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1. Abstract theory. Let M be a C2-Riemannian manifold without 
boundary modeled on a separable Hubert space (see Lang [3]). For 
pÇzM we denote by ( , )p the inner product in the tangent space Mp 

and we define a function || || on the tangent bundle T(M) by ||z>|| 
= (v, v)xJ2 for vÇzMp. Given p and q in the same component of M we 
define p(p, q)==lnïfl\\<r'(t)\\dtt where the Inf is over all C1 paths 
<r\ [0, l]—>ikf such that a(0)=p and cr(l)=g. Just as in the finite 
dimensional case one shows that p is a metric on each component of 
M which is consistent with the manifold topology. If each com­
ponent of M is complete in this metric M is called a complete 
Riemannian manifold and we assume this in all that follows. Let 
ƒ: M—>R be a C2 function. Then df, the differential of/, is a C1 cross 
section of the cotangent bundle of M, hence there is a uniquely de­
termined C1 vector field V/ on ikf, the gradient of/, such that dfp(v) 
= (#, *7f(p))p for v(~Mp. We denote by $* the maximum local one-
parameter group generated by — V/. A critical point of ƒ is a point 
where V/ vanishes; equivalently a stationary point of <£*. At a critical 
point p of ƒ there is a uniquely determined continuous bilinear form 
H(f)p on MP1 the Hessian of ƒ at p} such that H(f)p(u, v) 
= d 2 ( / o <jrl)(d<}>p(u), d<pp(v)) if <£ is any chart at p. The supremum of 
the dimensions of subspaces on which H(f)p is negative (positive) 
definite is called the index (coindex) of ƒ at p. H(f)p is symmetric, 
hence there is a uniquely determined bounded self-ad joint operator 
A on Mp such that H{f)v{u1 v) = (Au, v)p. The critical point p is 
called nondegenerate if A has a bounded inverse. In this case p is 
isolated in the set of critical points. 

Let fa'h=f~1[a, b] and fb=f~°°>b. Morse theory is concerned with 
relating the structure of the critical point set of ƒ in fa'b with the 
homology, homotopy, homeomorphism, and diffeomorphism type of 
the pair (/6, ƒ*). We shall be concerned with the Morse theory of pairs 
{My ƒ) as above which satisfy at least the following extra condition : 

(C) If 5 is a subset of M on which | ƒ) is bounded but on which 
|| V/1| is not bounded away from zero, then there is a critical point of 
f in the closure of 5. 

Note that if ƒ is proper (which implies that M is finite dimensional) 
and in particular if M is compact then condition (C) is automatically 
satisfied. More interesting though is the fact, which we will make 
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precise in later sections, that a fairly general class of calculus of varia­
tions problems can be interpreted as pairs (M", ƒ) satisfying condition 
(C). The following is thus an existence theorem for minimizing ex­
tremals of such problems. 

THEOREM 1. Let (M,f) satisfy (C) and assume f is bounded below 
on a component Mo of M. Then f assumes its greatest lower bound on 
Mo. If pÇzMo then <l>t(p) is defined for all positive t and <t>t(p) has a 
critical point of f as limit point as t—> <*>. If all the critical points of f on 
Mo are nondegenerate then in f act lim^oo <l>t(p) exists and is a critical 
point of f for each ££Mo. Iff is bounded below on all of M then ƒ as­
sumes its greatest lower bound on M provided the critical point set o f f 
has no interior, i.e. provided ƒ is not constant on any nonempty open 
set, hence in particular if all the critical points of f are nondegenerate. 

REMARK. In any reasonable calculus of variations problem it is a 
priori evident that the function cannot be anywhere locally constant, 
hence condition (C) implies the existence of absolute minima. 

A real number c is called a critical value of ƒ \l f~l{c) contains a 
critical point of/, otherwise c is a regular value of/. If c is a regular 
value of ƒ then it is easily seen that f° is a closed submanifold of M 
with boundary f~l(c). 

THEOREM 2. Let (M, ƒ) satisfy condition (C) and assume that all 
critical points off are nondegenerate. Then 

(1) For any real numbers a<b there are only finitely many critical 
points off infa>b, hence the critical values of f are isolated. 

(2) Let a and b be regular values of ƒ and suppose that among the 
critical points of f infa'b there are r having finite index. Let the indices 
of these critical points be d\} • • • , dr. Then fh has the homotopy type of 
fa with r cells of dimensions d\y • • • , dr attached. 

COROLLARY 1 (MORSE INEQUALITIES). Let a and b be regular values 
of f. Let Ri'b be the ith betti number of (ƒ*, fa) with coefficients in a field 
and let C^b be the number of critical points of index i infa>b. Then 

m m , 

(i) Z ( - D R* £ E ( - D Ci , 

(2) R7" g c7\ 

(3) fX-D^'-tc-D'cî'*. 
t=0 tf—0 

REMARK. Note that if ƒ is bounded below then in the theorem and 
Corollary 1 we can take a < greatest lower bound of / in which case 
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jfa = 0 so (ƒ*,ƒ«) =ƒ*, R%'b = ith betti number of f\ and C?'& = number 
of critical points of ƒ in fb having index i. If we now let b—> <*> through 
regular values we get 

COROLLARY 2. Assume ƒ is bounded below and let Ri denote the ith 
betti number of M with coefficients in afield and C% the number of critical 
points of f having index i (either or both may be infinite). Then R%^Ci 
and if each C% is finite i = 0, • • • , m then 

m m 

i=0 *=0 

Assume the hypothesis of Theorem 2 and let a <b be regular values 
of ƒ and c the only critical value of ƒ in [a, b]. Let pi, - • - , pr be all 
the critical points of ƒ on f~l(c) and let ki and U be respectively the 
index and coindex of ƒ at pi. Then one can show that fb has the 
diffeomorphism type of fa with handles of type (ki, Zi), • • • , (kr, lr) 
attached (a handle of type (k, I) is Dh XDl where Dr denotes the 
closed unit disc in a Hubert space of dimension r, O ^ r ^ 00 ; what it 
means to attach a handle to a manifold with boundary we shall not 
make precise here other than to say it is strictly analogous to the 
well-known process in the finite dimensional case). 

2. Manifolds of maps. The prototypes of theorems of this section 
are due to J. Eells [2]. 

Let M be a compact differentiable (C00) manifold possibly with 
boundary, £ a real finite dimensional vector bundle over M with fiber 
E and Cr(£) the vector space of Cr-cross sections of £. If we identify 
an open set 0 of M with an open set in a vector space F by a chart 
and trivialize £ over 0, then every / £ C r ( £ ) defines a Cr-map ƒ: 0 -^£ 
and for each ^ £ 0 and m = 0> 1, • • • , r the mth. differential for ƒ at p 
is an element of the space L™(V, E) of symmetric w-linear maps of V 
into E. The set of fECr(£) such that dmfp = 0 m = 0, 1, • • • , r is a 
vector subspace Z£(£) of Cr(£) which does not depend on the chart or 
trivialization, and the quotient Jr(Op"= Cr(Ç)/Zr

v(Ç) is a finite dimen­
sional vector space isomorphic to ®r

m~0 L™(V> -E)« Then Jr(£)P is the 
fiber at p of a differentiable vector bundle Jr(£) over Mt the r-jet 
bundle of £, and there is an obvious one-to-one linear map j r : Cr(£) 
—»C°(/r(^)) called the r-jet extension map. The compact open topol­
ogy on C°(Jr(£)) induces via the injection j r a topology on Cr(£) (the 
Cr-topology) which can be derived from a complete norm, and hence­
forth we regard Cr(£) as a Banach space whose norm is given only 
to within equivalence. Let fi be a "smooth" measure on M (i.e. if 
<£: 0—>i?n is a chart, then there is a strictly positive C°° real valued 
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function ƒ on <f>(6) such that for each subset £ of 0 jx(E) = f<f>(E)f(x)dx 
where dx is the element of Lebesgue measure in Rn). If we give Jr(£) a 
Riemannian structure then (ƒ, g) = f(jr(f)(x)ijr(g)(x)}dfx(x) defines a 
prehilbert space structure on Cr(£) which changes to an equivalent 
one if we change fx or the Riemannian structure on J r(£). The com­
pleted space is the Sobolev space Hr(Q of "iJr-cross-sections of £," a 
Hubert space whose inner product is defined up to equivalence. Now 
let 7 be a differentiable fiber bundle over M in the sense of Ehres-
mann (i.e. 7 is a fiber bundle whose total space, fiber, and projection 
are differentiable and which is differentiably locally trivial) and sup­
pose 7 is a "closed sub-bundle of £" in the sense that the total space 
of 7 is a closed submanifold of the total space of £ and the projection 
of 7 is the restriction of the projection of £. The space Cr(y) of Cr-
cross sections of 7 in the Cr topology is then a closed subspace of 
Cr(£). Let Hr{y) denote the closure of Cr(y) in Hr{£). 

THEOREM 1. Cr(y) is a closed C°° submanifold of the Banach space 
Cr(£). If 2 r>d im M then Hr(y) is a closed C00-submanifold of the 
Hubert space Hr(Ç). 

The important point is that Cr(y) is always a C°°-manifold and 
that if 2r >d im M then Hr(y) is a Hubert manifold. The next theorem 
will show that the differentiable structure of Cr(y) is intrinsic, i.e. 
independent of the embedding of 7 as a sub-bundle of a vector bundle. 
In fact it says that Cr(y) is a covariant functor from differentiable 
fiber bundles over M to C00 manifolds. Similarly it says that if 
2 r>d im M then Hr(y) is a covariant functor to C°°-Hilbert mani­
folds. 

THEOREM 2. Let £' be a second vector bundle over M, yf a differentiable 
fiber bundle over M that is a closed sub-bundle of £' and cj> : 7—>7; a 
differentiable fiber preserving map. Define $: Cr(y)-*Cr(yf) by $(ƒ) 
= (f> o ƒ. Then $ is a C^-map and iflr> dim M $ extends to a C00 map of 
H'(y)->H'(y>). 

REMARK. If we fix an inner product for the Hubert space Hr(^)f 

then this induces a complete Riemannian structure on the closed 
submanifold Hr(y) (2r>dim M). However the latter clearly is not 
intrinsic. 

REMARK. Specializing to the important special case of product 
bundles y — MXW the above defines a C°° manifold structure on the 
space Cr(M, W) of Cr maps of M into W, and (if 2 r>d im M) a C00 

Hubert manifold Hr{M, W) of HT maps of M into W. I t is well known 
that Cr(M, W) has the homotopy type of C°(M, W). The same is 
true of Hr(M, W) if 2 r>d im M. 
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3. Variational problems. Maintaining the notation of the preceding 
section let F: Jr(^)—^R be a C°° function and let JJL be a smooth meas­
ure on M. Define / : Cr(Ç)->R by J (J) =fMF(jk(f))dii, r^k. 

THEOREM. If r^k then J is a C00 real-valued f unction on Cr(£). 

The calculus of variations is concerned with the study of the criti­
cal points of J, usually restricted to some submanifold of Cr(y) de­
fined by certain "boundary conditions." In order to apply the ab­
stract theory of §1 one puts conditions on the integrand F to insure 
that / extends to a function of at least class C2 on Hr(£). Then if 
2 r>d im M J restricted to the submanifold of Hr(y) corresponding 
to the boundary conditions will also be of class C2. Similarly one im­
poses conditions on F to insure that condition (C) of §1 will be satis­
fied on this submanifold. While we are far from having definitive 
results in this direction we will give in the next two sections theorems 
which include a great number of classical results and many new re­
sults besides. 

4. A generalization of the Morse theory of geodesies. Let D be a 
domain with smooth boundary in Rn. Given an w-tuple a = («i, « • •, an) 
of non-negative integers let | a | =ax+ • • • +an. For each such a 
with | a | igjfe let Aa be a C°°-map of D into the space of linear trans­
formations of Rp into itself and define a linear map L= ]Cl«Ur AaD

a 

of OaKD, Rp) into C°(D, Rp) by 

(£ƒ)(*) = £ Aa(x)(dlal/dx? • • • dx7)f(x). 

Such an L is called a £th order differential operator and its symbol 
<Tk(L) is the map of DX(Rn — 0) into the space of linear maps of Rp 

into itself defined by ak(L)(xt £) = ]Cl«l-* £? • ' • SM«(*0- If <?k(L) 
is everywhere nonsingular then L is called elliptic and if k — 2r and 
( —l)ro-fc(i) is everywhere a positive definite self-adjoint operator 
then L is called strongly elliptic. The formal adjoint L* of L is the 
&th order differential operator ]£l«ls* ( —l) , a , i4ÎD a (where A%(x) 
is the adjoint of Aa(x)), so clearly <Tk(L*) = ( — l)Vjb(L). If L' is an 
mth order differential operator then it is easily seen that L'L is an 
(m+k)th order differential operator and that <rm+k(L'L)=o,

m(L')o'k(L)J 

hence if L is elliptic of order k then L*L is strongly elliptic of order 2k. 
We denote the inner product in Rp by ( , ) and for/ , gGC°(Dt Rp) 

we define (ƒ, g)o = /z>(/(#), g(x))dx. Let PP be a closed submanifold of 
R*. Let / o G C ^ A WO and let CS(2>, WO be the set of fGCk(D, W) 
such that £>"ƒ(*) =Daf0(x) for | a | < £ and *GdJ5, and let £#(£>, W) 
denote the closure of C$(£>, IF) in Hk(D, Rp). Then it follows from 
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the results of §2 that CS(Z>, W) is a closed submanifold of Ck(D, R*>) 
and that if 2k > n then H%(D$ W) is a closed submanifold of Hk(D, Rp), 
hence a complete Riemannian manifold. Now let L be a differential 
operator of order 2k and define a C^-function J : C2*(A Rp)-+R by 
/ (ƒ) = <!ƒ, /)o. Then one shows that ƒ restricted to Cg*(2?f £*) ex­
tends to a C°°-map of H%(D, W0-».R if 2&>w. We will denote this map 
by J also. 

THEOREM. Assume that L is a strongly elliptic differential operator 
of order 2k>n such that Lf=0 has no solution f ÇzC°°(D, Rp) satisfying 
the boundary conditions Daf(x) = 0 for all \a\ <k and all xÇidD. Then 
J: Hl(D, W)~->R satisfies condition (C) of §1. Moreover all the critical 
points of J on Hl(D, W) are in C£(D, W). 

If L = A*A where A is an elliptic &th order differential operator 
then J (J) is essentially ||i4jf||g=<i4/, Af}0. Moreover L / = 0 with the 
boundary conditions of the theorem imply Af=0. A case of special 
interest isk = n=lj D = I (the unit interval) A = d/dx. Then Cj(J, W) 
is all C1-paths a: I—>W with <r(Q) and <r(l) two given points P and Q 
of W and ||-4cr||§ = /oll^'OOll2^» the usual action integral. Thus the 
critical points are the geodesies joining P to Q parameterized pro­
portionately to arc length, and the theorems of §1 in this case yield 
the usual Morse theory of geodesies [ó], 

5. A nonlinear Dirichlet problem. As in §3, given the C°° integrand 
F: J*(ö->2ï, let J (J) = fMF(jkf)du define a C00 real function on Cfc(£). 
For ("Dirichlet") boundary data of our calculus of variations prob­
lem (if boundary M is nonempty), let /oGC*(^), and Cj(£) be the 
affine subspace of maps ƒ with jk-if^jk-ifo on dM. Finally let HQ(^) 
be the closure of Cj(ö in fl*(£). 

We furthermore give the following conditions on F. There exists 
a finite local trivialization of /*(£), UaXE XLS (V,E)X • • -XL]{V,E) 
= {(x, p°, p1, • • • , ph) = {(xy p)}, a = 1, • • - , m, such that on each, 
the restriction of F} still denoted by F satisfies: 

(1) F(x, P) £ ci\\p\\* + ch 

(2) Fpp(x, pm fi) ^ cz\\p\\*, fi G E X • • • X LÎ(F, £ ) , 

(3) C 4 | | ^ | | 2 - C 6 ^ f F(x)p)dx) 
J M 

(4) C6||/3||2 =g F ^ * , #508, ft, ff G £(V, E). 

Here the d are constants and the subscripts on F denote partial 
derivatives. Thus for example 



1964] A GENERALIZED MORSE THEORY 171 

F p y : Ua X • • • X L8(V, E) -> L](L (V, E), R), 

peEXLs(V,E)X •• -XLk
s(V,E) and P* G L)(V, E). 

In the usual case of the (linear) Dirichlet problem, F is derived 
from a metric on J*(£) in the sense of [3], i.e. is quadratic on each 
fiber. Then conditions (1) and (2) are automatically satisfied and (3), 
(4) are a strengthened form of strong ellipticity. 

THEOREM. If F satisfies (1), (2), then the real C°° function 
J = fMF(jkf)du on Cfc(£) can be extended to a C2 function of Hk(%). If 
furthermore, conditions (3), (4) are satisfied, then Jo: Hl(£)—>R, the 
restriction of this extension to i?J(£) satisfies (C) of §1. Hence Jo has a 
minimum on HQ(£) and if the critical points of Jo are nondegenerate the 
Morse theory is valid {cf. §1). 

REMARKS. 1. Conditions (l)-(4) obviously strongly restrict the 
integrand F, but on the other hand they allow a great deal of non-
linearity and at the same time include the (linear) Dirichlet problem 
in the general form of Gârding, Browder and Visik, see [8], (when £ 
is a product and M a domain of Euclidean space). 

2. Since H%(£) is contractible, of course no other critical point of 
Jo besides the minimum is forced by the homology of .#£(£)• How­
ever, the Morse theory implies, for example, that if Jo has two local 
nondegenerate minima, then Jo has some other critical point (such F 
satisfying our conditions are easy to construct). Morrey (see e.g. [5]) 
has shown the existence of a minimum (if k— 1) under our conditions 
on F. F. Browder [ l ] at the same time as this work has proved an 
existence theorem for partial differential equations related to the 
above. 

3. The critical points of Jo are weak solutions of the nonlinear 
strongly elliptic Euler equations. I t seems possible that they are C00 

sections. However the known regularity theory, for example [8], 
and di Giorgi-Nash cf. [é], [7 ], implies this only under further drastic 
assumptions on the problem. 

4. Presumably, the theorem of this section extends to sub-bundles 
rj of £ under similar conditions on F and 2&>dim M. Then usually 
the homology of H%(r)) will be highly nontrivial and the existence 
theory will imply much more. 

Conversations with several mathematicians have been helpful here, 
especially those with L. Nirenberg regarding the last section. 
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IN A QUADRANT OF i?4 
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The problem of Goursat in its various forms has been studied ex­
tensively for hyperbolic differential equations in two independent 
variables, while similar questions for the equations with more than 
two variables have received much less attention than they properly 
deserve. One finds simple problems which do not admit any solution, 
although the same problems in two dimensions are well proposed. 
Other examples show that solutions with "correct" data may produce 
a curve of singularity in the interior.2 In this paper we study solutions 
of the wave equation 

Wxx + WXl'Xl' + WX2>Xi> — Wtt = 0 

in the quarter-space 

Q4: | t | < x, x > 0, - oo < %' < oo, (x' = (x{, xi))y 

1 This research was supported by the Air Force office of Scientific Research. Part 
of the work was done while the author was on a sabbatical leave from Wayne State 
University in 1961-1962. 

2 One of the examples was communicated to the author by F. John. That the 
problem with w(X, 0) = 0 and arbitrary values on C+ may have no solution was pointed 
out by H. Lewy in a discussion. To both of them the author is greatly indebted. 


