CLASSIFICATION OF OPERATORS BY MEANS OF THE OPERATIONAL CALCULUS¹

BY SHMUEL KANTOROVITZ

Communicated by Felix Browder, November 27, 1963

- 1. Introduction. Let $A = A(\Delta)$ be a topological algebra of complex valued functions defined on a subset Δ of the complex plane, with the usual operations. Suppose that A contains the restrictions to Δ of polynomials. Let B(X) be the Banach algebra of all bounded linear operators on the Banach space X into itself. We say that an operator T is of class A (notation: $T \in (A)$) if there exists a continuous representation $f \rightarrow T(f)$ of A into B(X) such that T(1) = I and T(z) = T. Such a representation is called an A-operational calculus for T. A class (A) may be as wide as B(X) (if A consists of all entire functions with the topology of uniform convergence on every compact), or as narrow as the class of hermitian operators with spectrum in a given compact Δ (if $A = C(\Delta)$, $T(\cdot)$) is norm decreasing, and X is a Hilbert space). Related approaches are found in [3; 5].
- 2. Restrictions on A. Let $H(\Delta)$ denote the algebra of all complex valued functions which are locally holomorphic in a neighborhood of Δ , with the usual topology.

Condition 1. If $f \in H(\Omega)$ for a compact $\Omega \neq \emptyset$, then there exists $f_0 \in A(\Delta)$ such that $f_0 = f$ on $\Delta \cap \Omega_0$, for some neighborhood Ω_0 of Ω . This condition excludes in particular the noninteresting case $A(\Delta) = H(\Delta)$. We shall consider here only $\Delta = R$ (the real line) or $\Delta = C$ (the complex plane), and assume that $A_0 = \{f \in A | f \text{ has compact support}\}$ is dense in A.

Fix $f \in A_0$. If $g \in H(\operatorname{Spt} f)$, Condition 1 implies the existence of $g_0 \in \mathbf{A}$ such that $g_0 = g$ on $\operatorname{Spt} f$. The map $M_f : H(\operatorname{Spt} f) \to \mathbf{A}$ given by $M_f g = f g_0$ is well defined.

CONDITION 2. The map $M_f: H(\operatorname{Spt} f) \to \mathbf{A}$ is continuous, for each $f \in \mathbf{A}_0$. A topological algebra \mathbf{A} as in §1 which satisfies also Conditions 1 and 2 is called a *basic algebra* (compare [5]). Example: C^n for $0 \le n \le \infty$.

3. Restrictions on $T(\cdot)$.

CONDITION 3. $T(\cdot)$ has compact support (denoted by Σ). If $g \in H(\Sigma)$ and $g_0 \in A$ is such that $g_0 = g$ in a neighborhood of Σ (cf. Condition 1),

¹ Research partly supported by NSF Grant No. NSF-GP780.

define a representation $T_H: H(\Sigma) \to B(X)$ by $T_H(g) = T(g_0)$. T_H is well defined. We call it the *restriction of* $T(\cdot)$ to $H(\Sigma)$.

CONDITION 4. $T_H: H(\Sigma) \rightarrow B(X)$ is continuous.

DEFINITION. An operational calculus (o.c.) is the object $(A, T(\cdot))$ consisting of a basic algebra A and of a continuous representation $T(\cdot)$ of A in B(X) which satisfies Conditions 3 and 4 as well as the normalizing condition T(1) = I. An operator T is of class A $(T \in (A))$ if there exists an o.c. $(A, T(\cdot))$ such that T(z) = T.

- 4. Basic facts. Let $T \in (A)$ and let $(A, T(\cdot))$ be an o.c. for T. Then
- 1. $\Sigma = \sigma(T)$ (the spectrum of T).
- 2. The restriction of $T(\cdot)$ to $H(\Sigma)$ is the usual analytic operational calculus for T.

Property 1 motivates the convention: for real operators (i.e., $\sigma(T) \subset R$), we take $\Delta = R$.

It is reasonable to require that if $T \in (A)$, also $tT \in (A)$ for $t \in R$. This corresponds to the following requirement on A: if $f \in A$, then $f_t \in A$ (where $f_t(x) = f(tx)$) and the map $f \rightarrow f_t$ of A into itself is continuous $(t \in R)$. If A has this property, we say that A is homogeneous.

THEOREM 1 ("CLASSIFICATION THEOREM"). If T is a real operator of class A for a homogeneous Banach algebra A, then T is of class C^n for some $n < \infty$.

5. Operators of finite class. We say that T is of finite class if it is of class C^n for some $n < \infty$ (cf. Theorem 1).

The proof of the Classification Theorem is based on the following characterization of operators of finite class.

THEOREM 2. T is a real operator of finite class if and only if $||e^{itT}|| = O(|t|^k)$ $(t \in \mathbb{R}, |t| \to \infty)$ for some $0 \le k < \infty$.

More precisely, if T is real of class C^n , then $||e^{itT}|| = O(|t|^n)$; conversely, the latter condition is sufficient for T to be real of class C^{n+2} .

6. Relationship with spectral operators. Theorem 2 implies in particular that sums and products of commuting real operators of finite class are of finite class. Spectral operators of finite type (cf. [2]) are operators of finite class. The converse is false by the preceding remark, even in reflexive Banach spaces (cf. [6, pp. 303-304]). However, it is true that $T \in (C)$ if and only if T is spectral of scalar type (if X is weakly complete). In particular, when X is a Hilbert space, (C) is the class of all operators which are similar to normal operators.

Moreover, T is normal if and only if it is of class C and has a norm-decreasing C-o.c.

If $T \in (C^n)$ $(1 \le n < \infty)$, $x \in X$ and $x^* \in X^*$, then $x^*T(\cdot)x$ is a continuous linear functional on C^n with compact support Σ ; as such, it has representations of the form $\sum_{0 \le j \le n} \mu_j^{(j)}$, where μ_j are regular finite Borel measures with supports in an arbitrary neighborhood of Σ . We say that T is singular if $x^*T(\cdot)x$ has such a representation in which μ_j $(j \ge 1)$ are singular with respect to Lebesgue measure (for all x, x^*).

THEOREM 3. A real operator on a reflexive Banach space is singular of class C^n $(n \ge 1)$ if and only if it is spectral of type n and its nilpotent part N and resolution of the identity $E(\cdot)$ are such that $x^*NE(\cdot)x$ is singular with respect to Lebesgue measure for all x and x^* .

In other words, singular real operators of class C^n have a "Jordan canonical form" T = S + N, where S is scalar and real, $N^{n+1} = O$, and S commutes with N (when X is reflexive).

7. Characterizations of (C^n) . Theorem 2 gives a simple characterization of $\bigcup_{n\geq 0} (C^n)$ in terms of a growth condition on the group e^{itT} , $t\in R$. In order to characterize in a similar way a given class (C^n) , we need some "averages" of e^{itT} . Let $L_{1,n} = \{f \in L_1(R) \mid t^i f(t) \in L_1(R); 0 \leq j \leq n\}$; if $f \in L_{1,n}$, its Fourier transform \hat{f} is obviously in C^n . For $g \in C^n$ and Δ compact, write

$$||g||_{n,\Delta} = \sum_{0 \le j \le n} \frac{1}{j!} \sup_{\Delta} |g^{(j)}|.$$

DEFINITION. Let n be a non-negative integer, Δ a compact interval, and $T \in B(X)$. The nth variation of T over Δ is defined by

$$v_n(T; \Delta) = \sup \left\| \int f(t)e^{itT}dt \right\|,$$

where the sup is taken over all $f \in L_{1,n}$ with $||f||_{n,\Delta} = 1.^2$ In general, $v_n(T; \Delta) = \infty$. However, we have

THEOREM 4. T is real of class C^n if and only if $v_n(T; \Delta) < \infty$ for some compact interval Δ . (In this case, $\sigma(T) \subseteq \Delta$.)

This generalizes Theorem 6 in [4]. As a first corollary, we have the following generalization of results of Bade's [1]:

² If the integral does not converge in the uniform operator topology for some f in $L_{1,n}$, we set its norm equal to $+\infty$.

THEOREM 5. Let $T_a \in B(X)$ be a net converging to $T \in B(X)$ in the strong operator topology. Suppose that, for some n and some compact interval Δ , $\sup_a v_n(T_a; \Delta) < \infty$. Then T (as well as all T_a) is of class C^n with spectrum in Δ , and $T(f) = \lim_{n \to \infty} T_a(f)$ ($f \in C^n$) in the strong operator topology.

Applying Theorem 5, we get

THEOREM 6. Let T and S be two commuting real operators in Hilbert space, $T \in (C^n)$ and $S \in (C)$. Then $T + S \in (C^n)$ and

$$(T+S)(f)=\int T(f_t)dE(t), \quad f\in C^n,$$

where $E(\cdot)$ is the resolution of the identity for S, $f_t(x) = f(t+x)$ and the integral exists in the strong operator topology.

An analogous result holds in arbitrary Banach spaces, but it would be too long to state it here. Theorem 6 generalizes known results about spectral operators.

The growth condition in Theorem 4 may be expressed in terms of the resolvent. For example, for n=0, we get: A real operator is of class C if and only if the integral $\int |x^*[T(t-is;T)-R(t+is;T)]x| dt$ is uniformly bounded when $s\to 0+$, for all unit vectors x and x^* . In this case, the C-o.c. for T is given by

$$T(f) = \lim_{s \to 0+} \frac{1}{2\pi i} \int f(t) [R(t-is;T) - R(t+is;T)] dt, \quad f \in C.$$

This explicit representation of the o.c. is well known for hermitian operators (compare [7]). Another explicit representation of the C^n -o.c., together with a characterization of (C^n) , may be obtained as follows. For $u \ge 0$, $t \in \mathbb{R}$, $m = 1, 2, \cdots$, and $T \in B(X)$ arbitrary, let

$$G_m(t, u) = \frac{1}{2\pi} \int \exp - [(v/m)^2 + u | v | + ivt] e^{-ivT} dv,$$

and

$$T_m(f; u) = \int f(t)G_m(t, u)dt, \quad f \in C_0^n,$$

where $C_0^n = \{ f \in C^n | f \text{ has compact support } \}.$

THEOREM 7. A real operator T is of class C^n if and only if, for every $f \in C_0^n$, $T_m(f; u) \to T(f; u) \in B(X)$ in the weak operator topology $(m \to \infty)$,

uniformly with respect to u ($u \ge 0$), and, for some constant M > 0 and some compact interval Δ , $||T(f; u)|| \le M||f||_{n,\Delta}$ ($u \ge 0$).

In this case, the C^n -o.c. for T is given by $T(f) = T(f_0; 0)$, $f \in C^n$, where $f_0 \in C_0^n$ is such that $f_0 = f$ on Δ .

REFERENCES

- 1. W. G. Bade, Weak and strong limits of spectral operators, Pacific J. Math. 4 (1954), 393-413.
- 2. N. Dunford, A survey of the theory of spectral operators, Bull. Amer. Math. Soc. 64 (1958), 217-274.
- 3. C. Foias, Une application des distributions vectorielles à la théorie spectrale, Bull. Sci. Math. (2) 84 (1960), 147-158.
- 4. S. Kantorovitz, On the characterization of spectral operators, Trans. Amer. Math. Soc. 111 (1964), 152-181.
- 5. F. Maeda, Generalized spectral operators on locally convex spaces, Pacific J. Math. 13 (1963), 177-192.
- 6. C. A. McCarthy, Commuting Boolean algebras of projections, Pacific J. Math. 11 (1961), 295-307.
- 7. H. G. Tillmann, Vector-valued distributions and the spectral theorem for self-adjoint operators in Hilbert space, Bull. Amer. Math. Soc. 69 (1963), 67-71.

PRINCETON UNIVERSITY AND
INSTITUTE FOR ADVANCED STUDY