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1. Introduction. The fundamental problem of embedding theory 
is the 

EMBEDDING PROBLEM. Given a polyhedron Pk and an n-manifold 
Mn, classify the nice1 embeddings of Pk into Mn under equivalence by 
{ambient) isotopy. 

This problem projects in a natural way into the 
HOMOTOPY PROBLEM. Given a polyhedron Pk and an n-manifold Mn, 

classify the continuous maps of Pk into Mn under equivalence by homo-
topy. 

It is the object of this note to report4 that in the so-called "trivial" 
range of dimensions, 2k+2^n, there is a local, topological definition 
of "nice embedding" for which the above projection is bijective, and 
hence for which the two problems are equivalent. 

Corresponding equivalences are well known in piecewise linear and 
differential topology [l ; 2 ], and are proved there by means of general 
position arguments. In the unrestricted topological case, where one 
considers all possible embeddings of Ph into ikfw, the desired results 
are hopelessly false. For example [3], there are many nonequivalent 
embeddings of the closed interval [0, l ] into Euclidean w-space Rn, 
n^3. 

The main theorems of the present paper are 

THEOREM 1.1. Let f be a locally tame embedding of the polyhedron Pk 

into the combinatorial manifold Mn. If 2k+2^n, then f or each e > 0 
there is an e-push h of (Mn, f(Pk)) such that 

hf: Pk -» Mn 

is piecewise linear with respect to arbitrary preassigned triangulations 
of Pk and Mn. 

THEOREM 1.2. If 2k+2^>n, then for each e>0 there is a S>0 such 
that iff and f are any two locally tame embeddings of the polyhedron Ph 

1 A result similar to Theorem 8.1 of this paper has been obtained independently 
by Charles Greathouse (this Bulletin, pp. 820-823). 

2 Research supported in part by U. S. Army Research Office (Durham). 
8 Definitions will be found in §2. 
4 Missing details will appear elsewhere. 

824 



EMBEDDINGS IN THE TRIVIAL RANGE 825 

into the combinatorial manifold Mn with d(fyf) <§ , then there exists an 
e-push h of (Mn, f(Ph)) satisfying hf~f. 

THEOREM 1.3. Let ƒ and f be locally tame embeddings of the poly­
hedron Pk into the combinatorial manifold Mn. If 2k+2 ^n and ƒ is 
homotopic tof', then there is a homeomorphism h of Mn onto itself which 
is isotopic to the identity, such that hf~f'. 

The first and crucial step towards the above theorems was taken by 
Homma [4]. His results are stated in §4, and his techniques have 
been absorbed with only slight changes into the proof of Theorem 3.4. 

2. Definitions. Ph will denote a fe-dimensional polyhedron, i.e., a 
space homeomorphic to the underlying space of some ^-dimensional 
finite simplicial complex, and Mn will denote a space homeomorphic 
to the underlying space of some combinatorial ^-manifold without 
boundary. By a triangulation of Mn we will always mean a triangula­
tion as a combinatorial manifold. No particular triangulations, how­
ever, will be distinguished for either Ph or Mn. Whenever there is 
occasion for a metric on Mn

y we insist that Mn be complete in the 
metric and that sets of sufficiently small diameter be enclosable in an 
w-cell lying in Mn. This can always be achieved by using the bary-
centric metric obtained from some triangulation of Mn. 

Now l e t / : Pk-->Mn be an embedding. If there is a triangulation of 
Pk such that for each point x(E.Pk there is an open neighborhood U of 
f(x) in Mn and a triangulation of U as a combinatorial manifold in 
terms of which ƒ is piecewise linear on some neighborhood of x, then 
we will say that ƒ is a locally tame embedding. Note that the triangula­
tion of U need not be related to any triangulation of Mn. Note also 
that once a triangulation is chosen for Pfc, the same triangulation 
must be used for deciding whether ƒ is locally tame at each point 
#£P f c . However, if another embedding ƒ is given, an entirely differ­
ent triangulation of Pk may be used to decide whether f is locally 
tame. This raises the question as to whether an embedding which is 
locally tame with respect to one triangulation of Pk will be locally 
tame with respect to any triangulation of Pk. This question is an­
swered affirmatively in the trivial range, 2k+2Sn, by Theorem 6.1, 
as a corollary to Theorem 1.1. 

Now let M be a topological manifold with a metric dy and A a sub­
set of M. If e^O, an e-push of (ikf, A) is a homeomorphism h of M 
onto itself such that 

(1) h is an e-homeomorphism, i.e., d(x, h(x)) ^ e for all #£ikf, 
(2) h/M- U.(A) = 1» *•«.. if d(x, A) ^€ , then h(x) =* , 
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(3) h is e-isotopic to the identity under an isotopy which restricts 
to the identity on M — Ut(A), i.e., each ht of the isotopy satisfies con­
ditions (1) and (2) above. 

An c-push is usually just what a topologist means when he says 
"give a little push." 

3. Formal properties of embeddings. In this section, X will denote 
a metric space and A QX a subset whose closure "A is compact. M 
will denote a topological manifold with a complete metric d. 

Hom(X, A; M) will denote an arbitrary set of embeddings of X 
into M, all of which agree on X — A. That is, if/, g G Hom {X, A ; M)t 

then f/X —A = g/X — A. If/, g G Horn (X, A ; M), we define a distance 
function 

d(f, g) - LUB <*(ƒ(*), «(»)) - LUB <*(ƒ(*), *(*)), 

which exists because A is compact. This distance function makes 
Hom(X, A; M) into a metric space. 

DEFINITION 3.1. Let F be a subset of Hom(X, A; M) with the 
property that for each g G Hom (Xt A; M) and each real number 
€>0, there is an f (E F with d(f, g) <e. In accordance with standard 
terminology, we say that F is dense in Hom(X, A ; M). 

DEFINITION 3.2. Let F be a subset of Hom(X, A ; M) with the fol­
lowing property: for any €>0 there is a 8 > 0 such that if ƒ, ƒ (E.Fand 
<*(/t ƒ') <s> t n e n there is an e-push h of (Af, /(-4)) such that &ƒ=ƒ'. 
Then we say that F is solvable. 

From this definition we easily obtain 

THEOREM 3.3. Let FC.F'GHom(Xt A\ M). Suppose that f or each 
f'ÇzF' and each e>0 , there is an e-push h of (M, f (A)) such that 
f=hf' is an element of F. If Fis solvable, then so is F' solvable. 

The main result is 

THEOREM 3.4. The union of two dense, solvable subsets of 
Hom(X, A ; M) is dense and solvable. 

The proof of this theorem is a formalized adaptation of the central 
argument in [4], and will not be given here. 

4. Homma's theorem. Homma [4] proved 

HOMMA'S THEOREM. Let Mn, Mn and Pk be two finite combinatorial 
n-manifolds {possibly with boundary) and a finite simplicial complex 
such that Mn is topologically embedded in Mn, Pk is piecewise linearly 
embedded in int(Mn) and 2k+2^n. Then f or any e>0 there is an e-
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homeomorphism h of Mn onto itself such that 

h/Mn - U€(P
k) - 1, 

and 
h/Pk:Pk-*Mn 

is piecewise linear. 

Note that the "niceness" condition on PkC.Mn requires Pk to ap­
pear piecewise linearly embedded in some triangulation of a neighbor­
hood Mn of itself. The condition is therefore "global" with respect to 
Pk, and this, together with the fact that h is not given isotopic to the 
identity, is the main difference between Homma's theorem and 
Theorem 1.1. 

Homma's technique appears in the proof of Theorem 3.4, and this 
puts us in a position to prove 

THEOREM 4.1. Let the following be given: 
(1) Mn, a possibly noncompact combinatorial n-manifold, 
(2) Mn, a possibly noncompact combinatorial n-manifold, topologi­

cal^ embedded in Mn, 
(3) Pk, a possibly infinite simplicial complex, piecewise linearly em­

bedded as a closed subset of Mn, 
(4) L, a subcomplex of Pk such that the closure of Pk — L is a finite 

complex, and such that L is piecewise linearly embedded in Mn as well 
as in Mn. 

If 2k+2^n, then for any €>0 there is an e-push h of (Mn, Pk — L) 
such that 

h/Pk:Pk->M» 

is piecewise linear, and 

h/L = 1. 

Let Hom(P*, Pk — L\ Mn) denote the set of all embeddings 
ƒ : Pk—*Mn which restrict to the inclusion on Z. 

Let F denote the set of piecewise linear embeddings of Pk into Mn 

which restrict to the inclusion on Z. Among these is the inclusion 
i:PkC.Mn. Because 2k+2^n, general position arguments [l; 4] 
prove that F is dense and solvable in Hom(Pk, Pk — L; Mn). 

Since Mn is an open subset of Mn, it has a triangulation Ên which 
makes the inclusion MnQMn piecewise linear. Let F' denote the set 
of piecewise linear embeddings of Pk into Ûn which restrict to 
the inclusion on L. Then F' is also dense and solvable in 
HomC?*, P*-L; Mn). 
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Now by Theorem 3.4, F\JF' is dense and solvable. 
Using the denseness of F'', first find an embedding ƒ £ F' within 

dF\jF'(e) of the embedding i. Then because F\JFf is solvable, we get 
an e-push h of (Mn, Pk — L) such that 

which means that 

h/pk. pk _> Mn C M» 

is piecewise linear. For sufficiently small €, h will extend via the iden­
tity to an €-push of (Mn, Pk — L). Since hi^f' implies h/L—1, this 
completes the proof of Theorem 4.1, and therefore also of Homma's 
theorem. 

5. Taming locally tame embeddings. In this section we use Theo­
rem 4.1 to prove Theorem 1.1 with the temporary restriction: the 
triangulation of Pk must be one in terms of which ƒ is locally tame. This 
restriction will be removed in the next section. 

Referring back to the definition of "locally tame," call a subset 
A QPk small if there is a neighborhood U of A in Pk and a neighbor­
hood V of f (A) in Mn such that 

(1) f(U)=V^f(Pk), 
(2) V has a triangulation as a combinatorial manifold in terms of 

which f/U: U—>V is piecewise linear with respect to an induced tri­
angulation of U as an open subset of Pk. 

Observe that a finite disjoint union of compact small subsets of Ph 

is itself small, the neighborhoods U and V for the union simply being 
disjoint unions of sufficiently small corresponding neighborhoods for 
the individual sets. 

Taking a preliminary subdivision if necessary, assume Pk to be tri­
angulated so finely that the stars of closed simplexes are small. Let 
Ni denote the closed regular neighborhood of P\ the ^-skeleton of 
Pk, in the second barycentric subdivision of Pk. Then 

No C Ni C • • • C Nk = Pk, 

and using the above observation it is easily verified that No is small 
and that Cl(Ni — JVV-i), the closure of Ni — iV^-i, is small for 
i = l , • • • , fe. 

The plan is to define, with the help of Theorem 4.1, fe + 1 homeo-
morphisms of Mn, 

ho, & ! , • • • , hk, 

with the properties: 
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(i) ho is an (e/jfe + l)-push of (Mn,f(N0)) such that hof/N0: N0->Mn 

is piecewise linear, 
(ii) hi is an (e/fe + l)-push of (Mn, *«_i*« • • • h0f(Cl(Ni-N^i))) 

such that hjii-i • • • hof/Nil Ni-*Mn is piecewise linear, for 
i=l, • • • , k. 

Setting h = huhu-i • • • ^0 will then complete the proof. 
STEP 0. Since No is small, there is a neighborhood C70 of iV0 in P* 

and a neighborhood Fo oif(N0) in ikfn satisfying conditions (1) and 
(2) above. These neighborhoods are highly disconnected—they will 
generally have as many components as there are vertices in Ph—but 
this in no way affects the argument. To apply Theorem 4.1, let 

Mn = Mn with its given combinatorial triangulation, 
Mn~ VQ, triangulated so that f/Uo'. Uo—»Fo is piecewise linear, 
Pk~f(No), with the triangulation carried over from No b y / , 
L — 0, the empty set, 
e ^ t h e present e/k + 1. 

Theorem 4.1 then asserts the existence of an (e/fe + l)-push ho of 
(M"n, f (No)) such that 

hof/No: N0~* M» 

is piecewise linear. This completes Step 0. 
STEP 1. Since Cl(Ni — N0) is small, there is a neighborhood U\ of 

ClCWi-tfo) in P* and a neighborhood Vi of f(C\(Nx-No)) in M* 
satisfying conditions (1) and (2) above. To apply Theorem 4.1, let 

Mn = Mn with its given combinatorial triangulation, 
Mn = ho(Vi), triangulated so that hof/Ui: Ui—*ho(Vi) is piecewise 

linear, 
Pk = hof(Ni(~\ Ui), with the triangulation carried over from NiC\ U% 

by hof, 
l = hof(NoC\Ui), 
€ ^ t h e present e/k + 1. 

Theorem 4.1 then asserts the existence of an (€/fe + l)-push hi of 
(M», hof (dim-No))) such that 

hihof/Ni:Ni-*M* 

is piecwise linear, provided e is chosen so small that hi restricts to the 
identity outside ho(Vi). This completes Step 1. 

Steps 2 through k are then performed in this manner, and the proof 
is completed by setting h = huhk-i • • • ho. 

6. Proof of Theorems 1.1 and 1.2. Let Hom(P*, Mn) denote the 
set of all locally tame embeddings of Pk into Mn

1 and let 2k+2£n. 
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Let (P*)i and (Pfc)2 denote Pk with two different triangulations, and 
let Mn have a fixed but arbitrary combinatorial triangulation. Pi will 
denote the set of piecewise linear embeddings of (P*)i into Mn, and 
Pi the set of embeddings of Pk into Mn which are locally tame with 
respect to the triangulation (Pfc)i. Similarly for P2 and F{ with re­
spect to (P*)2. Pi and P2 are each dense and solvable in Hom(P*, Mn) 
by [ l ; 4 ] . Therefore by Theorem 3.3 and the modified version of 
Theorem 1.1 proved in the preceding section, P/ and P2' are also 
dense and solvable in Hom(P*, Mn). 

Now by Theorem 3.4, F{yJF2 is dense and solvable. L e t / i £ P / . 
Since P2 is dense in Hom(Pk

f Mn), choose / 2 £ P 2 so that d{f{, ƒ2) 
<8F\jF>(e). Then there is an €-push h of (Mn, fi(Pk)) such that 
hf{ =/2. Since f( was locally tame with respect to (P*)i while /2 is 
piecewise linear with respect to (P*)2, this completes the proof of 
Theorem 1.1. 

As a corollary to Theorem 1.1, we get 

THEOREM 6.1. Let ƒ be an embedding of the polyhedron Pk into the 
combinatorial manifold Mn. If 2fe+2=w and ƒ is locally tame with 
respect to one triangulation of Pk, then ƒ is locally tame with respect to 
any triangulation of Pk. 

But then Hom(Pfc, Mn) = F{, which is solvable, and Theorem 1.2 
follows. 

7. Proof of Theorem 1.3. Now, since Hom(Pfc, Mn) is solvable when 
2k+2^n, let 8 = 8(1) be determined according to this solvability. 
Suppose that ƒ, / ' £Hom(P f c , Mn) are homotopic as maps of Ph into 
Mn. Then there is a sequence of continuous maps 

ƒ = go, gu ' ' ' > gr = ƒ ' 

of Pk into Mn such that d(giy gi+i) <8 . Hom(PA!, Mn), since it includes 
the piecewise linear embeddings, is dense in the mapping space 
(Mn)pfc, and hence there is also a sequence of elements of Hom(P&, Mn)% 

ƒ = fo, f h • " • > ft = ƒ , 

such that d(fit / t + i ) < 8 . According to the definition of 8, there exist 
1-pushes hi such that hif^i^fi, for i = l , • • • , r. Then 

h = hrhr~\ • • • / ? ! 

is a homeomorphism of Mn onto itself which is isotopic to the identity, 
such that 

hf=f', 
proving Theorem 1.3. 
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8. Applications. An embedding/of a topological manifold Mk into 
a topological manifold Mn is said to be locally flat if for each xÇzMk 

there is a neighborhood U of fix) in Afw such that the pair 
(U, UC\f(Mk)) is homeomorphic to the pair (i?n, Rk). 

THEOREM 8.1. Let f be a locally flat embedding of the closed combina­
torial manifold Mk into the combinatorial manifold Mn. If 2k+2?£n, 
then for each e>0 there is an e-push h of (Mn,f(Mk)) such that 

hf: Mk -> Mn 

is piecewise linear. 

For each x{~Mk
} choose a neighborhood U of f{x) in Mn as in the 

above definition. UC\f(Mk) inherits a triangulation as an open com­
binatorial manifold from Mk v i a / . Since (U, Ur\f(Mk)) is homeo­
morphic to (Rn, Rk), this triangulation extends to a "product" tri­
angulation of U as a combinatorial manifold, in terms of which 
f/f~~l(Ur\f(Mk)) is piecewise linear. But then ƒ is locally tame, and an 
application of Theorem 1.1 completes the proof. 

THEOREM 8.2. Let ƒ and f be locally tame embeddings of the poly­
hedron Pk into the n-sphere Sn (or Euclidean space Rn). If 2k+2 3* n, 
there is a homeomorphism h of Sn (or Rn) onto itself which is isotopic to 
the identity, such that hf=f. 

For ƒ must be homotopic to ƒ', and then Theorem 1.3 applies. 
A special case of this was given in [5]. 
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