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1. Introduction. Let A—(ay) be an rn-by-n matrix whose entries 
an are all either 0 or 1. For certain applications, one of which will be 
discussed below, it is of interest to know whether there is an m-by-m, 
permutation matrix P such that the l 's in each column of PA occur 
in consecutive positions. In this note we state certain results that 
have relevance for this problem. Proofs of these, together with an 
efficient computational method for deciding the question in any given 
case, will be published elsewhere. 

The problem posed above includes that of determining whether a 
given finite undirected graph is an interval graph. The study of inter­
val graphs [2], [3], [4], [5] was stimulated in part by an application 
concerning the fine structure of genes. A basic genetic problem, dis­
cussed in [ l ] , is to decide whether or not the sub-elements of genes 
are linked together in a linear order. A way of approaching this prob­
lem is also described in [ l ] . Briefly, it is as follows. For certain 
microorganisms, there are a standard form and mutants, the latter 
arising from the standard form by alteration of some connected por­
tion of the genetic structure. Experiments can be devised for deter­
mining whether or not the blemished parts of two mutant genes inter­
sect or not. Thus the mathematical problem becomes : Given a large 
number of mutants together with intersection data on pairs of mu­
tants, to decide whether this information is compatible with a linear 
model of the gene. If one represents the intersection data by a graph 
(two mutants, i.e., vertices, being joined by an edge if their blem­
ished portions intersect), the problem is to decide whether this graph 
is an interval graph. 

2. A basic theorem. We say that a (0, 1)-matrix A has the con­
secutive Vs property (for columns) if there is a permutation matrix P 
such that the l 's in each column of PA occur consecutively. The first 
question that naturally arises is how much information about A is 
needed to decide whether it has the property or not. Do we need to 
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know A itself, or will something less suffice? Theorem 2.1 below pro­
vides a partial answer to this question; it shows that a knowledge of 
the matrix ATA is enough. Here AT denotes the transpose of A. 

THEOREM 2.1. Let A and B be (0, \)-matrices satisfying 

(2.1) ATA*= BTB. 

Then either both A and B have the consecutive Vs property or neither 
does. Moreover, if A and B have the same number of rows and A has the 
property, then there is a permutation P such that B = PA. 

The first part of Theorem 2.1 follows easily from the second. The 
second assertion can be proved by induction on the number of col­
umns of A. 

In view of Theorem 2.1, it would be interesting to know conditions 
on ATA in order that A have the consecutive l 's property. Later on 
we shall state a theorem which reduces this question to the considera­
tion of (0, l)-matrices having connected "overlap graphs." For such 
matrices, there is a simple construction for testing the property, but 
we do not know explicit necessary and sufficient conditions. 

3. The overlap graph and component graph. Let a and b be 
(0, l)-vectors having m components. Their inner product a*b satisfies 

(3.1) 0 ^ a-b g mm(a*a, b-b). 

If strict inequality holds throughout (3.1), we say that a and b over­
lap. We also say that a contains b if 

(3.2) a-b = b-b. 

Now let A be an m-by-n (0, 1)-matrix having column vectors 
ah j = 1> 2, • • • , n. I t is convenient, and presents no loss of general­
ity in studying the consecutive l 's property, to assume that a ; ^ 0 , 
j=l, 2, • • • , n, and that a^aj for i^j. We refer to such an A as 
proper. 

There are various graphs one can associate with a (0, 1)-matrix A 
that are meaningful insofar as the consecutive l 's property is con­
cerned. We describe two such graphs, one being an undirected graph, 
the other a directed graph. The first of these is obtained from A by 
taking vertices Xi, x2, • • • , xn corresponding to the columns ai, a2, 
• • • , an of A, and putting in undirected edges (#*, x3) corresponding 

to overlapping column vectors a,- and a3\ We call this the overlap graph 
of A and denote it by 8 = 9(^4). The overlap graph of A splits up into 
connected components 9i> 82, • * • , 8P> a n d this decomposition yields 
a corresponding partition of A into w-rowed submatrices A\,A^ • • -, 
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Ap. We now form a second (directed) graph by taking vertices 
-Xii X2> • • • , Xp corresponding to these submatrices, and putting in 
an edge [Xiy Xj] directed from Xi to Xj, if there is a column vector 
a of Ai and a column vector b of -4,- such that a contains b. We call 
this directed graph the component graph of A and denote it by 
£>=£>C4). 

The following theorem may be established in a straightforward 
manner. 

THEOREM 3.1. The component graph £>(A) of a proper (0, l)~matrix 
A is acyclic and transitive. 

That is, 3L>04) contains no directed cycles, and if [X> Y] and [F, Z] 
are edges, then [X, Z] is an edge. Thus £>(A) is the graph of a partial 
ordering. This partial ordering of components of ^{A) is special in 
the sense that an element can have at most one immediate predeces­
sor. Thus if we omit from 3D every edge whose existence is implied 
by transitivity, the resulting graph is simply a collection of rooted 
trees. 

The structure of the component graph £)(A) is useful in establish­
ing the decomposition theorem of the next section. 

4. A decomposition theorem. For an arbitrary (0, 1)-matrix A, we 
can rearrange columns and write 

(4.1) A = ( i i , i 2 , ' " , i p ) , 

where each submatrix Akl & = 1, 2, • • • , p, corresponds to a com­
ponent of the overlap graph Q(-4). We term (4.1) an overlap decom­
position of A, and refer to the submatrices Ah as components of A, If 
A has just one component, we say that A is connected. 

THEOREM 4.1. A (0, \)-matrix A has the consecutive Vs property if 
and only if each of its components has the property. 

Necessity in Theorem 4.1 is of course trivial. Sufficiency can be 
established by induction on the number of components of a proper 
A. The induction step proceeds by deleting a component of A which 
corresponds to a minimal element in the partial ordering given by 

Theorem 4.1 effectively solves the problem posed in §1, since one 
can describe a very simple and efficient procedure for testing whether 
or not a connected matrix has the consecutive l 's property. More­
over, having arranged each individual component of a disconnected 
A so that its l 's appear consecutively in each column, the proof of 
Theorem 4.1 indicates how to fit these components together so as to 
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yield a permuted form of A which has consecutive l's in each col­
umn. The entire process is computationally efficient, requiring no 
more than 0(n2) steps if A has n columns. 

5. Application to interval graphs. A graph g (finite, undirected, 
without multiple edges or loops) is an interval graph provided 9 can 
be represented as the intersection graph of a set of intervals on the 
real line. The theorems and methods described in preceding sections 
can be applied to the problem of determining when a graph 9 is an 
interval graph by considering a certain incidence matrix which speci­
fies 9- We term this incidence matrix the dominant-clique-vs. -vertex 
matrix, and define it as follows. First of all, a clique in g is a set of 
vertices, every two of which are joined by an edge. We may partially 
order the set of all cliques of g by inclusion. The maximal elements in 
this ordering will be termed dominant cliques. Since two vertices of g 
are joined by an edge if and only if they belong to some dominant 
clique, the dominant-clique-vs.-vertex incidence matrix character­
izes g. 

THEOREM 5.1. A graph g is an interval graph if and only if the 
dominant-clique-vs.-vertex incidence matrix of g has the consecutive Vs 
property. 

We also note that an interval graph is necessarily a rigid-circuit 
graph [2 ], and that one can describe a simple method to test for the 
rigid-circuit property. (A graph is a rigid-circuit graph if every circuit 
with more than three vertices has a chord. The test is based on the 
known fact that such a graph always contains simplicial vertices, a 
simplicial vertex being one whose neighboring vertices are a clique 
[2], [3].) If the test succeeds, the method automatically generates all 
dominant cliques. Thus to discover if g is an interval graph, one can 
first apply an easy test for the rigid-circuit property, and then test 
the resulting dominant-clique-vs.-vertex incidence matrix for the 
consecutive l 's property. 
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