ON THE UNKNOTTEDNESS OF THE FIXED POINT SET OF DIFFERENTIABLE CIRCLE GROUP ACTIONS ON SPHERES—P. A. SMITH CONJECTURE

BY WU-YI HSIANG

Communicated by W. S. Massey, May 18, 1964

The original P. A. Smith conjecture is that there are no Z_p actions on S^3 with a knotted S^1 as fixed point set. The so-called generalized P. A. Smith conjecture is that there are no Z_p or circle group actions on S^n with a knotted S^{n-2} as fixed point set [2], [8]. Mazur [5], [6] tried to give counterexamples for the cases n=4, 5 but there are several mistakes. In this paper, we show that the P. A. Smith conjecture is true for differentiable circle group actions. According to Giffen [3], there are examples of differentiable Z_p actions on S^n , $n \ge 5$, p arbitrary, with knotted S^{n-2} as their fixed point sets.

In view of the fact that the cohomological theories for Z_p actions and circle group actions are always parallel, it becomes more interesting to find the *differences* between Z_p actions and circle group actions. We will show that the circle group actions are more regular, in a sense, than Z_p actions.

THEOREM I. Suppose given a differentiable action of S^1 on S^n , $n \neq 4$, with its fixed point set $F = S^{n-2}$, then F is necessarily unknotted. If n = 4, then $S^n - F$ has the homotopy type of a circle. Actually, except for the cases n = 4, 5, the following stronger result is true.

THEOREM I'. A differentiable action of S^1 on S^n with an (n-2)-dimensional fixed point set F is orthogonal if and only if F is an (n-2)-sphere.

The above theorems are just special cases of the following classification theorem. First, we give a construction.

Construction. Given a compact contractible manifold X of dimension n-1, $n \ge 5$, we may have a circle group action on the smoothed $D^2 \times X$ simply by letting $g \cdot (y, x) = (g \cdot y, x)$.

By h-cobordism theorem, $D^2 \times X$ is a differentiable disc. If we restrict the action to the boundary of $D^2 \times X$, we get a circle group action on S^n with its orbit space diffeomorphic to X and its fixed point set, F, diffeomorphic to ∂X .

THEOREM II. For $n \ge 5$, every differentiable circle group action on S^n with dim F = n - 2 is differentiably equivalent to one and only one of the examples constructed above.

PROOF. We may assume that the given action is effective; if not, we may consider a quotient group which is again a circle group. Since the group S^1 is abelian, the principal isotropy subgroup is $\{e\}$.

By P. A. Smith theory and the assumption dim F=n-2 we see that F is an (n-2)-cohomology sphere. By Bochner's theorem, a differentiable action is always orthogonal around a fixed point, x. In our case, the representation is faithful and leaves an (n-2)-subspace fixed. It is easy to see that the representation is always the standard one, and hence there exists an invariant neighborhood N of F in S^n such that S^1 acts freely on N-F.

We claim that S^1 acts freely on $S^n - F$, i.e., there are only two types of isotropy subgroups, namely $\{e\}$ and the whole group S^1 . Suppose the contrary, then there exists a Z_p subgroup in S^1 , p a suitable prime, with $F(Z_p, S^n) \supset F$, $F(Z_p, S^n) \neq F$. By the above fact that S^1 acts freely on N - F, we see that $F(Z_p, S^n)$ has at least two components, which is clearly a contradiction to P. A. Smith theory that $F(Z_p, S^n)$ is a Z_p -homology sphere.

It follows from the fact that S^1 acts freely on $S^n - F$, that the associated orbit space X is a manifold with boundary $\partial X = \pi(F)$, π the projection map. Moreover, we may blow up S^n along F to get a manifold with boundary $(M, \partial M)$ such that S^1 acts freely on $(M, \partial M)$ and the following diagram is naturally defined and commutative [4]:

where h is an equivariant relative diffeomorphism and π , π' are projections onto their common orbit spaces $(X, \partial X)$.

Since $S^1 \rightarrow M \rightarrow X$ is a fibration, we have

hence, $\pi_1(X) = 0$.

A similar argument shows that $H_i(X) = 0$ for $i \ge 1$ and hence X is compact contractible and the fibration

$$S^1 \to M \to X$$

must be trivial, i.e., $(M, \partial M) = (S^1 \times X, S^1 \times \partial X)$. By the construction of $(M, \partial M)$, (S^n, F) may be obtained from $(M, \partial M) = (S^1 \times X, S^1 \times \partial X)$ by identifying every circle $S^1 \times \{x\}$; $x \in \partial X$ to a point, which is equal to $(\partial (D^2 \times X), \{0\} \times \partial X)$ up to diffeomorphism. q.e.d.

Theorem I' follows immediately from Theorem II. The unsettled cases n=4, 5 corresponding to the unsolved Poincaré conjecture for the dimensions 3, 4.

In the cases n=5, 3 Theorem I follows from the same argument and the fact that $S^5 - F = M - \partial M = S^1 \times (X - \partial X)$ is of the same homotopy type as S^1 ; then apply a result of J. Stallings [9].

REMARK. The case n=4 is the only unsettled case but it is implied by the proof that $\pi_1(S^4-F)=Z$. This shows that an example with similar properties of the example of Mazur [5] is impossible.

REFERENCES

- 1. A. Borel, Seminar on transformation groups, Annals of Mathematic Studies No. 46, Princeton Univ. Press, Princeton, N. J., 1960.
- 2. R. H. Fox, On knots whose points are fixed under a periodic transformation of the 3-sphere, Osaka Math. J. 10 (1958), 31-35.
- 3. C. H. Giffen, Periodic sphere transformations with knotted fixed point sets, Notices Amer. Math. Soc. 11 (1964), 341.
- 4. W.-Y. Hsiang, On the classification of SO(n) actions on simply connected π -manifolds of dimension less than 2n-1 (to appear).
 - 5. B. Mazur, Symmetric homology spheres, Illinois J. Math. 6 (1962), 245-250.
- 6. ——, Corrections to my paper, "Symmetric homology spheres," Illinois J. Math. 8 (1964), 175.
- 7. D. Montgomery and L. Zippin, *Topological transformation groups*, Interscience, New York, 1955.
- 8. P. A. Smith, Transformation of finite period. II, Ann. of Math. (2) 40 (1939), 690-711.
- 9. J. Stallings, On topologically unknotted spheres, Ann. of Math. (2) 77 (1963), 490-503.

PRINCETON UNIVERSITY