THE EQUIVALENCE OF THE ANNULUS CONJECTURE AND THE SLAB CONJECTURE¹

BY CHARLES GREATHOUSE

Communicated by M. L. Curtis, May 29, 1964

In [1], the author showed that the Slab Conjecture implies the Annulus Conjecture.

The purpose of this paper is to show that the Annulus Conjecture implies the Slab Conjecture for n>3 and hence the two conjectures are equivalent for n>3.

 R^n , S^n will denote *n*-space and the *n*-sphere, respectively. A *k*-manifold N is embedded in a locally flat manner in an *n*-manifold M provided each point of N has a neighborhood U in M such that $(U, U \cap N) \approx (R^n, R^k)$.

The Annulus Conjecture. Let S_1^{n-1} , S_2^{n-1} be disjoint locally flat (n-1)-spheres embedded in S^n and let M be the submanifold of S^n bounded by $S_1^{n-1} \cup S_2^{n-1}$. Then $M \approx S^{n-1} \times [0, 1]$.

The Slab Conjecture. Let R_1^{n-1} , R_2^{n-1} be disjoint locally flat n-1 spaces embedded as closed subsets of R^n and let M be the submanifold of R^n bounded by $R_1^{n-1} \cup R_2^{n-1}$. Then $M \approx R^{n-1} \times [0, 1]$.

THEOREM. The Annulus Conjecture implies the Slab Conjecture for n>3.

PROOF. Let R_1^{n-1} , R_2^{n-1} be disjoint locally flat n-1 spaces embedded as closed subsets of R^n , n>3, and let M be the submanifold of R^n bounded by $R_1^{n-1} \cup R_2^{n-1}$. Let $S^n = R^n \cup \{p\}$ be the one-point compactification of R^n and $S_i^{n-1} = R_i^{n-1} \cup \{p\}$ for i=1, 2. By the corollary to Theorem 2 of [2], S_i^{n-1} is flat for i=1, 2. Hence, we may assume that $S_1^{n-1} = S^{n-1}$, that S_2^{n-1} lies in the northern hemisphere of S^n = the suspension of S^{n-1} , and that $S_1^{n-1} \cap S_2^{n-1} = \{p\}$.

Let B^{n-1} be the unit ball in $S_1^{n-1} = S^{n-1}$ with center p, r = the south pole of S^n , q = the midpoint of the line segment joining p to r in S^n , L = the line segment joining p to q in S^n , and B_r^n , $B_q^n =$ the cones (n-balls) in S^n with bases B^{n-1} and cone points r, q respectively. (See Figure 1.) Now, let $S_3^{n-1} = [S_1^{n-1} \cup \dot{B}_q^n] - \operatorname{Int}(B^{n-1})$. Then S_3^{n-1} is a flat n-1 sphere in S^n and $S_3^{n-1} \cap S_2^{n-1} = \emptyset$. By the Annulus Conjecture, $M \cup B_q^n = A^n$ is an n-annulus. We will complete the proof by showing that $M \cup \{p\}$ is homeomorphic to the decomposition space A^n/L and applying Lemma 3 of [3].

¹ This work supported in part by NSF GP-211.

FIGURE 1

By Theorem II.3 of [1], $M_2 = M - R_2^{n-1} \approx R^{n-1} \times [0, 1)$ under some homeomorphism h. Take $T = h^{-1} [h(B^{n-1} - p) \times [0, \frac{1}{2}]], T_r = T \cup B_r^n$, and $T_q = T \cup B_q^n$. Then T_r , T_q are n-balls with $T_q \subset T_r$.

There is a natural map f of T_r onto itself such that the following hold:

- $(1) f | \dot{T}_r = 1,$
- (2) $f \mid T_r L$ is a homeomorphism,
- (3) f(L) = p,
- $(4) f[CL(B_r^n B_q^n)] = B_r^n.$

f is obtained by pushing B_q^n up into $T \cup \{p\}$ making use of the parameterization induced on T by $h^{-1} \cdot f$ extends to a map of S^n onto itself by $f \mid S^n - T_r = 1$.

Since $f(A^n) = M \cup \{p\}$, $f \mid A^n - L$ is a homeomorphism and f(L) = p, it follows that $M \cup \{p\} \approx A^n/L$. By Lemma 3 of [3], since L is a flat arc in A^n with endpoints $p \in S_2^{n-1}$, $q \in S_3^{n-1}$ and $L - (p \cup q) \subset \text{Int } A^n$, A^n/L is a pinched annulus, that is, A^n/L is homeomorphic to the one-point compactification of $R^{n-1} \times [0, 1]$. Thus $M \approx R^{n-1} \times [0, 1]$ and the theorem is proved.

COROLLARY. The Annulus Conjecture is equivalent to the Slab Conjecture for n > 3.

REFERENCES

- Charles Greathouse, Locally flat strings, Bull. Amer. Math. Soc. 70 (1964), 415-418.
- 2. J. C. Cantrell, Almost locally flat embeddings of S^{n-1} in S^n , Bull. Amer. Math. Soc. 69 (1963), 716-718.
- 3. ——, Some relations between the Annulus Conjecture and union of flat cells theorems (to appear).

University of Tennessee