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Let X = [0, l ] , (B the c-algebra of Lebesgue measurable sets of X 
and fx the Lebesgue measure. For 1 ^p < <*> denote with £p the vector 
space of all real-valued (B-measurable functions f on X for which 
\f\p is integrable and with ƒ—>||/||p = (J\f\ pdfi)llp the corresponding 
seminorm on £p. Denote with £™ the vector space of all real-valued 
(B-measurable functions on X which are essentially bounded and 
with /—>||/1|oo the essential supremum seminorm on Ü00. For each 
1 SqS °° denote with Lq the associated Banach space and with ƒ—•»ƒ 
the canonical mapping of £q onto Lq. If T: Lq-*Lq is a continuous 
linear operator and fÇzLq, we shall denote by Tf a representative of 
the class Tf. We shall say that the individual ergodic theorem holds 
for T if for every ƒ G £q 

,. ƒ(*) + 2/(*) + • • • + r - -y (* ) 
lim 

exists almost everywhere. We shall say that the dominated ergodic 
theorem holds for T if there is a constant O O such that for every 
fG£« 

\f+Tf+... + T-*f\ ^ OQ 

sup G £q 

1 £*m < oo 7# 

and 

H \f+T/+ • • - + r * - y | 
sup 

Il l^m<oo m 

Let us recall that an automorphism is a bijective mapping r : X-+X 
satisfying the following two conditions: (i) for every EE(B, r~l(E) £(B 
and r(E)GCB; (ii) if ii£<B and M U ) = 0 , then /ifr""1^)) * /»(r ( i l ) )=0. 
Let Œ be the group of all automorphisms, e the unit element of d 
(i.e. the identity mapping of X). For TiG$, T2GŒ, write r i = r 2 if 
M({^ki(^)5z£T2(^)})==0; this defines an equivalence relation R in a. 
Denote with T-*T the canonical mapping of the group Ct onto the 
quotient group 0,/R. 

1 Research supported by the U. S. Army Research Office (Durham) under contract 
DA-ARO(D)-31-124-G 218. 
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An automorphism r is called periodic if there is n^l such that 

Assume l^q^ oo. For each r £ Œ denote with TT the isometry of 
Lq (in this note the term isometry stands for a linear operator which 
preserves the norm) induced by r ; TT is defined by the equations 

(if g = oo the above equations reduce to TTf~f o r"1, /G<£°°). Remark 
that if / G o and T'Z^T, then Tr* — Tr* Denote with gff the group of 
all isometries of Lq induced by automorphisms r £ ( $ ; the mapping 
f—>TT is an isomorphism of the group Ofc/2? onto the group Qq (for 
each l^q^ <*>). 

I t is known that the individual ergodic theorem does not hold in gen­
eral for TGSi w* -k1 # ^ TG800 «* i0 0 , respectively (see [2; 5; 6; 9]). 
The purpose of this note is to show that if Kp< <*>, then a domi­
nated ergodic theorem (with the best possible constant) holds for any 
T G 8 P

 m Lp and that in a certain sense this result can be obtained 
from the classical dominated ergodic theorem for measure-preserving 
automorphisms; as a consequence we deduce that the individual er­
godic theorem holds for any TÇz$P in 2>.2 

Throughout the rest of the paper we shall suppose p fixed and such 
that Kp<<x> ; from now on we shall omit the subscript p from the 
group 8p and will write 8 instead of gp. By a theorem of Banach (see 
[l , p. 178] and [7])3 every positive invertible isometry of Lp is in­
duced by some automorphism rCz®) thus the group of all positive 
invertible isometries of Lp coincides with g. We shall consider on g the 
topology 3 induced by the strong operator topology; endowed with 
3, g is a topological group. 

2 The author is grateful to Dr. E. M. Stein for bringing this problem to her atten­
tion. In fact Stein had obtained a dominated ergodic theorem for the case p = 2 by a 
method similar in spirit to that of Theorem 2 in his paper [8]; he conjectured that a 
dominated ergodic theorem probably holds for any Kp < 00 and raised the question 
whether or not this could be derived from the classical ergodic theorem for measure-
preserving automorphisms. 

3 The various versions of Banach's theorem found in the literature are given for 
p7^2 and arbitrary (not necessarily positive) isometries of Z>. If p~2 however, then 
it is easily seen that every positive invertible isometry of L2 is also induced by some 
automorphism. It is sufficient to remark that T has the following crucial property: 
(a) If ƒ G <£2, gG <£2 and f(x) • g(x) = 0 almost everywhere, then Tf(x) • Tg(x) — 0 almost 
everywhere. From property (a) we deduce as in the proof of Theorem 3.1 in [7] that 
T is induced by an <3Cautomorphism of the measure algebra^>. Since our measure space 
is a Lebesgue space, we infer that T is actually induced by some (point) automorphism 

rGa. 
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Denote with (P the set of all r = TVGg f° r which r is periodic. We 
then have: 

(P) The set (P is dense in 9. 
Proposition (P) can be proved for instance in the same way 

as Proposition 3 in [6], using Linderholm's approximation 
theorem (given T £ ® and e > 0 there is f£G. periodic such that 
M ( H r ( x ) ^ f ( x ) } ) : g e ) . 

THEOREM. Let T be a positive invertible isometry of Lp = Lp(X, (B, /x). 
Then for each ƒ £ £p we have 

(*) U/*ll^(~i)lMI-
here 

\f(x) + Tf(x) + . • • + r*-y(*) I 
f*(x) = sup 

î w»<oo m 

for x £ I . 

PROOF. We shall divide the proof into three parts. We shall first 
prove the following result: 

(A) Let r£<2 and v^O a totally a-finite measure on (B equivalent to 
/x. Let S be the isometry of Lp(X, (B, /x) induced by r (Sf=f or""1 

• (dfx o T^/dixY'vfor fÇ.£p(X, ®> M)) and U the isometry ofLp(Xf (B, v) 
induced by r {Ug = gor"1'{dv OT-l/dv)llp for g££p(X, (B, v)). The 
dominated ergodic theorem holds for S in LP(X} (B, /x) if and only if the 
dominated ergodic theorem holds for U in LP(X, (B, v), the constant being 
the same. 

We shall only prove one implication, the proof of the converse 
implication being entirely similar. Assume that the dominated ergodic 
theorem holds for S in LP(X, (B, /x) with the constant O 0 ; w e shall 
show that the dominated ergodic theorem holds for U in LP(X, (B, v) 
with the constant C. 

Let h = dv/dix and remark that for each w ^ O w e have 

dv o r~n dv o r~n dix o r~n dfx dp o r~n 1 
(!) s * - s A o -

dv dy o r~n dfx dv dfx h 

Let now g£<£p(X, (B, ^) ; then ghll*G£p(X, (B, /x) and we deduce from 
(1) that 

/dvor~n\1^ 1 
(2) Ung = g o r n « J s Sn(ghlip) for each w ^ O . 

\ dv / hllp 
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If we use the notation Um = ( I + U + • • • + Um"l)/m, 
= ( J + 5 + • • • +Sm~1)/m for each 1 ^m< <*> we deduce that 

for each 1 z&tn < <*> ; 

hence 

(3) 

u, 
hllp 

SUP | f/mg | S5 - - s u p \Sm(ghU*)\. 
h1,P l<W»<oo 

From (3) it follows that supi^w<00 | Umg\ belongs to £P(X, (B, v) and 
that 

f ( sup | Umg \Ydv= f—( sup | S^**1'*) | Yf r 

= f f sup | S^gh1'*) | Yrf/i ^ O ( f | ^ /* | W) 
J \ l ^ m < o o / \ J / 

= C'^flgl'hdf} = <>(ƒ U | ^ . 

This shows that the dominated ergodic theorem holds for U in 
LP(X, (B, J>) with the constant C. 

We shall prove next tha t : 
(B) For every TÇL^the dominated ergodic theorem holds in LP(X, (B, fx) 

with the constant p/p — 1. 
Let r = r T G ( P . Since r is periodic, there is n*zl such that rn^e. 

Define the measure v on (B by the equation v— X ^ i â n - i M o rj\ v is a 
finite measure on (B equivalent to ju and i> is invariant under T. The 
result (B) is then an immediate consequence of the classical domi­
nated ergodic theorem for measure-preserving automorphisms and of 
proposition (A). 

(C) We shall now conclude the proof of the theorem. Let T £ 9 be 
arbitrary and letƒ£:<£*>. Since T is a positive operator, we may assume 
without loss of generality that ƒ ^ 0 . To prove the inequality (*) for 
ƒ it will be enough to show that for any fe^l, any disjoint sets 
^4i£<£, • • • , ^4/cG® and any integers ttij^l, • • • , nk^l we have: 

(4) 

But by (B) the inequality (4) holds if we replace T by an arbitrary 
isometry belonging to (P. Since (P is dense in 9 (see Proposition (P) 
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above), an elementary argument shows that (4) holds for T. Thus 
the proof of the theorem is complete. 

COROLLARY. If T is a positive invertible isometry of LP = LP(X, (B, /*) 
then the individual ergodic theorem holds for T. 

PROOF. Consider the vector spaces 

9 i = { / | r f - / } 
and 

9ÏI = (I - T)L> = {g | l = (/ - T)h for some l £ L»). 

By the mean ergodic theorem the set (direct sum) 91+9TI is dense in 
L». Now for each ƒ£91+91!:, 

iB f{%) + Tf{x) + • . . + r-y(*) 
am 

exists almost everywhere; to see this it is enough to use the fact4 that 
for each hÇz£p, limm^oo Tmh(x)/m = 0 almost everywhere. 

Since by the above theorem, 

|/(*) + zy(*) + • • - + r^y(*)| 
Sup < oo 

igw<oo m 
almost everywhere, for each / £ £ p , the Banach convergence theorem 
can be applied (see [3, pp. 332-334]) and we conclude that the indi­
vidual ergodic theorem holds for T. 

REMARKS. (1) For p^l the above theorem and corollary remain 
valid for an arbitrary (not necessarily positive) invertible isometry 
of Lp, since by the theorem of Banach (see [l, p. 178] and [7]) every 
such isometry T is "dominated" by a positive invertible isometry S 
(in the sense that for each ƒ£<£*>, | Tf(x)\ =*S\f\ (x) almost every­
where). (2) Proposition (A) given in the course of the proof of the 
above theorem remains valid (with obvious modifications) if we re­
place the Lebesgue space (X, (B, /x) by an arbitrary totally o*-finite 
measure space and r by an <<Cautomorphism of the corresponding 
measure a lgebra^ . (3) The theorem, the corollary and Remark (1) 
above remain valid if we replace the Lebesgue space (X, (B, fi) by an 
arbitrary totally c-finite measure space (consider a finite equivalent 
measure, apply the generalized version of Banach's theorem on 

« This follows from the obvious inequality £ T . * | | ( I ^« /m | | *^p | | j ( E ^ - i 1/™P) 
< oo which is in fact true for an arbitrary contraction T of Lv and any hÇz <£p, as was 
remarked by Mr. Ackoglu from Brown University. 
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isometries given by Lamperti (see [7, pp. 461-463]) and make use 
of the isomorphism of a separable nonatomic normalized measure 
algebra with the measure algebra of the unit interval (see [4, p. 173])). 
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