STIELTJES INTEGRATION, SPECTRAL ANALYSIS, AND THE LOCALLY-CONVEX ALGEBRA (BV)

BY GREGERS L. KRABBE

Communicated by A. E. Taylor, September 17, 1964

The space (BV) (of all functions of bounded variation on an interval $[b_0, b_1]$) is an algebra under pointwise multiplication; one of our aims is to show how it can be made into a locally-convex algebra on which all continuous linear multiplicative functionals are represented by point measures on the interval $(b_0, b_1]$. Our main result deals with spectral and non spectral operators.

The algebra structure is disregarded in §5, where (BV) is endowed with a topology such that the most general continuous linear functional on (BV) has a natural representation by means of a Stieltjes integral.

Given a complete barreled space \mathfrak{X} , we introduce a family \mathcal{E}_1 of functions whose values are commuting projection operators in \mathfrak{X} . The algebra (BV) is topologized in such a way that each strongly-continuous representation $g \rightarrow u(g)$ (of (BV) on \mathfrak{X}) can be expressed in a natural way in terms of some $F \in \mathcal{E}_1$; in fact, u(g) is the Stieltjes integral of g with respect to F.

- 1. A Helly theorem for Stieltjes integrals. Let \mathfrak{A} be an arbitrary complete locally-convex Hausdorff linear space; let F be a bounded function on the interval $[b_0, b_1]$ into \mathfrak{A} , and let g belong to the space (BV) of all complex-valued functions of bounded variation on $[b_0, b_1]$. Our basic theorem is as follows: if
 - (i) the left-hand limit $F(\alpha 0)$ exists whenever $\alpha > b_0$,
 - (ii) $F(\beta) = the \ right-hand \ limit \ F(\beta+0) \ whenever \ \beta < b_1$,
- (iii) $F(b_1) = F(b_1 0)$ and $F(b_0) = the$ zero-element of α , then the Stieltjes sums

$$\sum_{k=1}^{n} g(x_k) \{ F(x_k) - F(x_{k-1}) \}$$

(where $-\infty \le b_0 = x_0 < x_1 < \cdots < x_n = b_1 \le \infty$) converge to a limit, here denoted

(1)
$$\int g(\oplus [\lambda]) \cdot dF(\lambda)$$

—the limit is to be understood in the sense of refinements of subdivisions of $[b_0, b_1]$. If g is left-continuous, then (1) coincides with the

usual Stieltjes integral. The integral (1) satisfies an integration-byparts formula involving a modified σ -Stieltjes integral (in the sense of Hildebrandt [1, p. 273]). The existence of the integral (1) implies the following Helly theorem:

Let $(g_s: z)$ be a net in (BV) such that the set of total variations is bounded. If $g \in (BV)$ is such that $g(\lambda) = \lim_s g_s(\lambda)$ whenever $b_0 < \lambda \le b_1$, then

(2)
$$\int g(\oplus[\lambda]) \cdot dF(\lambda) = \lim_{z} \int g_{z}(\oplus[\lambda]) \cdot dF(\lambda) \quad \text{(convergence in } \alpha\text{)}.$$

2. The spectral theorem. Let $\mathfrak{L}(\mathfrak{X}, \mathfrak{X})$ be the algebra of all linear continuous operators in some complete barreled Hausdorff linear space \mathfrak{X} . Henceforth, \mathfrak{A} will be either a Banach algebra or the algebra $\mathfrak{L}(\mathfrak{X}, \mathfrak{X})$ endowed with the strong operator-topology; although \mathfrak{A} need not be topologically complete, we have the

THEOREM I. All the results of §1 are still valid.

Let \mathcal{E}_0 be the family of all bounded, α -valued functions F on $[b_0, b_1]$ which satisfy all three conditions (i)-(iii), and let \mathcal{E}_1 be the family of all $F \in \mathcal{E}_0$ such that $F(b_1) = I$ (the identity-operator), and

$$F(\alpha)F(\beta) = F(\alpha) = F(\beta)F(\alpha)$$
, whenever $\alpha \leq \beta$.

The above juxtaposition $F(\alpha)F(\beta)$ indicates either multiplication in the algebra α , or the usual composition of operators—when $\alpha = \mathcal{L}(\mathfrak{X}, \mathfrak{X})$.

It will be convenient to say that a net $(g_s: z)$ converges \mathcal{E}_1 -weakly to a function $g \in (BV)$ if (and only if) relation (2) holds for any $F \in \mathcal{E}_1$.

If $H \in \alpha$ and if g belongs to the family P of all polynomials, we write

$$g(H) = g(0)I + g'(0)H + \frac{1}{2!}g^{(2)}(0)H^2 + \frac{1}{3!}g^{(3)}(0)H^3 + \cdots$$

Consider the transformation $g \rightarrow g(H)$ of P into a; by definition, it is s_1 -continuous if (and only if), for any $g \in P$, the relation

$$\lim_{z} g_{z}(H) = g(H) \qquad \text{(convergence in a)}$$

obtains whenever $(g_z: z)$ is a net in P which converges \mathcal{E}_1 -weakly to g. When H is a spectral operator (in the sense of Schaefer [4, p. 155]),

¹ I am indebted to T. H. Hildebrandt who sent me, in addition to detailed information, his own proof relating to the case where F is scalar-valued.

then the transformation $g \rightarrow g(H)$ is \mathcal{E}_1 -continuous; this happens, in particular, when H is a self-adjoint operator.

THEOREM II. Let $H \in \mathfrak{A}$ be such that the transformation $g \rightarrow g(H)$ is \mathfrak{E}_1 -continuous. There exists an \mathfrak{E}_1 -continuous linear transformation (of (BV) into \mathfrak{A}) which maps the polynomial $p(\lambda) = \lambda$ onto the operator H; this transformation, denoted $g \rightarrow u(g)$, is the unique \mathfrak{E}_1 -continuous extension to all of (BV) of the transformation $g \rightarrow g(H)$. Further, the transformation $g \rightarrow u(g)$ is an algebra-homomorphism of the algebra (BV) (under pointwise multiplication), and

$$u(g) = \int g(\oplus [\lambda]) \cdot dF(\lambda)$$
 (for all $g \in (BV)$),

where F is the unique element of \mathcal{E}_1 such that $H = \int \lambda \cdot dF(\lambda)$. If $\lambda \in [b_0, b_1]$ and $g \in (BV)$, then $F(\lambda)$ and u(g) belong to the family of all the elements Q of \mathfrak{A} such that

$$TQ = QT$$
 whenever $TH = HT$ and $T \in \alpha$.

Finally, if g is continuous and $g \in (BV)$, then the spectrum of u(g) is the image $g(\sigma(H))$ of the spectrum $\sigma(H)$.

The hypothesis of Theorem II is satisfied when H is the Hilbert operator H_p in $\mathfrak{X} = L^p(-\infty, \infty)$, or its analogue in the sequence space l_p , where $1 and <math>\mathfrak{A}$ is the algebra $\mathfrak{L}(\mathfrak{X}, \mathfrak{X})$ of bounded linear operators in \mathfrak{X} (both operators are essentially convolution with the function $f(\lambda) = 1/\lambda$, f(0) = 0). When $p \neq 2$, both operators H_p fall outside existing theories: for example, they are not spectral operators, although they are self-adjoint when p = 2.

In case \mathfrak{X} is a reflexive Banach space, the conclusions of Theorem II are stronger than the conclusions obtained from the weaker assumption that H is a "well-bounded operator" (in the sense of Smart [3], [5]).

3. Topological considerations. We shall now attempt to endow (BV) with a topology such that \mathcal{E}_1 -convergence coincides with convergence in the sense of that topology. In order that this topology be Hausdorff, it is necessary to identify functions whose values may differ outside the half-open interval $(b_0, b_1]$. Consequently, (BV) will henceforth be replaced by the family $V^b = \{g^b: g \in (BV)\}$, where g^b denotes the restriction of the function g to the half-open interval $(b_0, b_1]$. Accordingly, $G \in V^b$ implies that $G = g^b$ for some $g \in (BV)$ (that is, $G(\lambda) = g(\lambda)$ for $b_0 < \lambda \leq b_1$); the integral (1) depends on G

and not on g, so that we may introduce the following abbreviation:

(3)
$$u^{F}(G) = \int g(\oplus [\lambda]) \cdot dF(\lambda).$$

Let $\{\|\cdot\|_i: i \in I\}$ be a family of semi-norms determining the topology of α , and let V_1^b be the space V^b endowed with the topology determined by the semi-norms $G \rightarrow ||u^F(G)||_i$, where $i \in I$ and $F \in \mathcal{E}_1$. It is not hard to verify that V_1^b is a locally-convex Hausdorff linear space, and since &1-convergence coincides with the notion of convergence in the topology of V_1^b , a transformation on V_1^b is continuous if (and only if) it is &1-continuous. It might be noted that polynomials are dense in V_1^b . See §5 for another construction of V_1^b : it suffices to replace \mathcal{E}_0 by \mathcal{E}_1 in §5 to obtain V_1^b .

4. Continuous algebra-homomorphisms. As in Theorem II, we exploit the fact that V^b is an algebra under pointwise multiplication $(G_1G_2(\lambda) = G_1(\lambda)G_2(\lambda))$. Let $\operatorname{Hom}(V_1^b: \alpha)$ denote the family of all continuous algebra-homomorphisms of V_1^b ; thus, $u \in \text{Hom}(V_1^b; \alpha)$ if (and only if) u is a continuous linear transformation of the topological linear space V_1^b into α , such that $u(G_1G_2) = u(G_1)u(G_2)$ when G_1 , $G_2 \subset V_1^b$ and u(1) = the identity-operator.

Let u^F denote the transformation $G \rightarrow u^F(G)$ defined by equation (3); it is a continuous algebra-homomorphism of V_1^b ; in fact, the following theorem shows it to be the most general element of the family $\operatorname{Hom}(V_1^b; \alpha).$

THEOREM III. If u is a continuous algebra-homomorphism of V_1^b , there exists one and only one function $F \in \mathcal{E}_1$ such that $u(G) = u^F(G)$ for all G in V^b. The mapping $F \rightarrow u^F$ is a one-to-one correspondence of \mathcal{E}_1 onto $\operatorname{Hom}(V_1^b: \mathfrak{A})$.

As will be seen in §6, the topology of V_1^b is boundedly compatible with the algebra V^b . In case α is the complex field C, then

$$\operatorname{Hom}(V_1^b: C) = \left\{ u^{\alpha} : b_0 < \alpha \leq b_1 \right\},\,$$

where u^{α} is defined on V^{b} by the relation $u^{\alpha}(G) = G(\alpha)$, $G \in V^{b}$.

5. Integral representation of continuous linear transformations. As in $\S 2$, let \mathcal{E}_0 be the family of all bounded, α -valued functions Fon $[b_0, b_1]$ which satisfy all three conditions (i)-(iii); we shall now use \mathcal{E}_0 to define on V^b a topology that is finer than the topology of V_1^b . Set $G \subseteq V^b$ and consider the mapping $F \rightarrow u^F(G)$ (of \mathcal{E}_0 into α) defined by equation (3); it is an element (denoted G^*) of the family $L(\mathcal{E}_0, \mathcal{C})$ of all linear mappings of \mathcal{E}_0 into \mathcal{C} . Let $L(\mathcal{E}_0, \mathcal{C})$ be endowed with the topology of simple convergence on \mathcal{E}_0 ; the transformation $G \rightarrow G^*$ identifies V^b with a subset of $L(\mathcal{E}_0, \mathcal{C})$, and V^b_0 is defined as the space V^b endowed with the topology induced on it by the topology of $L(\mathcal{E}_0, \mathcal{C})$.

Set $F \in \mathcal{E}_0$; the transformation $G \to u^F(G)$ (defined by equation (3)) is a continuous linear transformation of V_0^b into α . In fact, we have

THEOREM IV.² If u is a continuous linear transformation of V_0^b into \mathfrak{A} , there exists one and only one function $F \in \mathfrak{E}_0$ such that

$$u(g^b) = \int g(\oplus [\lambda]) \cdot dF(\lambda)$$
 (for all $g \in (BV)$).

We recall that g^b is the restriction of g to the half-open interval. Let G now be the complex field and $-\infty < b_0 < b_1 < \infty$: the transformation $F \rightarrow u^F$ (see Theorem III) identifies \mathcal{E}_0 with the dual $(V_0^b)^*$ of V_0^b , whence \mathcal{E}_0 can be identified with a subset of the bidual C^{**} of the Banach space C of continuous functions on $[b_0, b_1]$.

6. Locally-convex algebras. Let \Re be an algebra endowed with a topology such that, for any two bounded and converging nets in \Re , the product of the limits is the limit of the product. It will be convenient to describe this situation by saying that the topology of \Re is boundedly compatible with the algebra \Re . Note that such an \Re is a "locally-convex algebra" in the sense of Schaefer [4].

For example, the norm-topology is boundedly compatible with the algebra V^b (under pointwise multiplication). Again, let V_1^b be the locally-convex algebra obtained in §3; we have the

THEOREM V. The topology of V_1^b is boundedly compatible with the algebra V^b .

THEOREM VI. Let A be an arbitrary algebra with unit; Theorems II-III are valid whenever A is endowed with a locally-convex Hausdorff linear topology which is boundedly compatible with the algebra A.

Let α be the algebra $\mathfrak{L}(\mathfrak{X}, \mathfrak{X})$ that was defined in §2; it is not hard to see that the strong operator-topology is boundedly compatible with the algebra α .

Added in proof. The verification of Theorem I is contained in a

² This theorem cannot be inferred from the standard duality theorem; Frank Ryan constructed the counterexample.

paper entitled A Helly convergence theorem for Stieltjes integrals (by Krabbe) which will appear in Nederl. Akad. Wetensch. Proc. Ser. A, communicated by Professor J. Ridder on 25 September 1964.

REFERENCES

- 1. T. H. Hildebrandt, Definitions of Stieltjes integrals of the Riemann type, Amer. Math. Monthly 45 (1938), 265-278.
- 2. G. L. Krabbe, Normal operators on the Banach space $L^p(-\infty, \infty)$. II, Unbounded transformations, Bull. Amer. Math. Soc. 66 (1960), 86-90.
- 3. J. R. Ringrose, On well-bounded operators. II, Proc. London Math. Soc. (3) 13 (1963), 613-638.
- 4. H. H. Schaefer, Spectral measures in locally convex algebras, Acta Math. 107 (1962), 125-173.
 - 5. W. H. Sills, Arens multiplication and spectral theory, submitted for publication.

PURDUE UNIVERSITY