0, ft), #0,3(0, ft). 

The complete core is defined as 

co = « , , * W co,,& V ^ co0,« V J co0,&. 

If #G-5, the elements of co are determined uniquely. Conversely, 
we may take any ordered set of six constants as co0,&, any ordered 
pair of continuous functions on 7, as co,,*, the dual as coa,*, and any 
continuous function on 7 as co,,*; there is then a unique element x of 
B whose complete core co is the constructed set. Thus co is a set of 
coordinates (in fact, intrinsic coordinates) for x. 

An order of differentiation has been specified for each element of 
co. If x G B, then certain derivatives of x must exist and be continuous. 
The set <f> of these derivatives is called the full core of #. A straight­
forward elementary calculation shows that [5, p. 189] 

<t> = <t>8,t {J <t>8,b ^ 4>a,h 

where 

*•.* = {#(*> t), #ito(^, /), #0,1(5, 0, #1,1(5, t), #0,2(5, /), #1,2(5, / ) ; (5, Ô G / ; 

all orders of differentiation are allowed and equivalent} ; 
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&.& = {*2,o(s, b), x2,i(s, b) = Z?j*iti|(M)-(.,6); $ G I*\ both orders of 

differentiation in #1,1 are allowed and equivalent} ; 

<t>a,t = {#0,3(0, / ) , #0,4(0, / ) ; * £ / * } • 

In the present case only one order of differentiation in a mixed de­
rivative is excluded: #2,i(s, b) may not be interpreted as 
DtX2,o(s, t) J (*,«)-»(«,6)• 

We introduce two norms in B as follows: ||x|| is the maximum of 
the suprema of the absolute values on I of the elements of Û>, and 
jll^lll is the analogous maximum for 0, where # £ 5 . These norms are 
equivalent. If a functional FÇ.B*, its double norm ||i<j| is defined in 
terms of ||#||. 

THEOREM 5. Suppose that FÇ.B*. Then unique constants citJ' and 
normalized f unctions \ift' of bounded variation on I8t It, I, respectively, 
exist such that 

(15) 

Fx = X) citJ'xi,j(a, b) + ^2 I xitj(s, b) dX^^s) + dual sum 

+ j I %P,Q(S, t) d\p>*(s, t) for all x E B. 

Furthermore, 

iljlc*'* = F[(s - a)*(t - by], 

riim F[(t - bff86\s, s)] ifs>a, 

10 otherwise, 

i\\it3'(î) = dual expression, 

flirn F[f9 Tq
t6

v(s, s)Bv'(t, t)] ifs>aandt>p, 

\*>*(s, t) = \ V,V 

10 otherwise, 

and 

11*11 - E I H + E ƒ A W\ (s) + dual + ffd\\'«\ (s, t). 

The indices i,j here vary over the domains appropriate to the terms 
of (IS) in which they appear. 

This theorem, like Theorem 1, is an immediate consequence of 
Riesz's theorem on C£**. The proof is given in [5, p. 246]. 
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The formula (IS) for Fx, xÇzB, cannot be simplified, since the ele­
ments of co are entirely independent of one another. The formula 
leads to many strong appraisals, of which 

|F*| S H HI. xEB, 
is one [5, p. 22]. 

If the functions X*»'* in (15) are absolutely continuous, the Stieltjes 
integrals reduce to ordinary integrals. Then the formula (IS) is par­
ticularly useful: it permits appraisals by Holder inequalities [5, 
p. 203] as well as exact evaluation by ordinary integrations. One may, 
for any FÇ.B*, compute the functions \{>' and, by direct study, de­
termine whether X**»> are absolutely continuous and, if so, calculate 
their densities. Such a calculation may be long and even impractica­
ble. It may contain an element of unnecessary calculation, since the 
operators T„ Tt in Theorem 5 are integrations and each differentia­
tion of X*'/, where possible, undoes the effect of one integration. 

The space K, to be described, permits direct access to an equality 
like (15) in which all integrators are absolutely continuous, with 
known densities. The space K involves the retracted core p and the 
covered core J of a function on / . The determination of p and £ is 
straightforward [5, pp. 195, 262]. In the present case, 

p = p9,t {J P*,b U pa,t {J Pa,b, 
where 

Pa,b = <*>a,b, 

P,,b = {*I.O(J, b) — *i,o(a, b), *i.i(s, b) — *i,i(a, b)}, xXti = D,Dtx, 

Pa.t = {xo,z(a, t) - x0,z(a9 6 ) } , 

P.,« = {xo,i(s, t) — *o.ifo b) — xo,i(a, t) + x0,i(a, b)}, 

and 

where 

&.« = {*(stt),*o,i(s,t)}, 

£«,& = {xi,o(s, b), xlti(s, b)}, #i,i = D9Dtx, 

£,.« = {*o,2(a, /), Xo,s(a,t)}. 

We define the space K as the set of functions x on J for which the ele­
ments of p exist and are continuous. 

If x£K, then the elements of £ must exist and be continuous. We 
introduce two norms in K as follows: \\x\\ is the maximum of the 



1965] FUNCTION SPACES 413 

suprema of the absolute values on I of the elements of p, and |||#||| is 
the analogous maximum for £. These norms are equivalent. Note that 
BCK and B*DK*. 

THEOREM 6. Suppose that FÇEK*. Then unique constants cit}' and 
normalized f unctions Ki>]' of bounded variation on I„ It, I, respectively, 
exist such that 

Fs = ]£ cUxiÀa>b) + X) I xiAs> b)^3Xs) ds + dual 1 
"«.6 (a

9,b
Jl' 

+ 11 Xp,q(s, t)K?**(sy t) dsdt for all x G B. 

Furthermore, 

iljlc" = F[(s - aY(t - b)']9 

j\KJ($) = lim F[(t - ft)'r.*"V (a, h s)] ifS>a, 

ikktf(t) = dual expression, 

**'*(*> *) = Hm ^[Tf'VrVfa, s, s)f'\b, 11)] if s > a and t > 0. 

Here, ^v(a, 5, s)=0"($, a) — 0"(s, s), v = l, 2, • • • , are a standard 
sequence of continuous functions [5, p. 146]. The proof of Theorem 6 
is given in [5, pp. 266, 270]. 

It is Theorem 6 which justifies the study of the space K. Its hypoth­
esis involves intrinsic properties of F. Thus F(E.K* means that Fx 
is defined wherever tf£2T, that F is linear on K, and that F is con­
tinuous on K. Of course, Theorems 1, 2, and 5 also involve intrinsic 
properties of their functionals. The earlier theorems, however, are 
immediate consequences of Riesz's theorem, whereas Theorem 6 is a 
somewhat removed consequence. The proof of Theorem 6 depends 
on the exact definition of K and its norm; this definition is just con­
trived to counter difficulties related to the partial dependence of par­
tial derivatives of x. The hypothesis of Theorem 6 cannot be weak­
ened. 

An elementary application of Theorem 6 is the following. Let F=R 
be the remainder 

Rx= I I x(s, t) dn(s, t) - yx(s°, t°) 

in the approximation of the double integral by the natural multiple 
7 of the integrand x(s°9 t°) at the center of mass, where /* is an arbi­
trary fixed function of bounded variation on J, and 
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7 = J J < W M ) , ys° = fjsdn(s,t), yt« = ƒ ƒ * **(*,/). 

We assume that 75^0 and that (s°, J°)£7. The functional R is de­
fined for all functions which are /j-integrable and which are defined 
a t (s°, t°). We shall consider restrictions of R, which we continue to 
denote by the same letter R. Then R £ i £ * for all spaces K. We have 
infinitely many formulas (16) for Rx, x G 5 , one for each space B 
which has a companion K. Each formula is accessible; each gives Rx 
in terms of independent elements; each is sharply appraisable. The 
effect of our having used the center of mass and the factor 7 is that 

Whether other coefficients c**' are present in (16) depends on wa,& 
and fx. 

The proof of Theorem 6 involves another function space Z. As Z 
seems interesting in itself, I shall describe it. The space Z is defined 
as the subspace of C%(I) consisting of functions x(s, t) on I which 
vanish everywhere on I» when t = b and on It when s = a: 

Z = {x £ CoCO: x(s, b) = 0 = x(a, t) for all s E L and / E /<}, 

with the same norm as in C%(I) : 

||*|| = sup I x(s, /) I , x G Z. 
(«,0€l 

Consider a functional FEZ*. Since ZCCoCO, the Hahn-Banach 
theorem implies that there is an extension GECl(I)* of F with the 
same norm, and Riesz's theorem gives an expression for Gx, xEC%(I), 
as a Stieltjes integral on x. The next theorem gives an accessible and 
useful representation of F, different from the Hahn-Banach extension. 

THEOREM 7. Suppose that FEZ*. There is a unique normalized 
function X of bounded variation on I which vanishes everywhere on the 
boundary of I such that 

Furthermore, 

Fx = I I x(s, t)d\(s, t) for all x E Z. 

[ lim F[y(a, s, s)\l/v'(b, t, t)] ifs>a and t > ft 

(O otherwise, 

and 
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H - ff d\\\(s,t). 

The proof is given in [5, p. 257]. We may transform the integral 
for Fx by parts in a particularly simple fashion because X vanishes 
everywhere on the boundary of I [5, p. 518]. 

5. Factors of operators. Let 3(Jf, Y) denote the space of linear 
continuous maps on X to F, with norm 

| | r | | = sup ||F«||, T 6 3(X, F), 
SEX; 0*1 = 1 

where X and F are normed linear spaces. The space 3pf, F) is deter­
mined by X and F. A description of much of our knowledge about 
3(X, F) for specific spaces X, Y is given in [2, Chapters 4, 6]. If F 
is the number system, then 3(J\T, F) = X*, the case considered here­
tofore. 

If TG3(X, F), this fact alone sometimes permits us to acquire an 
explicit expression for Tx, x£X. The space 3(X, F), however, may 
be so complicated that we have no practicable universal method for 
expressing T in standard useful form. 

An analysis of an individual Tinto factors may be useful. HT=QU, 
where Q and U are linear operators, then Tx = 0 whenever Ux = 0, 
xÇzX. Conversely, if Tx = 0 whenever Ux = 0, xQX, where U is a 
linear continuous operator, we may ask whether a linear continuous 
operator Q exists such that T=QU. 

THEOREM 8. Suppose that X, Jf, F are Banach spaces, that 

T G 3(X, F), U G 3(X, X), X = UX. 

If Tx = 0 whenever Ux = 0, x£.X, then there exists a unique linear con­
tinuous operator (?E3(J?, F) such that 

(17) Tx = QUx for all x G X. 

The proof is given in [5, p. 311]. 
That Q is continuous is an important part of the conclusion, for 

continuity of Q means that the factorization T=QU involves no loss 
of smoothness. Continuity of Q implies the sharp appraisal 

INI ^ Hell IMI, *ex, 
where ||(?|| < 00. 

Theorem 8 depends on Banach's theorem of 1929 on the continuity 
of the inverse of a linear continuous operator [l, p. 41], [S, p. 307]. 
Completeness of the spaces enters. 
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Suppose that the hypothesis in Theorem 8 is lightened in that we 
do not require X, Jf, F to be complete. We may then complete X and 
F, and T and U. Thereafter put X = TJX. Then the hypothesis of 
Theorem 8 will be in force except in one respect: the normed linear 
space X may not be complete. Then the conclusion of Theorem 8 will 
be in force except in one respect: the linear operator Q will exist and 
be closed but perhaps not continuous. 

A plan for the analysis of !T£3CX", F), where X and Fare Banach 
spaces, is as follows. Seek a linear continuous operator TJ on X to 
some normed linear space such that Tx = 0 whenever Ux = 0, xEX. 
Then ascertain whether TJX is complete. 

In the past, TJ has often been taken as «-fold differentiation: 
U=Dn, when X = Cn(I)f IQR. The condition Ux = 0 then means 
that x is a polynomial of degree « — 1 on L In other instances TJ may 
be a homogeneous differential operator of order w, as in the next 
theorem. Alternatively, TJ may be a homogeneous difference operator 
or a mixed differential and difference operator. Further instances are 
given in [5, pp. 314, 315]. 

THEOREM 9. Consider x E Cn(I), 1= {sia^s^a}. In the approxima­
tion of x(t)9 t£I,by a solution of the differential equation 

yn + alyn-x + • • • + a»y = 0, a\ • • • , a» G C0(7), 

according to the criterion of least squares relative to a nonnegative measure 
fx on 7, the remainder is 

(18) (**)(/) = X C*nW + al(s)Xn~l(s) + " ' + *"«*(')]*('» 0 * 
for all t EI9 

where the kernel X can be described explicitly in terms of fi and any set 
of n independent solutions of the differential equation. 

A proof based on Theorem 8 and an explicit description of X are 
given in [5, p. 321]. The equality (18) is an instance of (17) with 

U = D» + a1/)»-1 + • • • + a^D + an. 

Theorem 9 is due to Radon [3] ; cf. Rémès [4] and Widder [7]. What 
I should like to note particularly is that the theory of Banach spaces 
may be used to obtain explicit expressions for remainders in ap­
proximation. 

6. Appendix. Fubini's theorem is a powerful tool in the study of 
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C f x(s, t) df(s, 0 - f f x(s, t) d9ttf(s, t) 

if the integrator factors, that is, if d9,tf(s, t) =dg(s)dh(t). Dually, one 
would expect to be able to evaluate the double integral by two single 
integrations if the integrand factors, that is, if x(s, t) =y(s)z(t). This 
is indeed the case, at least under the hypothesis of the following 
theorem. 

THEOREM 10. Suppose that f is a function of bounded variation on I 
and that yEC(I9), zEC(It), where I=I.Xlt, L= [a, â]9 It= [/3, $]. 
Then 

(19) ƒ " ƒ y W«(0 df(s, t) - ƒ "y(s) d. [ ƒ z(t) dtf(s, / ) ] . 

PROOF. Page references will be to [5, Chapter 12]. 
Put 

* t o - f <t)dtf(s,t); 
J p 

g is well-defined, since f(s, t) is of bounded variation on It for each 
fixed s [p. 525]. 

Consider a subdivision {(s*, tf)}, i = 0, • • • , w; j = 0, • • • , n; of I 
[p. 516]. Now 

A^'-1) - «(*0 - SC**"1) - f i ( Ö 4 [ V , 0 - f(s'-\t)] 

- ƒ ƒ ^ ««)*.<ƒ(* fl, 

by [p. 518]. Hence 

| A * ( J « ) | £ M f f dv(s,t) 

and 

£ I Ag^-1) | £ !**(«, jB). 

where v is the total variation [p. 527] of ƒ and 

M = sup | s(0 | . 
tei. 



418 ARTHUR SARD 

Hence g is of bounded variation and the right side of (19), 

X 

y(s) dg(s), r. 
exists. The left side of (19) exists. 

Put 

and 

We know that <r and r approach the left and right sides of (19) as the 
norm of the subdivision approaches zero. It is therefore sufficient to 
show that <T—T—*0. But 

or — r 
*,y J.»"1 J it1 

and 

| o- - r | ^ sup | y(s) | sup | z(t') - s(f) | «(a, j8) -> 0 

as the norm of the subdivision —»0. This completes the proof. 
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