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Gerstenhaber has recently initiated a theory of deformations of 
associative algebras [4]. The methods and results of Gerstenhaber's 
work are strikingly similar to those in the theory of deformations of 
complex analytic structures on compact manifolds. In this note we 
shall indicate how some of Gerstenhaber's ideas can be reformulated 
within a framework designed to exploit this similarity, that of graded 
Lie algebras. 

In the work of Kodaira-Nirenberg-Spencer [7] and Kuranishi [8] 
on the existence of deformations of complex analytic structures, a 
basic role is played by a certain equation [7, p. 452, equation (3)'] 
among the 1-dimensional elements of a graded Lie algebra; this equa­
tion expresses the integrability conditions for almost complex struc­
tures. Our basic observation is that a wide class of algebraic structures 
on a vector space can be defined by essentially the same equation in 
an appropriate graded Lie algebra. Among the structures thus ob­
tained are Lie algebras, associative algebras, commutative and asso­
ciative algebras, extensions of algebras (of any of the above types), 
and representations of algebras. Our main result, Theorems B and C, 
is a precise algebraic analogue of a theorem of Kuranishi [8] on 
deformations of complex analytic structures. Roughly speaking, it 
states that the set of all structures near a given one can be described 
in terms of certain cohomology groups, which are defined naturally 
by means of the graded Lie algebra. In some of the cases mentioned 
above, these cohomology groups are standard in homological alge­
bra, in others they seem to be new. We also obtain an analogue, 
Theorem A, of the rigidity theorem of Frölicher and Nijenhuis [2] for 
deformations of complex analytic structures. 

This note contains only an outline of results. A detailed exposition 
will appear elsewhere. 

1. Graded Lie algebras and cohomology. Let K be a field of char­
acteristic 5^2. Let E= 53n^o En be a graded vector space over K. Let 
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(x, y)-+[x, y] be a bilinear map of EXE into E. Then (E, [ , ]) is a 
graded Lie algebra if the following conditions are satisfied : 

(1) if xÇ:Em and y&En, then [x, y]<EEm+n, 
(2) if xEEm and yGEn, then [x, 3/] = -(~~\)mn[y> * ] , and 
(3) if x£.Em, 3>EEn, and 2GE3 ', then 

( - l ) M k y], 2] + (-l)"»[[y, s], *] + ( - l M k *L y] = 0. 
The equation given in condition (3) is called the Jacobi identity. 
Let E be a graded Lie algebra and let M= {xGE1) [x, x] = 0 } . For 

each x £ E , let ô* denote the linear map y-+[x, y] of E into E. If 
xÇzM, it follows from the Jacobi identity that öxo 3^ = 0. Thus the 
graded vector space, E, with the differentiation operator 8Xi is a co-
chain complex. In the standard manner we define Zn(x) 
= EnC\ kernel (5*), Bn(x) = Öx(E

n'1)1 and Hn(x) =Zn(x)/Bn(x). Let 
H(x) denote the direct sum of the vector spaces (Hn(x))n^o. It follows 
from the Jacobi identity that 8X is a derivation of degree 1 of E. Thus 
H(x) inherits from E the structure of a graded Lie algebra. 

Let E = X^àO E n be a graded Lie algebra and let D°(E) denote the 
vector space of all derivations of degree 0 of E. Then D°(E) is a Lie 
algebra with the commutator defined in the usual manner. Further 
E° is a Lie algebra and the map x—>5x is a homomorphism of the Lie 
algebra E° into the Lie algebra D°(E). 

Let E be a finite-dimensional graded Lie algebra. Suppose that we 
are given: (1) an irreducible algebraic linear group G with Lie algebra 
(isomorphic to) E°; and (2) an everywhere defined rational repre­
sentation p of G by automorphisms (of degree 0) of the graded Lie 
algebra E, whose differential is the map x—>8X, If these conditions are 
satisfied, we say that £ ( = ( £ , G, p)) is an algebraic graded Lie algebra. 

Let E be an algebraic graded Lie algebra and let M = {xGE x | [x, x] 
= 0 } . Then it follows easily that M is stable under the action of G, 
and we can form the space of orbits M/G. The purpose of this paper 
is to show how one can obtain information on the local structure of 
M/G in terms of the cohomology groups defined by elements of M. 

The reason for considering graded Lie algebras in this generality 
is that a wide class of algebraic structures can be described in terms 
of the formalism above. Let F be a finite-dimensional vector space 
over K. Then there exists an algebraic graded Lie algebra A(V) (to be 
described in the following section) such that the points of M (defined 
as above) are precisely the Lie algebra multiplications on V. Further­
more two points of M lie on the same orbit under G if and only if 
the corresponding Lie algebras are isomorphic. If x is a point of M 
and if L is the corresponding Lie algebra, then the cohomology group 
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Hn(x) is isomorphic with the Lie algebra cohomology group Hn+l(L, L) 
as defined by Chevalley and Eilenberg [ l ] . Similar remarks hold for 
the case of associative (resp. associative and commutative) multi­
plications on V. In this case the cohomology groups are those defined 
by Hochschild [6] (resp. Harrison [5]). The existence of a graded 
Lie algebra structure on H(L, L ) ( = ^Hn(L, L)) is due to Gersten-
haber [3]. 

If A and 3 are finite-dimensional algebras (either Lie or associative 
or associative and commutative) over Ky then there exists an alge­
braic graded Lie algebra such that the set M (defined by essentially 
the same equation as above) is the set of all extensions of A by 5 , 
and such that two points of M lie on the same orbit under G if and 
only if the corresponding extensions are equivalent. Similarly there 
exists an algebraic graded Lie algebra which describes the set of all 
representations of a given algebra on a given vector space. The co­
homology groups which arise in these last two cases seem to be new. 

2. The graded Lie algebra of alternating multilinear maps. As an 
example we describe the graded Lie algebra which is associated with 
Lie algebra multiplications on a given vector space. Let F be a vector 
space over K. For each integer w^O, let An(V) denote the vector 
space of all alternating multilinear maps of Fn + 1 , the (w + l)-fold 
Cartesian product of V with itself, into V. Let A(V) denote the 
direct sum of the family of vector spaces (An(V))n±o. Hf(~Ap(V) and 
hE:Aq(V), we define an element ƒ ft h of A*+*(V) by 

f A h(U0, ' ' * , Up+q) 

where the sum is taken over all permutations rj of {0, • • • , p+q} 
such that 77(0) < • • • <v(P) and i?(p + l ) < • • • <v(P+Q)- We de­
fine 

[A *] •=ƒ A * - ( - l ) M * A/. 

LEMMA. A(V), with the multiplication given by [ , ], is a graded Lie 
algebra. 

The proof is straightforward, but tedious. 
Let ƒ£-4x(TO; ƒ is thus an alternating bilinear map of VX V into 

V. We have 

[ƒ,ƒ](«, f, «0 = 2 ( / ( M tO, w) +f(f(v, w), u) +f(f(w, u), v)). 

Hence, remembering that characteristic K?*2, it follows that (V, ƒ) 
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is a Lie algebra if and only if [ƒ, ƒ] =-0. Let M = {f£Al(V)\ [ƒ,ƒ] = ()}. 
The points of M are precisely the Lie algebra multiplications on V. 
Let ƒ G M and let L denote the Lie algebra (F, ƒ). Then a computa­
tion shows that the cohomology groups Hn(J) (defined as in §1) are 
identical with the cohomology groups Hn+Ï(L, L) as defined by 
Che valley-Eilenberg. For each g £ G £ ( F ) , let Ta denote the induced 
linear map of A ( V) into A ( F). Then it is easily checked that the map 
g~*Tg is a homomorphism of GL(V) into the group Aut°(^4(F)) of all 
degree preserving automorphisms of the graded Lie algebra A(V). 
Furthermore two Lie algebra structures on V are isomorphic if and 
only if the corresponding points of M lie on the same orbit under 
GL(V). If V is finite dimensional, then A(V) is finite dimensional, 
GL(V) is an algebraic linear group with Lie algebra .4°(7), and 
g—>T0 is an everywhere defined rational representation of GL(V). I t 
is easily checked that in this case A{V) is an algebraic graded Lie 
algebra. 

3. The rigidity theorem. For the rest of the paper E will denote an 
algebraic graded Lie algebra with associated algebraic linear group 
G and M will denote the algebraic set {^G^E1! [#, %] = 0J. 

DEFINITION. An element aÇ:M is rigid if the orbit G(a) is a Zariski 
open subset of M. 

THEOREM A. Let K be algebraically closed. If a(~zM and if Hl(a) = 0 , 
then a is rigid. 

A related theorem was proved for the case of associative algebras 
by Gerstenhaber [4]. 

The proof of Theorem A involves standard theorems in the theory 
of algebraic linear groups, but is otherwise quite elementary. This 
theorem implies, for example, that every semi-simple Lie algebra over 
the field of complex numbers is rigid. Furthermore the Lie algebra of 
all endomorphisms of a finite-dimensional complex vector space is 
rigid. 

We note explicitly that the converse of Theorem A does not hold. 
However we do not know of any counterexamples to the converse for 
the graded Lie algebra A(V). 

4. An algebraic analogue of Kuranishi's theorem. {Added in 
proof.) In this section E will denote an algebraic graded Lie algebra 
over either the real or complex field and we shall use transcendental 
methods (although of a very elementary nature). We shall consider 
E as a topological space, supplied with the usual topology of a finite-
dimensional real or complex vector space. 
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THEOREM B. Let E be an algebraic graded Lie algebra over either the 
real or complex field, let M== [x^E1] [x, #] = 0} , and let aÇzM. For 
each integer j ^ O , let E] — B3'(a), let El be a supplementary subspace of 
B3'(a) in ZJ'( = Z3'(a)), and let E{ be a supplementary subspace of Zi in 
EK Let 7ro (resp. TTI) denote the projection of E2 on El (resp. El) with 
kernel (E\-\-E\) {resp. (E2

0+E2
2)). Then there exist N(a, Z1) (resp. 

N(a, E1)), a neighborhood o f a in Z1 (resp. El), and analytic mappings 
<£: N(a, Zl)—>E\, and \p: N(a, Z1)—*El, such that the following condi­
tions hold: 

(i) 7Ti([x+$(x), x+0(x ) ] )=O, 
(ii) \p(x)=7ro([x+<t>(x), x+<j>(x)]), 
(iii) MC\N(a, E1)={x+(l>(x)\xGN(a1 Z1) and\l/(x)=0}. 

We note that El is naturally isomorphic to H2(a). Thus \p can be 
interpreted as a map from N(a, Z1) into H2(a). Theorem B says that 
M, in a neighborhood of a, can be parametrized by the subset 4f~1(^) 
of Zl(a). In particular if H2(a)~Q, then M is locally parametrized by 
Z\a). _ 

The idea of the proof is as follows: Let Q denote the map of El 

into El given by x—>7Ti([x, X]). Write El as ZlXEl. Then in a neigh­
borhood of (a, 0) the "implicit equation" Q(x, y)—0 has a unique 
"solution" y — <j>(x). The existence of <j> follows from the implicit func­
tion theorem. The proof of (iii) uses the Jacobi identity and requires 
another application of the implicit function theorem. 

THEOREM C. Let ($> = MC\N(a, E1). Let 

5C = {% + <j>(x) i x G (N(a, Z1) r\(a+ E J ) ) and $(x) = 0}. 

Then there exists N(0, El), a neighborhood of 0 in E%, and a representa­
tion of (B as a product XXN(0, £2), such that each set {k} XN(0, El) 
lies on an orbit of G. 

Let a denote the map x—*\l/(a-\-x) of El into E2
0. Since E] (resp. El) 

is isomorphic to Hl(a) (resp. H2(a)), a can be interpreted as a map of 
Hl(a) into H2(a). We see that 3C is naturally parametrized by the set 
a - 1 (0) . Furthermore M can be represented, in a neighborhood of a, 
as a product of X and N(Q, El), where the second factor represents 
the action of G on M. The properties of the set 3C are somewhat 
similar to those of a slice at a, as defined in the theory of (compact) 
transformation groups (see [9] for definitions). 

The proof of Theorem C uses the inverse function theorem and 
properties of the exponential map of E° into G. 

The set 3C is a precise analogue, for the situations we have been 
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considering, of the family of complex structures defined by Kuranishi 
in [8]. 

REFERENCES 

1. C. Chevalley and S. Eilenbergr Cohomology theory of Lie groups and Lie algebras, 
Trans. Amer. Math. Soc. 63 (1948), 85-124. 

2. A. Frölicher and A. Nijenhuis, A theorem on stability of complex structures, 
Proc. Nat. Acad. Sci. U.S.A. 43 (1957), 239-241, 

3. M. Gerstenhaber, The cohomology structure of an associative ring, Ann. of Math. 
(2) 78 (1963), 267-289. 

4. , On the deformation of rings and algebras, Ann. of Math. (2) 79 (1964), 
59-104. 

5. D. Harrison, Commutative algebras and cohomology, Trans. Amer. Math. Soc. 
104 (1962), 191-204. 

6. G. Hochschild, On the cohomology groups of an associative algebra, Ann. of Math. 
(2) 46 (1945), 58-67. 

7. K. Kodaira, L. Nirenberg and D, Spencer, On the existence of deformation of 
complex analytic structures, Ann. of Math. (2) 68 (1958), 450-459. 

8. M. Kuranishi, On the locally complete families of complex analytic structures, 
Ann. of Math. (2) 75 (1962), 536-577. 

9. D. Montgomery and C. T. Yang, The existence of a slice, Ann. of Math. (2) 
65 (1957), 108-116. 

UNIVERSITY OF WASHINGTON 


