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1. Introduction. It was proved by J. Radon in 1917 (see [26]) that 
a differentiate function ƒ of compact support on a Euclidean space 
can be determined from the integrals of ƒ over each hyperplane in the 
space. Whereas Radon was primarily concerned with the dimensions 
2 and 3, the following formulation for an arbitrary Euclidean space 
Rn was given by John [23], [24]. If co is a unit vector let /(co, p) de­
note the integral of ƒ over the hyperplane {xEi? n | (x, w) = p} where 
( , ) denotes the inner product. Then, if dco denotes the surface ele­
ment on the unit sphere Q = Sn~1, and A the Laplacian, 

(1) fix) = J(27ri) n&x I /(co, (co, x))dœ (n odd), 

(2) f(x) = (liri) Ax I dco I (n even), 
J Q J -oo p — (co, x) 

where in the last integral, the Cauchy principal value is taken. 
Applications. The applications of these formulas are primarily 

based on the following property: Consider the integrand in the inte­
gral over 0, say the function /(co, (co, x)) in (1). For a fixed co this 
function x—*/(co, (co, x)) is a plane wave, that is a function which is 
constant on each member of a family of parallel hyperplanes. Aside 
from the Laplacian, formulas (1) and (2) give a continuous decom­
position of ƒ into plane waves. Since a plane wave only amounts to a 
function of one real variable (along the normal to the hyperplanes) 
the formulas (1) and (2) can sometimes reduce a problem for n real 
variables to a similar problem for one real variable. This principle 
has been used effectively on partial differential equations with con­
stant coefficients (see Courant-Lax [2], Gelf and-Shapiro [lO], John 
[24], Borovikov [ l ] , Gârding [4]) and even for general elliptic equa­
tions (John [24]). 

Generalizations. The above representation of a function by means of 
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its plane integrals suggests the general question of determining a 
function ƒ on a space from the knowledge of the integrals of ƒ over 
certain subsets of the space. Radon himself discussed in [26] the 
problem of determining a function on the non-Euclidean plane from 
the integrals of the function over all geodesies, Funk [3 ] proved that 
a function ƒ on the 2-sphere, symmetric with respect to the center, 
can be determined by means of the integrals of ƒ over the great circles. 
The theory of representations of noncompact semisimple Lie groups, 
in particular the Plancherel formula, raises the problem of deter­
mining a function on a semisimple Lie group by means of its integrals 
over all conjugacy classes and their translates (see Gelfand-Naimark 
[9], Harish-Chandra [12], [14], Gelfand-Graev [6]). Other examples 
can be found in Gelfand [5], Gelfand-Graev [7], Gelfand-Graev-
Vilenkin [8], Hachaturov [ l l ] , Harish-Chandra [13], Helgason 
[16], [19], [21], John [24], Kirillov [25] and Semyanistyi [30]. 

Notation. If M is any manifold, 8>(M) denotes the space of C°° func­
tions on My £)(M) the space of C00 functions on M with compact 
support. If M is a complete Riemannian manifold, $(M) denotes the 
space of rapidly decreasing functions on M as defined in [21 ]. We 
recall that / £ S ( M ) if and only if the following condition is satisfied. 
Let Ai, • • • , An be the Laplace-Beltrami operators of the various 
factors in the local de Rham decomposition of M into irreducible 
parts [27]. Each A* can be viewed as a differential operator on M. 
Then/GS(ikf) if and only if P(Ai, • • • , An)f goes to zero at 00 faster 
than any power of the distance from a fixed point. 

2. Dual integral transforms. As mentioned above, formulas (1) 
and (2) give a continuous decomposition of ƒ into plane waves. We 
shall now focus attention on a kind of a projective duality which 
appears in (1). Formula (1) contains two integrations, dual to each 
other: first one integrates over the set of points in a given hyperplane, 
then one integrates over the set of hyperplanes passing through a 
given point. Guided by this duality we adopt the following general 
setup. 

(i) Let X be a manifold and G a transitive Lie transformation 
group of X. Let S be a family of subsets of X, permuted transitively 
by G; in particular, there is induced a G-invariant differentiable 
structure on S. The manifold S will be called the dual of X. Let 
D(X) and D(S) denote the algebras of G-invariant differential oper­
ators on X and S, respectively. 

(ii) Given x £ X , let x= { ê G E | # G ê } . It is assumed that each £ 
and each x have measures, say fi and p, respectively, such that the 
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action of G on X and 3 permutes the measures fx and permutes the 
measures v. 

(iii) If ƒ and g are suitably restricted functions on X and 3 , respec­
tively, we can define functions ƒ on 3 , g on X, by 

• ' S ^ * 

We shall now discuss several examples within this framework. The 
problems which will be considered are: 

A. Relate function spaces on X and 3 by means of the integral trans­
forms ƒ—>ƒ and g—>g. 

B. Does there exist a map D-+D of D(X) into D(3) and a map 
£ - > E of D(3) into D{X) such that 

{DfY = £ƒ, (EgV^Èl 
for general ƒ and g? 

C. In case the transforms ƒ—»ƒ and g—*g are one-to-one, find explicit 
inversion formulas. In particular, find the relationships between ƒ and 
(ƒ)" and between g and ( g ) \ 

3. Points and hyperplanes in a Euclidean space. Let X = Rn (n > 1) 
and let G be the group of all rigid motions of X and 3 the set of all 
hyperplanes in X. If x £ X , £ G 3 the measure ix on £ is the ordinary 
Euclidean measure and the measure Ï> on x is the unique measure on 
the compact set x, invariant under all rotations around x, normalized 
by v(x) = 1. A hyperplane £ G 3 is determined by a unit normal vector 
co and a real number p such that pœÇit;. The pairs (o>, >̂) and (-co, — £) 
give the same £, the manifold Sn~1XR is a double covering of 3 and 
C00 functions on 3 will be identified with C00 functions .F on Sn~lXR 
satisfying F(o), p) = F( — co, — £>). Accordingly, let S (3) denote the set 
of rapidly decreasing functions F on the Riemannian manifold 
Sn-1XRy satisfying F(œ, r) = F(-co, - r ) . Similarly £>(3) a n d s ( 2 ) 
are defined. Let S#(3) denote the set of F £ S ( 3 ) such that for each 
integer fe^O, the integral fl^Ffa, p)pkdp can be written as a homo­
geneous &th degree polynomial in coi, • • • , wn. Let £>#(3) 
= 3D(3)ns^r(3). Finally, let S*(X) = §*(#») denote the set of f&(X) 
satisfying ff(x)p(x)dx = Q for each polynomial £ and S*(3) the set of 
functions F £ S ( 3 ) satisfying fl„F(<a, p)pkdp = 0 for all œ and all 
integers &^0. 

THEOREM 3.1. The algebra D(X) is generated by the Laplacian A, 
and the algebra DCS) is generated by the differential operator • : g(co, £) 
-^d2/dp2(g(o), p)). Moreover 
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(A/y = nî, {UgY = Aè 

forfe&(X),ge&(.S). 
THEOREM 3.2. The Radon transform f—*f is a linear one-to-one map­

ping of £>(X) onto £>#(E), of $(X) onto S H ( S ) , and ofS*(X) onto S*(S). 

Theorem 3,1 is proved in [21 ]. The first statement of Theorem 3.2 
holds in the following sharper form [21 ] : If f&(X) and if ƒ(£)=() 
for all £ at distance >R from 0 then f(x) vanishes identically for 
\x\ >R. The second part of Theorem 3.2 is, in a different form, 
stated in Gelfand-Graev-Vilenkin [8]. The proof given there (pp. 
34-39) seems incomplete in some respects; for example, it uses (1) 
§1 and therefore leaves out the even-dimensional case. A different 
proof is given in [21 ] using the relation 

ƒ 00 

ƒ(«, p)e~^dp 
- 0 0 

connecting the Radon transform ƒ and the Fourier transform ƒ of ƒ. 
The last part of Theorem 3.2 is stated in Semyanistyi [29]. 

THEOREM 3.3. The following inversion formulas hold. 
If n is odd, 

/ = CA<»-»/'((/r), yes(x); 
g = <a("-l)/2((in, ses*(E), 

where the constant c is given by 

-(f)" 
f-ciUtfy), /es(i); 
g = cj,((gy), ges*(s), 

(27ri)1-w7rw/2 

\ ^ / 

If n is even, 

(3) 

where J\ and J% are given by analytic continuation2 

J, /<*)-> a»„.co„, f / W | . - , N * 

J2: F(<a, p) —> anal. cont. I F(o>, q) \ p — q \^dq: 

and 

* In the notation of Schwartz [28, p. 45], Jif=(Pf>rl-2n) * ƒ, J2F^(Pf'r~n) *F. 
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C\ = ; Ci = • 

'(THT-T) rO->) 
The odd-dimensional case in Theorem 3.3 is a direct consequence 

of (1) §1 and Theorem 3.1. The inversion formula (3) can be derived 
from (2) §1 by means of some computation involving the distribution 
Pj.ri-2n ( s e e [21]). The formula for g then follows by use of the 
Fourier transform. 

4. Points and antipodal manifolds in compact two-point homo­
geneous spaces. Let X be a compact two-point homogeneous space, 
that is, a compact Riemannian manifold with the property that the 
group G of all isometries of X acts transitively on the set {(x, y)(EX 
XX\d(x, y) —r\ for each fixed r>0. Here d denotes distance. Let L 
denote the diameter of X. If xÇzX, let Ax denote the corresponding 
antipodal manifold, that is, the set of points y (EX at distance L from 
x. This A x is a totally geodesic submanifold of X and with the 
Riemannian structure on Ax induced by that of X, Ax is another two-
point homogeneous space. Also x^y=^Ax^Ay. Let S denote the set 
of antipodal manifolds, with the differentiable structure induced by 
the transitive action of G. The Lie group G is a compact semisimple 
Lie group (ignoring the trivial case d i m X = l ) . Changing the Rie­
mannian structure on X by a constant factor we may assume it in­
duced by the negative of the Killing form of the Lie algebra of G. 
On 2 we choose the Riemannian structure such that the diffeomor-
phism <j>: x—*Ax is an isometry. Let A and A denote the Laplace-
Beltrami operators on X and S, respectively. The measures /x and v 
on the manifolds £ and x will be those induced by the Riemannian 
structures of X and S. If x G I , then x= {(l>(y)\y&(t>(x)}. Conse­
quently 

*(*) = Lg(k)dv{Q = f g(4>(y))dv(4>(y)) = f (go0)(y)<fo(y) 
J x J ye<l>(x) J <f>{x) 

SO 

è = (gO0) A O*. 

Because of this correspondence between the integral transforms ƒ—»ƒ 
and g—>g it suffices to consider the first. 

Concerning Problems A, B and C the following theorem holds. 
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THEOREM 4.1. The mapping ƒ—>ƒ is a linear one-to-one mapping of 
g(X) onto 6(H) and 

(A/y = A/. 

Except for the case when X is an even-dimensional real projective space, 

y=p(A)(/r, /es(x), 
where P is a polynomial, independent of f, explicitly given below. The 
algebras D(X) and D(S) are generated by A and A, respectively. 

This theorem is proved in [2l] by an elaboration of the method in 
[16, p. 284], where the case of odd-dimensional projective spaces 
is settled. The general case requires Wang's classification [31 ] of com­
pact two-point homogeneous spaces as the following spaces: The 
spheres Sn (n = 1, 2, • • • ), the real projective spaces Pn(R) 
(n = 2, 3, • • • ), the complex projective spaces Pn(C) (^ = 4, 6, • • • ), 
the quaternion projective spaces Pn(H) (n = &, 12, • • •)> and the 
Cayley projective plane Pu(Cay). The superscript denotes the real 
dimension. The antipodal manifolds in the respective cases are a 
point, P^iR), Pn~2(C)y Pn~4(if), S8. The polynomial P(A) above has 
degree equal to one half the dimension of the antipodal manifold, 
and is a constant multiple of 

1 (the identity) X = Sn 

(A - JC(* - 2)1)(A - K(n - 4)3) • • • (A - JC1(» - 2 ) ) X = Pn(R) 

(A - JC(» - 2)2)(A - K(n - 4)4) • • • (A - n2(n - 2 ) ) X = Pn(C) 

[(A - K(n - 2)4)(A - K(U - 4)6) • • • (A - K8(» - 6))] 

• [(A - jc4(n - 4))(A - K4(** - 2))] X = P»(fl) 

(A - 112K)2(A - 120/c)2 X = P16(Cay). 

In each case K = (7T/ (2L)) 2 , where Z, is the diameter of X. 
In the exceptional case when X is an even-dimensional real projec­

tive space there is still an inversion formula ƒ=K{(jY) but now K 
is an integral operator. Considering functions on X as symmetric 
functions on Sn, K is given by a suitably regularized integral operator 

C I'n n 1 \ 

{K<J>){X) = c jsfyj> y y ;sin2 (<*(*> y)) W(y)**(y), 

where rfco is the volume element of Sn, c is a constant and P is the 
hypergeometric function (Semyanistyi [30]). 

REMARK. There is an important difference in the duality above be­
tween points and antipodal manifolds and in the duality between 
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points and hyperplanes in §3. In the first case we have a diffeomor-
phism of X onto the manifold S of antipodal manifolds. In the second 
the polarity with respect to the unit sphere | x \ = 1 gives a one-to-one 
mapping of X — {0} onto the subset of 2 consisting of those hyper­
planes which do not pass through 0. This special role of 0 is the reason 
underlying the appearance of the spaces 3D#(E), S#(E) in Theorem 3.2 
in place of the spaces 3D(S) and S(E). 

5. Points and totally geodesic hypersurfaces in a hyperbolic space. 
Let n be an integer > 1 and consider the quadratic form 

2 2 2 
Q(Z) = 2i + • • • + %n — Zn+1, Z = («1, * ' * , 2 w + l ) , 

on the Euclidean space 2?n+1. Let X denote the quadric Q(Z) + 1 = 0 
with the Riemannian structure induced by Q. Let G be the group 
0(n, 1) of linear transformations of Rn+1 leaving Q invariant. The 
Riemannian manifold X has constant curvature •— 1 and G is a transi­
tive Lie group of isometries of X. The totally geodesic submanifolds 
of X of dimension n — \ are obtained as intersections of X with hyper­
planes in jRn+1 through the origin. A normal (with respect to Q) to 
such a hyperplane intersects the quadric Q(X) — l—0 in two points 
so the set of totally geodesic hypersurfaces—the dual space S—can 
be identified with the quadric Q(X) —1=0 with symmetric points 
identified. This identification is consistent with the action of G. The 
quadratic form Q induces a pseudo-Riemannian structure of signa­
ture (n— 1, 1) and constant curvature + 1 on S (see [17, p. 146]). 
In group-theoretic terms we have 

X = 0(n, l ) /0 (n) , S = 0(n, l ) / (0 (n - 1, 1) X Z2), 

where 0(n) is the orthogonal group in Rn and Z2 is the group with 
two elements. Since the group G acts isometrically, fx and v can be 
taken as the measures induced by the pseudo-Riemannian structures 
of X and S; concerning v one has to remark that for x £ X the pseudo-
Riemannian structure of S is nondegenerate on the submanifold x 
o f S . 

Concerning Problems A, B and C we have the following results. 

THEOREM 5.1. The algebras D(X) and D(S) are generated by the 
Laplace-Beltranii operators A and A on X and S, respectively, and 

(A/)- = AfforfE®(M). 

If n is odd, 

f=c(A+ \(n - 2))(A + 3(» - 4)) • • • (A + (» - 2)l) t f)v 
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where c is a constant, independent of f. 

The last formula is proved in [ ló] . An inversion formula for the 
even-dimensional case, more complicated to state, can be found in 
[30]. 

For the space X the volume of a ball of radius r increases with r 
like e(n~l)r. This explains the growth condition in the next result. Let 
o be a fixed point in X\ if x £ J , £ £ E then d{p, x) and d(o, £) denote 
the corresponding distances from o. 

THEOREM 5.2. Suppose f'GS(X) satisfies 
(i) For each integer ?n>0, f(x)emd(°*x) is bounded; 
(ii) K&=0ifd(o9&>R. 

Then 

ƒ 0 ) = 0 for d(o, x) > R. 

6. Points and horocycles in a symmetric space [19]. Let X be a 
symmetric space of the noncompact type [18] and G the largest con­
nected group of isometries of X in the compact open topology. The 
group G has center reduced to the identity element and thus can be 
identified with its adjoint group. This matrix group contains maximal 
unipotent subgroups, all known to be mutually conjugate, and their 
orbits in X are called horocycles. The group G acts transitively on the 
set S of all horocycles. The transform ƒ—>ƒ is defined by integration 
over each horocycle £, the volume element being that induced by the 
Riemannian structure of X. The transform g—>g is defined by averag­
ing over each x, x £ X , the compact isotropy subgroup of G at x acting 
transitively on x. 

Let G^KAN be an Iwasawa decomposition of G where the sub­
groups Kj A, Nare compact, abelian and unipotent, respectively. Let 
M denote the centralizer of A in K. Then we have the following 
identifications from the natural action of G on X and S, 

X = G/K, S = G/MN. 

The manifolds X and S have the same dimension. The polar coordi­
nate decomposition of Euclidean space, i.e. the mapping (co, p)—>pco 
of Sn~1XR onto jRn has an analog for X, namely the differentiate 
mapping <£: (kM, a)->kaK of (K/M)XA onto G/K. Both maps are 
singular on certain lower dimensional sets. In contrast, the dual 
E(JRW) of Rn (in the sense of §3) is doubly covered by Sn~1XR and 
the dual E(G/K) of G/K is diffeomorphic to (K/M) XA under the 
map <$: (kM, a)->kaMN. This difference between the duals, E(#w) 
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and S(G/i^), can be traced to the fact that whereas a hyperplane in 
Rn is invariant under the geodesic symmetry with respect to a point 
in the hyperplane, the analogous statement does not hold for a horo­
cycle in X. 

Let W be the Weyl group of G/K acting on the Euclidean space A, 
let S (A) be the symmetric algebra over A and 1(A) the set of ele­
ments in S(A), invariant under W. 

The mapping <fi above gives rise to an isomorphism T of D(X) onto 
1(A) [15, Theorem l ] , [18, p. 432]; the mapping $ also gives rise 
to an isomorphism t of D(S) onto S(A). These isomorphisms can be 
described explicitly in Lie algebra terms. Concerning Problems A, B 
and C we have the following results [19], [22]. 

THEOREM 6.1. The mapping ƒ—>ƒ is a linear one-to-one mapping of 
£>(X) into £>(E). There is an isomorphism D—>D of D(X) into DÇ&) 
such that 

(DfY = D}forfes>(X). 

The isomorphism D—>D is defined as follows. The Iwasawa decom­
position above corresponds to an ordering of the dual space of the 
Euclidean space A. In particular, the restricted roots of the sym­
metric space X are ordered; as usual let 2p denote the sum of the 
positive restricted roots, counted with multiplicity. Let p-*p' denote 
the automorphism of S (A) given by H' = H+p(H) for H E A. Then 
D = t-1(T(DY) for DGD(X). 

THEOREM 6.2. Suppose the Lie group G is a complex Lie group. Then 
there exist operators D G Ö ( Z ) , A£iD(H) with the following property: 

a) /=D((/n, /Gsm, 
(2) f I ƒ(*) \Hx = f I A/(0 |*#, ƒ G SD(X), 

J x J s 

where dx and d^ are the G-invariant measures on X and 3 , suitably 
normalized. 

We shall indicate the definition of • and A. Let IT denote the prod­
uct of the positive restricted roots (without multiplicity). If A is 
identified with its dual by means of the Killing form of the Lie 
algebra of G then irÇzS(A) and 7r2£/G4). Then, except for certain 
constant factors, A equals f_1(7r') and • equals r - 1 ^ 2 ) . (Here ic' is 
the image of T under the automorphism p—>p' above.) 

Theorem 6.2 holds more generally if G has only one conjugacy 
class of Cartan subgroups, but the differential operators • and A are 
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then defined somewhat differently. For a general real G, the operators 
• and A are integro-differential operators, and the analog of (2) is 
still valid. (See [22].) 

Applications. I t was mentioned earlier how the inversion formula 
(1) §1, to a certain extent, can reduce a partial differential equation 
with constant coefficients to an ordinary differential equation. Simi­
larly, since • naturally commutes elementwise with D(X), the inver­
sion formula in Theorem 6.2 can reduce an invariant differential 
equation on X to a differential equation on the Euclidean space A 
(see [19]) ; this differential equation on A is obtained via the mapping 
r , in particular it has constant coefficients, hence solvable. 

In the case when G is not complex better results are obtained by 
restricting the transform ƒ—>ƒ to radial functions ƒ on X, that is func­
tions invariant under the action of K on X. In fact it turns out that 
this transform converts each operator DÇ:D(X) into a differential 
operator on A with constant coefficients, resulting in the existence of 
a fundamental solution for D. The proofs of these results are based on 
Harish-Chandra's work on harmonic analysis on the group G (see 
[20] and the references given there). 

7. ^-planes and g-planes in !?*>+*+• 1. Let p and q be two integers 
^ 0 and put n — p+q + 1. A p-plane Ep in Rn is by definition a trans­
late of a ^-dimensional vector subspace of Rn. Let G(p, n) denote the 
manifold of ^-planes in Rn and G*(£, n) the set of ^-planes which do 
not pass through 0. The projective duality between points and hyper-
planes in Rn, realized by the polarity with respect to Sn~~l generalizes 
to a duality between G*(p, n) and £*(#, n). In fact, if a ^ O in Rn, let 
En-x(a) denote the polar hyperplane. If a runs through a £-plane 
EPGG*(£, n) then the hyperplanes En_i(a) intersect in a unique q-
plane EqÇ:G*(q, n) and the mapping Ep—>Eq is the stated duality. 

We have now an example of the framework in §2, although con­
vergence difficulties make the results (Theorem 7.1) very restrictive. 
Let X = G(p, n) and G the group of rigid motions of Rn, acting on X. 
Given a g-plane Eq consider the family % = %(Eq) of ^-planes intersect­
ing Eq. If Ei ?*E'tt' then £(Efl') 5*£(£„"); thus the set of all families 
£—the dual space S—can be identified with G{q1 n). In accordance 
with this identification, if Ev — xÇ:X then x=x(Ep) is the set of g-
planes Eq intersecting x. 

The manifold G(p, n) is a fibre bundle with base space Gp,n, the 
manifold of ^-planes in Rn through 0, the projection ir of G(p, n) on 
Gp,n being the mapping which to any ^-plane associates the parallel 
^-plane through 0. Thus the fibre of this bundle (G(p, n), Gp>ny w) is 
Rn~p. If fG&(G(j>, n)) l e t / | F denote the restriction of ƒ to an arbi-
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trary fibre F and let A** denote the Laplacian on F. The linear trans­
formation Dp of &(G(p, n)) given by 

(nPf)\F = AP(f\F), fes(G(p,n)), 

for each fibre F, is a differential operator on G(p, n). Because of 
convergence difficulties we do not define the measures /x and v directly 
but define ƒ by 

j(Eq) = f ( f f(Ep)dap(Ep))dq(a) 
J E q \ J aGEp / 

whenever these integrals exist. Here dav is the invariant measure on 
the Grassmann manifold of ^-planes through a with total measure 1, 
dq is the Euclidean measure on Eq. The transform g—>g is defined 
similarly (interchanging p and q). For p = 0 we get the situation in §3. 
Let §>*(Rn) be as in §3 and let S*(X) be the image of $*(Rn) under the 
operator Lp: f—>fEpf(a)dp(a) (f(E$*(Rn))> Then the following result 
holds [21]. 

THEOREM 7.1. The algebras D(X) and DÇE) are generated by \Z\P fl»d 
Da, respectively. The mapping ƒ—>ƒ is a linear one-to-one mapping of 
S*(X) onto S*(S) such that 

(a/r = •«ƒ. 

ƒ = <(a)(-i)'2((/r), ^es*(x), 
w/^re c is a constant, independent of f. 
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