ERGODIC PROPERTIES OF ISOMETRIES IN L^p SPACES, 1

BY A. IONESCU TULCEA1

Communicated by P. R. Halmos, November 7, 1963

Let X = [0, 1], $\mathfrak B$ the σ -algebra of Lebesgue measurable sets of X and μ the Lebesgue measure. For $1 \leq p < \infty$ denote with $\mathfrak L^p$ the vector space of all real-valued $\mathfrak B$ -measurable functions f on X for which $|f|^p$ is integrable and with $f \rightarrow ||f||_p = (\int |f|^p d\mu)^{1/p}$ the corresponding seminorm on $\mathfrak L^p$. Denote with $\mathfrak L^\infty$ the vector space of all real-valued $\mathfrak B$ -measurable functions on X which are essentially bounded and with $f \rightarrow ||f||_{\infty}$ the essential supremum seminorm on $\mathfrak L^\infty$. For each $1 \leq q \leq \infty$ denote with L^q the associated Banach space and with $f \rightarrow \tilde{f}$ the canonical mapping of $\mathfrak L^q$ onto L^q . If $T: L^q \rightarrow L^q$ is a continuous linear operator and $\tilde{f} \in L^q$, we shall denote by Tf a representative of the class $T\tilde{f}$. We shall say that the individual ergodic theorem holds for T if for every $f \in \mathfrak L^q$

$$\lim_{m\to\infty}\frac{f(x)+Tf(x)+\cdots+T^{m-1}f(x)}{m}$$

exists almost everywhere. We shall say that the dominated ergodic theorem holds for T if there is a constant C>0 such that for every $f \in \mathfrak{L}^q$

$$\sup_{1 \le m < \infty} \frac{|f + Tf + \dots + T^{m-1}f|}{m} \in \mathfrak{L}^q$$

and

$$\left\| \sup_{1 \le m < \infty} \frac{\left| f + Tf + \dots + T^{m-1} f \right|}{m} \right\|_{q} \le C \|f\|_{q}.$$

Let us recall that an automorphism is a bijective mapping $\tau \colon X \to X$ satisfying the following two conditions: (i) for every $E \in \mathfrak{B}$, $\tau^{-1}(E) \in \mathfrak{B}$ and $\tau(E) \in \mathfrak{B}$; (ii) if $A \in \mathfrak{B}$ and $\mu(A) = 0$, then $\mu(\tau^{-1}(A)) = \mu(\tau(A)) = 0$. Let \mathfrak{A} be the group of all automorphisms, e the unit element of \mathfrak{A} (i.e. the identity mapping of X). For $\tau_1 \in \mathfrak{A}$, $\tau_2 \in \mathfrak{A}$, write $\tau_1 \equiv \tau_2$ if $\mu(\{x \mid \tau_1(x) \neq \tau_2(x)\}) = 0$; this defines an equivalence relation R in \mathfrak{A} . Denote with $\tau \to \tilde{\tau}$ the canonical mapping of the group \mathfrak{A} onto the quotient group \mathfrak{A}/R .

¹ Research supported by the U. S. Army Research Office (Durham) under contract DA-ARO(D)-31-124-G 218.

An automorphism τ is called *periodic* if there is $n \ge 1$ such that $\tau^n \equiv e$.

Assume $1 \le q \le \infty$. For each $\tau \in \alpha$ denote with T_{τ} the isometry of L^q (in this note the term isometry stands for a linear operator which preserves the norm) *induced* by τ ; T_{τ} is defined by the equations

$$T_{\tau}f = f \circ \tau^{-1} \cdot \left(\frac{d\mu \circ \tau^{-1}}{d\mu}\right)^{1/q}, \quad f \in \mathfrak{L}^q$$

(if $q = \infty$ the above equations reduce to $T_{\tau}f = f \circ \tau^{-1}$, $f \in \mathfrak{L}^{\infty}$). Remark that if $\tau' \in \mathfrak{A}$ and $\tau' \equiv \tau$, then $T_{\tau'} = T_{\tau}$. Denote with \mathfrak{G}_q the group of all isometries of L^q induced by automorphisms $\tau \in \mathfrak{A}$; the mapping $\tilde{\tau} \to T_{\tau}$ is an *isomorphism* of the group \mathfrak{A}/R onto the group \mathfrak{G}_q (for each $1 \leq q \leq \infty$).

It is known that the individual ergodic theorem does not hold in general for $T \in \mathfrak{F}_1$ in L^1 and $T \in \mathfrak{F}_\infty$ in L^∞ , respectively (see [2; 5; 6; 9]). The purpose of this note is to show that if $1 , then a dominated ergodic theorem (with the best possible constant) holds for any <math>T \in \mathfrak{F}_p$ in L^p and that in a certain sense this result can be obtained from the classical dominated ergodic theorem for measure-preserving automorphisms; as a consequence we deduce that the individual ergodic theorem holds for any $T \in \mathfrak{F}_p$ in L^p .

Throughout the rest of the paper we shall suppose p fixed and such that 1 ; from now on we shall omit the subscript <math>p from the group \mathfrak{G}_p and will write \mathfrak{G} instead of \mathfrak{G}_p . By a theorem of Banach (see [1, p. 178] and [7])³ every positive invertible isometry of L^p is induced by some automorphism $\tau \in \mathfrak{A}$; thus the group of all positive invertible isometries of L^p coincides with \mathfrak{G} . We shall consider on \mathfrak{G} the topology \mathfrak{I} induced by the strong operator topology; endowed with \mathfrak{I} , \mathfrak{G} is a topological group.

² The author is grateful to Dr. E. M. Stein for bringing this problem to her attention. In fact Stein had obtained a dominated ergodic theorem for the case p=2 by a method similar in spirit to that of Theorem 2 in his paper [8]; he conjectured that a dominated ergodic theorem probably holds for any 1 and raised the question whether or not this could be derived from the classical ergodic theorem for measure-preserving automorphisms.

³ The various versions of Banach's theorem found in the literature are given for $p\neq 2$ and arbitrary (not necessarily positive) isometries of L^p . If p=2 however, then it is easily seen that every *positive* invertible isometry of L^2 is also induced by some automorphism. It is sufficient to remark that T has the following crucial property: (a) If $f \in \mathcal{L}^2$, $g \in \mathcal{L}^2$ and $f(x) \cdot g(x) = 0$ almost everywhere, then $Tf(x) \cdot Tg(x) = 0$ almost everywhere. From property (a) we deduce as in the proof of Theorem 3.1 in [7] that T is induced by an «automorphism of the measure algebra». Since our measure space is a Lebesgue space, we infer that T is actually induced by some (point) automorphism $T \in \mathcal{C}$.

Denote with \mathcal{O} the set of all $T = T_{\tau} \in \mathcal{G}$ for which τ is periodic. We then have:

(P) The set O is dense in S.

Proposition (P) can be proved for instance in the same way as Proposition 3 in [6], using Linderholm's approximation theorem (given $\tau \in \alpha$ and $\epsilon > 0$ there is $\zeta \in \alpha$ periodic such that $\mu(\{x \mid \tau(x) \neq \zeta(x)\}) \leq \epsilon$.

THEOREM. Let T be a positive invertible isometry of $L^p = L^p(X, \mathfrak{B}, \mu)$. Then for each $f \in \mathfrak{L}^p$ we have

(*)
$$||f^*||_p \le \left(\frac{p}{p-1}\right) ||f||_p;$$

here

$$f^*(x) = \sup_{1 \leq m < \infty} \frac{\left| f(x) + Tf(x) + \cdots + T^{m-1}f(x) \right|}{m},$$

for $x \in X$.

PROOF. We shall divide the proof into three parts. We shall first prove the following result:

(A) Let $\tau \in \mathfrak{A}$ and $v \geq 0$ a totally σ -finite measure on \mathfrak{B} equivalent to μ . Let S be the isometry of $L^p(X, \mathfrak{B}, \mu)$ induced by τ ($Sf = f \circ \tau^{-1} \cdot (d\mu \circ \tau^{-1}/d\mu)^{1/p}$ for $f \in \mathfrak{L}^p(X, \mathfrak{B}, \mu)$) and U the isometry of $L^p(X, \mathfrak{B}, \nu)$ induced by τ ($Ug = g \circ \tau^{-1} \cdot (d\nu \circ \tau^{-1}/d\nu)^{1/p}$ for $g \in \mathfrak{L}^p(X, \mathfrak{B}, \nu)$). The dominated ergodic theorem holds for S in $L^p(X, \mathfrak{B}, \mu)$ if and only if the dominated ergodic theorem holds for U in $L^p(X, \mathfrak{B}, \nu)$, the constant being the same.

We shall only prove one implication, the proof of the converse implication being entirely similar. Assume that the dominated ergodic theorem holds for S in $L^p(X, \mathfrak{B}, \mu)$ with the constant C>0; we shall show that the dominated ergodic theorem holds for U in $L^p(X, \mathfrak{B}, \nu)$ with the constant C.

Let $h = d\nu/d\mu$ and remark that for each $n \ge 0$ we have

$$(1) \qquad \frac{d\nu \circ \tau^{-n}}{d\nu} \equiv \frac{d\nu \circ \tau^{-n}}{d\mu \circ \tau^{-n}} \cdot \frac{d\mu \circ \tau^{-n}}{d\mu} \cdot \frac{d\mu}{d\nu} \equiv h \circ \tau^{-n} \cdot \frac{d\mu \circ \tau^{-n}}{d\mu} \cdot \frac{1}{h} \cdot \frac{1}{h}$$

Let now $g \in \mathfrak{L}^p(X, \mathfrak{G}, \nu)$; then $gh^{1/p} \in \mathfrak{L}^p(X, \mathfrak{G}, \mu)$ and we deduce from (1) that

(2)
$$U^n g = g \circ \tau^{-n} \cdot \left(\frac{d\nu \circ \tau^{-n}}{d\nu}\right)^{1/p} \equiv \frac{1}{h^{1/p}} \cdot S^n(gh^{1/p}) \quad \text{for each } n \geq 0.$$

If we use the notation $U_m = (I + U + \cdots + U^{m-1})/m$, $S_m = (I + S + \cdots + S^{m-1})/m$ for each $1 \le m < \infty$ we deduce that

$$U_m g \equiv \frac{1}{h^{1/p}} \cdot S_m(gh^{1/p}) \quad \text{for each } 1 \leq m < \infty;$$

hence

$$\sup_{1 \leq m < \infty} |U_m g| = \frac{1}{h^{1/p}} \cdot \sup_{1 \leq m < \infty} |S_m (gh^{1/p})|.$$

From (3) it follows that $\sup_{1 \le m < \infty} |U_m g|$ belongs to $\mathfrak{L}^p(X, \mathfrak{B}, \nu)$ and that

$$\int \left(\sup_{1 \leq m < \infty} |U_m g|\right)^p d\nu = \int \frac{1}{h} \left(\sup_{1 \leq m < \infty} |S_m (gh^{1/p})|\right)^p d\nu$$

$$= \int \left(\sup_{1 \leq m < \infty} |S_m (gh^{1/p})|\right)^p d\mu \leq C^p \left(\int |gh^{1/p}|^p d\mu\right)$$

$$= C^p \left(\int |g|^p h d\mu\right) = C^p \left(\int |g|^p d\nu\right).$$

This shows that the dominated ergodic theorem holds for U in $L^p(X, \mathcal{B}, \nu)$ with the constant C.

We shall prove next that:

(B) For every $T \in \mathcal{O}$ the dominated ergodic theorem holds in $L^p(X, \mathcal{B}, \mu)$ with the constant p/p-1.

Let $T = T_{\tau} \in \mathfrak{O}$. Since τ is periodic, there is $n \ge 1$ such that $\tau^n \equiv e$. Define the measure ν on \mathfrak{B} by the equation $\nu = \sum_{0 \le j \le n-1} \mu \circ \tau^j$; ν is a finite measure on \mathfrak{B} equivalent to μ and ν is invariant under τ . The result (B) is then an immediate consequence of the classical dominated ergodic theorem for measure-preserving automorphisms and of proposition (A).

(C) We shall now conclude the proof of the theorem. Let $T \in \mathcal{G}$ be arbitrary and let $f \in \mathcal{L}^p$. Since T is a positive operator, we may assume without loss of generality that $f \geq 0$. To prove the inequality (*) for f it will be enough to show that for any $k \geq 1$, any disjoint sets $A_1 \in \mathcal{G}$, \cdots , $A_k \in \mathcal{G}$ and any integers $n_1 \geq 1$, \cdots , $n_k \geq 1$ we have:

$$(4) \qquad \left\| \sum_{1 \leq i \leq k} \phi_{A_i} \frac{f + Tf + \dots + T^{n_i - 1} f}{n_i} \right\|_p \leq \left(\frac{p}{p - 1} \right) ||f||_p.$$

But by (B) the inequality (4) holds if we replace T by an arbitrary isometry belonging to \mathcal{O} . Since \mathcal{O} is dense in \mathcal{G} (see Proposition (P)

above), an elementary argument shows that (4) holds for T. Thus the proof of the theorem is complete.

COROLLARY. If T is a positive invertible isometry of $L^p = L^p(X, \mathfrak{B}, \mu)$ then the individual ergodic theorem holds for T.

PROOF. Consider the vector spaces

$$\mathfrak{N} = \{\tilde{f} \mid T\tilde{f} = \tilde{f}\}$$

and

$$\mathfrak{M} = (I - T)L^p = \{ \tilde{\mathbf{g}} \mid \tilde{\mathbf{g}} = (I - T)\tilde{\mathbf{h}} \text{ for some } \tilde{\mathbf{h}} \in L^p \}.$$

By the mean ergodic theorem the set (direct sum) $\mathfrak{N}+\mathfrak{M}$ is dense in L^p . Now for each $\tilde{f} \in \mathfrak{N}+\mathfrak{M}$,

$$\lim_{m\to\infty}\frac{f(x)+Tf(x)+\cdots+T^{m-1}f(x)}{m}$$

exists almost everywhere; to see this it is enough to use the fact⁴ that for each $h \in \mathcal{L}^p$, $\lim_{m \to \infty} T^m h(x)/m = 0$ almost everywhere.

Since by the above theorem,

$$\sup_{1 \le m < \infty} \frac{\left| f(x) + Tf(x) + \dots + T^{m-1}f(x) \right|}{m} < \infty$$

almost everywhere, for each $f \in \mathfrak{L}^p$, the Banach convergence theorem can be applied (see [3, pp. 332–334]) and we conclude that the individual ergodic theorem holds for T.

REMARKS. (1) For $p \neq 2$ the above theorem and corollary remain valid for an arbitrary (not necessarily positive) invertible isometry of L^p , since by the theorem of Banach (see [1, p. 178] and [7]) every such isometry T is "dominated" by a positive invertible isometry S (in the sense that for each $f \in \mathfrak{L}^p$, $|Tf(x)| \leq S|f|(x)$ almost everywhere). (2) Proposition (A) given in the course of the proof of the above theorem remains valid (with obvious modifications) if we replace the Lebesgue space (X, \mathfrak{G}, μ) by an arbitrary totally σ -finite measure space and τ by an «automorphism of the corresponding measure algebra». (3) The theorem, the corollary and Remark (1) above remain valid if we replace the Lebesgue space (X, \mathfrak{G}, μ) by an arbitrary totally σ -finite measure space (consider a finite equivalent measure, apply the generalized version of Banach's theorem on

⁴ This follows from the obvious inequality $\sum_{m=1}^{\infty} \|(T^m h)/m\|_p^p \le \|h\|_p^p (\sum_{m=1}^{\infty} 1/m^p) < \infty$ which is in fact true for an arbitrary contraction T of L^p and any $h \in \mathfrak{L}^p$, as was remarked by Mr. Ackoglu from Brown University.

isometries given by Lamperti (see [7, pp. 461-463]) and make use of the isomorphism of a separable nonatomic normalized measure algebra with the measure algebra of the unit interval (see [4, p. 173])).

BIBLIOGRAPHY

- 1. S. Banach, Théorie des opérations linéaires, Monogr. Mat., Warsaw, 1932.
- 2. R. V. Chacon, A class of linear transformations, Proc. Amer. Math. Soc. (to appear).
- 3. N. Dunford and J. T. Schwartz, *Linear operators*. I, Interscience, New York, 1958.
 - 4. P. R. Halmos, Measure theory, Van Nostrand, New York, 1950.
- 5. A. Ionescu Tulcea, Un théorème de catégorie dans la théorie ergodique, C. R. Acad. Sci. Paris 257 (1963), 18-20.
- 6. ——, On the category of certain classes of transformations in ergodic theory, Trans. Amer. Math. Soc. (to appear).
- 7. J. Lamperti, On the isometries of certain function spaces, Pacific J. Math. 8 (1958), 459-466.
- 8. E. M. Stein, On the maximal ergodic theorem, Proc. Nat. Acad. Sci. 47 (1961), 1894-1897.
- 9. F. B. Wright, The converse of the individual ergodic theorem, Proc. Amer. Math. Soc. 11 (1960), 415-420.

University of Pennsylvania