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1. Introduction. A matrix is said to be a (0, l)-rnatrix if each of its 
entries is either 0 or 1. If A = (a#) is an ^-square matrix then the 
permanent of A is defined by 

n 

pu) = z) n a*(o 
where the summation extends over all permutations a of the sym­
metric group 5». Bounds for permanents of general (0, l)-matrices 
and for permanents of certain subclasses of (0, 1)-matrices are of com­
binatorial significance and yet virtually the only known upper bound 
for p(A) is the obvious one, the product of row sums of A. It has 
been conjectured that the permanent of an ^-square (0, 1)-matrix 
with exactly k ones, k<n, in each row and column must exceed 
nl(k/n)n [l , p. 59]. It has been also conjectured by H. J. Ryser that 
in the class of all ra£-square (0, 1)-matrices with exactly k ones in 
each row and column the maximum permanent is equal to (£!)m, i.e., 
to the permanent of the direct sum of fc-square matrices all of whose 
entries are 1. In the present note I give a significant upper bound 
for the permanent of a general (0, l)-matrix. I also conjecture an 
upper bound which would allow one to answer Ryser's conjecture in 
the affirmative. 

2. Results. 

LEMMA. If Y\, • • • , r0 are positive integers then 

with equality if and only if c ^ 2 and either r\ or r2 is equal to 1. 

PROOF. Let Es denote the 5th elementary symmetric function of 
the numbers 1/ri, • • • , l/rc; then 

(1) 0 ^ f l (1 - l/rt) « 1 - Ex + E, - E, + • • • + (-1)CEC 

with equality if and only if one of the rt is 1. Therefore 

1 This work was supported by the Air Force Office of Scientific Research. 
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1 + Et + E2 - Es + • • • + (~1)CEC ^ 2£i 

and a fortiori 

U (1 + Vu) ^ 2E1) 

i.e., 

y-l Tj *-i f* + 1 

and the inequality is strict unless (1) is an equality and £3 = 0, i.e. 

THEOREM. Let A = (a,ij) be an nsquare (0, l)-matrix and let 

(2) *>U) ^ II - r -
t - i 1 

with equality if and only if A is a permutation matrix. 

PROOF. We use induction on n. Since the permanent is unchanged 
if the rows of the matrix are permuted we can assume that 0*1=1, 
i = l , • • • , c, and aa = 0, i = c + l, • • • , n. Denote the submatrix 
obtained from A by deleting the ith row and the j th column by 
A{i\j). Then, by the induction hypothesis, 

™»»*(Ô7)(£ ^ ) 

=Kn^)(35^). f_ r* \ / J L r * + l \ 
f = 1, • • • , c, 

with equality if and only if A(i\ 1) is a permutation matrix. Thus ex­
panding p(A) by the elements of the first column 

P(A) = t , p(A(i\ 1)) 

*ii(n-^)(n'4i) 
*-i r< \ (»i r* + 1/ \ y«i 2 / 
A '/ + 1 â 1 1 J by the lemma. 

i - i 2 

Equality holds in (2) if and only if A (i\ 1) are permutation matrices, 
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i = 1, • • • , c, and c ^ 2 , t\ or r 2 = 1. But this implies that A is a per­
mutation matrix. 

CONJECTURE. If A = (a»y) is an n-square (0, l)-matrix then 

(3) #(ii) ^ f i M17" 

wiJft equality if and only if there exist permutation matrices P and Q 
such that PAQ is a direct sum of matrices all of whose entries are 1. 

The conjecture is known to be true for all (0, 1)-matrices whose 
row sums do not exceed 6. 
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In this note, we outline a method which reduces the determination 
of the collineation group of a division ring plane to the solution of 
certain algebraic problems—in particular, to the question of when 
two rings of a certain type are isomorphic. This method is then ap­
plied to planes coordinatized by finite dimensional Jordan algebras of 
characteristic 5^2, 3, and their collineation groups are determined. 
Complete arguments and detailed proofs will appear elsewhere. 

1. Let 9? be a nonalternative division ring, let 7r(9î) be the projec­
tive plane coordinatized by 9Î, and let G(T) be the collineation group 
of 7T. Then (see [l ]) G(w) possesses a solvable normal subgroup whose 
structure is known, the elementary subgroup, such that the factor 
group is isomorphic with the group of autotopisms of 9Î, .4(9$). Also, 
i4(9î) «Jî(7r), where H(if) consists of those elements of G(w) which 
leave fixed the points (00), (0), and (0, 0). (See [2], Chapter 20 for 
the coordinatization of projective planes.) 

Let JB(9Î) be the automorphism group of 9Î. Then J3(9t) ^Hi(ir)t 

where iïi(7r) consists of those elements of iïi(7r) which leave the point 


