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The original P. A. Smith conjecture is that there are no Zp actions 
on S3 with a knotted S1 as fixed point set. The so-called generalized 
P. A. Smith conjecture is that there are no Zp or circle group actions 
on Sn with a knotted 5n~2 as fixed point set [2], [8]. Mazur [5], [6] 
tried to give counterexamples for the cases w = 4, 5 but there are 
several mistakes. In this paper, we show that the P. A. Smith con­
jecture is true for differentiable circle group actions. According to 
Giffen [3], there are examples of differentiable Zp actions on Sn, 
n^S, p arbitrary, with knotted Sn~2 as their fixed point sets. 

In view of the fact that the cohomological theories for Zp actions 
and circle group actions are always parallel, it becomes more inter­
esting to find the differences between Zp actions and circle group 
actions. We will show that the circle group actions are more regular, 
in a sense, than Zp actions. 

THEOREM I. Suppose given a differentiable action of S1 on Sn, w ^ 4 , 
with its fixed point set F~Sn~2, then F is necessarily unknotted. If n = 4, 
then Sn — F has the homotopy type of a circle. Actually, except f or the 
cases w = 4, 5, the following stronger result is true. 

THEOREM I'. A differentiable action of Sl on Sn with an (n — 2)-
dimensional fixed point set F is orthogonal if and only if F is an (n — 2)-
sphere. 

The above theorems are just special cases of the following classi­
fication theorem. First, we give a construction. 

Construction. Given a compact contractible manifold X of dimen­
sion n — 1, n^5, we may have a circle group action on the smoothed 
D2XX simply by letting g-(y, x) = (g-yy x). 

By A-cobordism theorem, D2XX is a differentiable disc. If we re­
strict the action to the boundary of D2XX, we get a circle group 
action on Sn with its orbit space diffeomorphic to X and its fixed 
point set, F, diffeomorphic to dX. 

THEOREM II . For n^5, every differentiable circle group action on 
Sn with dim F=n — 2 is differ entiably equivalent to one and only one of 
the examples constructed above. 
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PROOF. We may assume that the given action is effective; if not, 
we may consider a quotient group which is again a circle group. Since 
the group S1 is abelian, the principal isotropy subgroup is {e}. 

By P. A. Smith theory and the assumption dim F—n — 2 we see 
that F is an (» — 2)-cohomology sphere. By Bochner's theorem, a 
differentiable action is always orthogonal around a fixed point, x. In 
our case, the representation is faithful and leaves an (w — 2)-subspace 
fixed. I t is easy to see that the representation is always the standard 
one, and hence there exists an invariant neighborhood N of F in Sn 

such that 5 1 acts freely on N—F. 
We claim that S1 acts freely on Sn— F, i.e., there are only two types 

of isotropy subgroups, namely {e} and the whole group S1. Suppose 
the contrary, then there exists a Zp subgroup in S1, p a suitable prime, 
with F(ZP, Sn)DF, F(ZP, Sn)^F. By the above fact that Sl acts 
freely on N—F, we see that F(ZP, Sn) has at least two components, 
which is clearly a contradiction to P. A. Smith theory that F(Zpt Sn) 
is a Zp-homology sphere. 

I t follows from the fact that Sl acts freely on Sn — F, that the asso­
ciated orbit space X is a manifold with boundary dX = /ir(F)i ir the 
projection map. Moreover, we may blow up Sn along F to get a 
manifold with boundary (M, dM) such that S1 acts freely on (ikf, dM) 
and the following diagram is naturally defined and commutative 
[4]: 

h 
(M, dM) - ( S " , F) 

(X, dX) 

where h is an equivariant relative diffeomorphism and w, ir' are pro­
jections onto their common orbit spaces (X, dX). 

Since S1—>M—>X is a fibration, we have 

epi 

hence, wi(X) = 0 . 
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A similar argument shows that Hi(X) = 0 for i^ 1 and hence X is 
compact contractible and the fibration 

S1 -> M -> X 

must be trivial, i.e., (M, dM) = (S1 XX, S^XdX). By the construction 
of (M, dM), (Sn, F) may be obtained from (M, öikT) = (5 1 XX, 
S1XdX) by identifying every circle 5XX {#} ; x £ d X to a point, which 
is equal to (d(D2XX), {o}xdX) up to diffeomorphism. q.e.d. 

Theorem I' follows immediately from Theorem II. The unsettled 
cases w = 4, 5 corresponding to the unsolved Poincaré conjecture for 
the dimensions 3, 4. 

In the cases n = 5, 3 Theorem I follows from the same argument and 
the fact that S5-F=M-dM = S1X(X-dX) is of the same homo-
topy type as Sl; then apply a result of J. Stallings [9]. 

REMARK. The case n = 4 is the only unsettled case but it is implied 
by the proof that 7Ti(54— F) =Z. This shows that an example with 
similar properties of the example of M azur [5] is impossible. 
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