FUNDAMENTAL SOLUTIONS OF INVARIANT DIFFERENTIAL OPERATORS ON SYMMETRIC SPACES

BY S. HELGASON¹

Communicated by I. M. Singer, June 27, 1963

1. Introduction and notation. Let S be a Riemannian globally symmetric space, G the largest connected group of isometries of S in the compact open topology. We assume that S is of the noncompact type, that is, G is semisimple and has no compact normal subgroup $\neq \{e\}$. Let o be any point in S, K the isotropy subgroup of G at o, f and g their respective Lie algebras, and p the orthogonal complement of f in g with respect to the Killing form G of G. Let G be any maximal abelian subspace of G and let G and let G be G be G in the dual space of G (which we identify with G, via G) let G be G in the dual space of G (which we identify with G). Choose some order on G and let

$$\mathfrak{n} = \sum_{\lambda>0} \mathfrak{g}_{\lambda}, \qquad \rho = \sum_{\lambda>0} d_{\lambda}\lambda, \qquad \pi' = \prod_{\lambda>0} \lambda^{d_{\lambda}}$$

and let π denote the product of the distinct prime factors in π' . Then we have the Iwasawa decompositions $\mathfrak{g} = \mathfrak{k} + \mathfrak{a} + \mathfrak{n}$, G = KAN where N is the nilpotent group $\exp(\mathfrak{n})$. Given $g \in G$, let H(g) denote the unique element in \mathfrak{a} for which $g \in K \exp H(g)N$. Let W denote the Weyl group M'/M where M and M', respectively, denote the centralizer and normalizer of \mathfrak{a} in K.

For each $\lambda \in a$ consider the spherical function

$$\phi_{\lambda}(x) = \int_{\kappa} e^{(i\lambda - \rho)(H(xk))} dk \qquad (x \in G)$$

dk being the normalized Haar measure on K. Let $c(\lambda)$ denote Harish-Chandra's function on a which occurs in the leading term of the asymptotic expansion of ϕ_{λ} [2, p. 283], i.e.,

$$\phi_{\lambda}(\exp H) \sim \sum_{s \in W} c(s\lambda) e^{(is\lambda - \rho)(H)}$$

where λ and H are suitably restricted in α .

Each $x \in G$ can be written uniquely in the form $x = k \exp X(k \in K, X \in \mathfrak{p})$. We put $|X| = (B(X, X))^{1/2}$ and $\omega(X) = \{\text{det (sinh } ad X/ad X)_{\mathfrak{p}}\}^{1/2}$ where the subscript \mathfrak{p} indicates restriction to \mathfrak{p} of the linear

¹ Work supported in part by the National Science Foundation NSF GP-149.

transformation of g given by

$$\sinh ad \, X/ad \, X = \sum_{n \ge 0} (ad \, X)^{2n}/(2n+1)!.$$

Let D(G) and D(S) denote the set of left invariant (resp. G-invariant) differential operators on G (resp. S). Let $S(\mathfrak{a})$ denote the symmetric algebra over \mathfrak{a} , $S(\mathfrak{a})$ the space of C^{∞} functions on \mathfrak{a} which are rapidly decreasing together with all their derivatives. Let $I(\mathfrak{a})$ and $S(\mathfrak{a})$ denote the set of W-invariants in $S(\mathfrak{a})$ and $S(\mathfrak{a})$, respectively; $S(\mathfrak{a})$ is taken with its usual locally convex topology [7, p. 90] and then $S(\mathfrak{a})$ is a closed subspace. According to a theorem of Harish-Chandra (cf. [2, Theorem 1, p. 260], also [3, p. 432]) there exists an isomorphism Γ of the algebra D(S) onto $I(\mathfrak{a})$. Let I(G) denote the set of C^{∞} functions f on G which are bi-invariant under K and for each integer $g \ge 0$ and each $D \in D(G)$ satisfy

$$\tau_{D,q}(f) = \sup_{H \in \mathfrak{a}} (1 + |H|)^q \omega(H) |(Df) (\exp H)| < \infty.$$

Let $I_0(G)$ denote the space of functions of the form

$$\phi_a(x) = \int_a \pi(\lambda) a(\lambda) \phi_\lambda(x) d\lambda \qquad (x \in G)$$

where $a \in S(\mathfrak{a})$ and $d\lambda$ is the Euclidean measure on \mathfrak{a} . Then, by [2, p. 586], $I_0(G) \subset I(G)$ (it can be shown using [1] that $\pi = \pi_0$). The seminorms $\tau_{D,g}$ turn $I_0(G)$ and I(G) into locally convex spaces.

LEMMA 1. $I_0(G)$ is an algebra under convolution on G.

Under the restriction from G to A, $I_0(G)$ and I(G) are mapped isomorphically onto spaces $I_0(A)$ and I(A) of W-invariant C^{∞} functions on A. We carry the algebraic and topological structure of $I_0(G)$ over on $I_0(A)$ by means of this mapping. The space $\mathfrak{g}(\mathfrak{a})$ is an algebra under convolution on \mathfrak{a} .

2. Transmutation operators. A function f on the space S = G/K is called a radial function if $f(k \cdot p) = f(p)$ for all $k \in K$, $p \in S$. The set of continuous (resp. C^{∞}) radial functions on G/K is in one-to-one correspondence $f \to \overline{f}$ with the set of all continuous (resp. C^{∞}) W-invariant functions on A. Here $f(aK) = \overline{f}(a)$ for $a \in A$. Let $D \in D(S)$; then by [2, p. 265] there exists a unique differential operator $\delta'(D)$ on A' (the set of regular elements in A) such that $(Df)^- = \delta'(D)\overline{f}$ for all C^{∞} radial functions f. The operator $\delta'(D)$ is called the radial part of D in analogy with the radial part $D_r^2 + (n-1)/r$ D_r of the Laplacian on R^n , $(D_r = d/dr)$. It is known [5] that there exists an isomorphism X

("transmutation operator") of the vector space of even C^{∞} functions on R, onto itself, under which the singular operator $D_r^2 + (n-1)/r D_r$ corresponds to D_r^2 . The operators $\delta'(D)$ ($D \in D(S)$) are singular when considered as differential operators on A but Theorem 1 shows that they have a simultaneous transmutation operator X under which they correspond to differential operators on the Euclidean space $\mathfrak a$ with constant coefficients.

Given a W-invariant function ϕ on A, let $\tilde{\phi}$ denote the corresponding radial function on S. For $\phi \in I(A)$, put

$$(X\phi)(H) = e^{\rho(H)} \int_{N} \tilde{\phi}((\exp H)n \cdot o) dn \qquad (H \in \mathfrak{a})$$

where dn is a suitably normalized invariant measure on N. As proved by Harish-Chandra [11, p. 595], X is a continuous mapping of I(A) into $\mathfrak{s}(\mathfrak{a})$.

THEOREM 1. The mapping X is a topological isomorphism of the algebra $I_0(A)$ onto the algebra $\mathfrak{S}(\mathfrak{a})$. Moreover, if $D \in \mathcal{D}(S)$ then

$$X\delta'(D)\phi = \Gamma(D)X\phi, \quad \phi \in I_0(A).$$

Here $\Gamma(D)$ is considered as a differential operator on \mathfrak{a} .

The proof is based on the Plancherel formula for functions in $I_0(G)$, proved by Harish-Chandra [2]. It also uses the recent result of Gindikin and Karpelevič [1] according to which the function $c(\lambda)$ above can be expressed in terms of Gamma functions.

REMARKS. At the end of [2], Harish-Chandra states the following two conjectures which would imply that $I_0(A)$ contains all the W-invariant C^{∞} functions on A with compact support.

- (I) There exists a polynomial $p \in S(\mathfrak{a})$ such that $|c(\lambda)\pi(\lambda)p(\lambda)| \ge 1$ for all $\lambda \in \mathfrak{a}$. (Here we have used the fact that $\pi = \pi_0$.)
 - (II) The mapping X is one-to-one on I(A).
- Now (I) can be verified on the basis of the mentioned result of Gindikin and Karpelevič. Theorem 1 shows that (II) is equivalent to $I_0(G) = I(G)$. On the other hand, (II) is easily implied by the Plancherel formula for the functions in I(G). This formula is not proved in [2] but I understand that Harish-Chandra has proved it in recent, as yet unpublished, work. In the next section we shall therefore assume that $I_0(G) = I(G)$.
- 3. Fundamental solutions. Let $C_c^{\infty}(S)$ denote the space of C^{∞} functions on S with compact support. Let δ denote the distribution on S

given by $\delta(f) = f(o)$ where $f \in C_e^{\infty}(S)$. Let $D \in D(S)$. A distribution T on S is called a fundamental solution of D if $DT = \delta$. If $f \in C_e^{\infty}(S)$, then a fundamental solution T of D gives a solution of the equation Du = f by putting u = f * T where * is the operation on distributions on G/K induced by the convolution product of distributions on G.

THEOREM 2. Each invariant differential operator $D \in \mathcal{D}(S)$ $(D \neq 0)$ on the symmetric space S has a fundamental solution.

This is a consequence of Theorem 1 and the fact that a nonzero differential operator on \mathbb{R}^n with constant coefficients always has a tempered fundamental solution [4; 6].

Added in proof. In the case when G is complex the following formula (which is a simple consequence of Lemma 55 in [2]) gives a simpler proof of Theorem 2.

$$(DF) \circ \operatorname{Exp} = \frac{1}{\omega} \lambda(D)(\omega(F \circ \operatorname{Exp})) \qquad (D \in \mathbf{D}(S)).$$

Here Exp is the usual Exponential mapping of \mathfrak{p} onto S, λ is a certain isomorphism of D(S) onto the algebra of Ad(K)-invariant polynomials on \mathfrak{p} and F is any radial function on S.

REFERENCES

- 1. S. G. Gindikin and F. I. Karpelevič, *Plancherel measure of Riemannian symmetric spaces of nonpositive curvature*, Dokl. Akad. Nauk. SSSR 145 (1962), 252-255=Soviet Math. Dokl. 3 (1962), 962-965.
- 2. Harish-Chandra, Spherical functions on a semisimple Lie group. I, II, Amer. J. Math. 80 (1958), 241-310, 553-613.
- 3. S. Helgason, Differential geometry and symmetric spaces, Academic Press, New York, 1962.
- 4. L. Hörmander, On the division of distributions by polynomials, Ark. Mat. 3 (1958), 555-568.
 - 5. J. L. Lions, Équations différentielles opérationelles, Springer, Berlin, 1961.
- 6. S. Lojasiewicz, Division d'une distribution par une fonction analytique de variables réelles. C. R. Acad. Sci. Paris 246 (1958), 683-686.
 - 7. L. Schwartz, Théorie des distributions. II, Hermann, Paris, 1951.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY