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1. Introduction. Let us denote by N the sequence {1, 2,3, .- },
by p a prime, by (a, b) the greatest common divisor of @ and b, by
[a, b] the least common multiple of @ and b, by {*: - ..} resp.
A{*: o } the set resp. number of * with the properties - : -, by
1 the Moebius function, by C an absolute positive constant and by
C(*) a positive constant depending on * only.

Suppose N;CN (j=1, 2, 3, 4) and denote by y1~7¥; an arbitrary
relation (= linking) with 3,0 € N. For instance, [y1~ y:]:
= [(y1,¥2) =1] resp. [y1~y2]:= [y1=72] can be considered a weak resp.
strong linking. By a linked binary representation of a pair m, » with
mEN and &N we mean a solution x;, X3, X3, x4 of the Diophantine
system x1+xe=mA\x;+xs=nA\x;EN; (j=1, 2, 3, 4) A\xa~wxs. Vari-
ous generalizations are obvious (more summands, triples, etc.). We
do not intend to give a detailed and general study of the questions
arising in this context. We rather prefer to investigate two special
problems of this type with ~ being =; they are inspired by the
following two well-known results of Romanov:

Eyi={m:m= p+v* A p prime A\ v € N} (1<aEN)
and
Fo:= {m:m = p + a* A\ p prime A\ v € N} (e€N)
have positive asymptotic density [1, pp. 63-70].

2. On Romanov’s first theorem. Generalizing the result for E,, we
show that the set {m, n: m=p1+v°An=ps-+v°A\pi1,2 prime/\vEN} ,
considered as a set of lattice points in the plane, has positive asymp-
totic density in the plane:

THEOREM 1. For 1 <a €N there exist constants Ci(a) and Cu(a) such
that x> Ci(a) implies

Az, 0): = Almyn:m <ax An<x Am= p1+ v A\
n = ps+ v* A\ pr2prime A v € N} > Cy(a) 2%

1 With support from NSF grant G-16305 to Purdue University.
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PrOOF. Let fi(m, n; a):=A {p1, pa, v: pr+v*=m \ps+vé=n}; since
Ay(x, a)=A{m, n:m<xA\n<x/fi(m, n; a)>0}, the Schwarz in-
equality yields

W (Z Zﬁ(m,n;a)) < M) S X fim, s a).

m<z n<lz m<z n<lz

On the one hand, we find
2 2 filmyn;a) = A{py, pr,vipr+1° <z A pa+v° < x}

m<lz n<z

X X X
(2) = A{?13P1<—2'}A{Pz:p2<7}/1{v.v <—2-}

e (DE)T wom

On the other hand, we find

Si(x,a): = >, fo(m, n; a)

m<lz n<lz
= A{Pbpz,!’a,h,vl,vzt?l-l-v:= prt v <A ps+
= pu+ 12 < «}
2. A{py, Do, psy pai b1 — p2 = ps — pa

1,2<_,clla

lIA

v1<::1/“

a a
=192 — 01 A\ pr2a.4 < 2}.
In case of v, =1y, resp. v1%v, we use

Afp:p <=z} <Cs

(x> 2)
log x

resp. Brun’s sieve method [2, 2. Satz 4.2] and obtain

Si(x, @) < C,( i >2x1/a +2 3% (Cs o — v;))z

log x vg<v1<ail® log?
(x> Co)
where
1 1
o(b): = H(1+_>= > 1
»lb ? Abu@=o @
It follows

22

Si(z, @) < C7( > F(u; %, a)g(w) (x> Ce)

0g4 X u<z

x 2
) xlle 4 Cgl

log x
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where

F(u;x,a): = A{'vl, 22102 < 7y < xlla/\v: —0p = u}
Writing g(#) as a sum and changing the order of summation gives
1
2 Fu;x, 0w = > X

u<lz di<z do<lz d ld 2
#(d1)#0 p(dg)=0

B([dly d2] » %y d)

where

B(k;x,a): = > F(u; %, a) < 2xef=tagw®) (u(k) = 0)

u<z;u=0mod &
[1, p. 66] with

log &
w(k): = A{p:p| B} < Cro —2

log log % '

Since u(d1) #0Au(dz) %0 imply u([ds, dz]) #0, we obtain
x2t+1/a x2+2/a

+——Cul@) 2 22 (duds)dy,ds]"1 %
log2x  log*x i<z dg<z
B(d1)#0 p(dg)=0

S1(x, a) < C7

(x > Cy).
Using [dy, d2]?2dids, we find

x2+2 la

(3) Sl(x, a) < Clz(d) (x > Cc).

log* «
(1), (2), and (3) give the desired result.

It is not difficult to determine a dependence of Ciz(e¢) on a ex-
plicitly. Since 4:(x, a) A {m, n: m<x/An<x}, Theorem 1 is best
possible with respect to the order of magnitude in x. Theorem 1 is
also correct for a=1 but of no interest.

3. On Romanov’s second theorem. In a similar way we generalize
the result for F,:

THEOREM 2. For 1 <a& N there exist constants Cis(a) and Cis(a) such
that x > Ci3(a) tmplies
Aoz, a): = A{m,n:m <zsAn<zxAm=p+a A

2

n = P2 -+ a’/\pl,gprime NvE N}> 014(0)

X
log
PROOF. Let fa(m, n; a):=A{p1, pa, v: pr+a’=mAps+a’=n}. As
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in the preceding proof, we find

x \?logzx/2
4) 2 2 fa(m,m;a) > Cm( ) g%/ (x > Cus(a))
m<z n<lz lOg X, lOg a
and
2
Sa(x,0): = 25 X falm, n; a)
m<lz n<lz
x \2logx 2
< CIS( 27 +2 X (Cs glan — avz))
logx/ loga va<vi<log a/log a log? x

(x > C).
For v; >, we have
glar — av) = g(a)g(am—2 — 1);

with %: =v;—v; we get
2

X
Sz(x, a) < Cm(d) _—
log

x \?logx
+2 (c8 ) 82 2 gar—1) (x> Ci).
log? x/ log @ n<iog /102 a
For (a, d) =1, let e(a, d) denote the exponent of @ mod d (i.e., the cer-
tainly existing smallest ¢& N with a*=1 mod d); then dl (a" 1) im-

plies (a, d) =1Ae(a, d)| . Therefore,
1 1
2 gle-1n= X 2 = 2 =
h<log z/log a h<log a/log @ dy] (1) @1 dg) (@—1) 2
()0 1 (d2)50

1

A

~ X

di<z do<lz dld2 h<log z/log a
B(d1)=0  p(dg)s=0 h==0mod ¢(a,d1)
(d1,a)=1 (dg,a)=1 h=0mod e(a,dg)

1 1
< ogx

- IOg a d1<z de<z dld2[e(a) dl)) e(a’ d2)]
B(d1)%0  p(dg)0
(d1,a)=1 (dg,a)=1

logx
dYe(a,d)) 12
loga( .KE,, (e(a, d)) >< C2(a) log =,

r(d)x0
(d,a)=1

since [a, b]2=ab and since, for an arbitrary positive increasing func-
tion f,
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1
2 - <«

=1 4 f(d)
implies
2 = <Culs,f)
warmma@no dfe(a,d)
[3, Satz 3]. Hence, we have
2
® Sa(x, a) < Ca(a) (x> Cp).
log

4), (5), and (1) with index 2 instead of 1 give the desired result.
It is not difficult to give an explicit dependence of Cy3(e) and Cu(a)
on a. Again, since

As(x,0) £ A{py, pyv:pra <z N\ a* <}

2 \?log=x
< (C5 -—) (z>2),
logx/ loga

Theorem 2 is best possible in x.

4. Generalization to algebraic number fields K. For convenience,
let K be a totally real algebraic number field. Denote by # the degree
of K, by J(K) the ring of all integers of K, by small Greek letters ele-
ments of J(K), by £D, - - .| £®) the conjugates of £ and by £é<x
the system [E(")l <x (j=1, : - -, n). wis called a prime if 7 generates
a prime ideal of J(K). Combining the method used above with ideas

of [4], we arrive at direct generalizations of Theorem 1 and Theorem
2:

THEOREM 1'. For 1<a&N there exist constants Ciu(K, @) and
Cau(K, a) such that x> Ce3(K, @) implies
A{a’,'r:a =m+r A\7=m+4 1* A\ m2prime A m1,2 < 2 Av < x‘/"}

> C24(K, a)xz“.

TueorREM 2. For 0#aEJ(K) and not a root of unity there exist
constants Cos(K, ) and Cyu(K, o) such that x> Cous(K, o) implies
Afo,ri0 = w4+ a® A7 =m+ a® A\ 71,2 prime A 71,0

<t AVENAa < x}

%20

> Czc(K, a)

log «

Again, the estimates are best possible in x.
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Let (G, X) be a topological transformation group—or action—in
which G is finite and X is locally compact. An important part of the
cohomology of the orbit space X /G lies, so to speak, in the free part f
of the action (i.e. the union of orbits of cardinality [G:1]). The
cohomology of {/G can be regarded as an H(G)-module. We shall ex-
hibit a complete set of generators and relations for this module as-
suming G to be the direct product of cyclic groups of prime order
and X to be a generalized sphere over Z, (see [4, p. 404]). H will al-
ways denote cohomology with values in Z,. A useful device consists
in relating the generators of H(G) to those of G.

Dimension functions. From now on let G=Z,X + + + XZ,, r fac-
tors, and let g; be the collection of subgroups of order p?; go consists
of the identity only. Let g, &, + - - always denote subgroups of G and
giy hi, + ¢+ - elements of g;. In particular go= {1} and g.=G.

By a dimension function of the pair (G, p) we shall mean an integer-
valued function #(g) of constant parity with values = —1 and such
that for each g different from G

o) n(g) = n(G) + 2 (n(k) — n(G))
h
summed over those %’s which lie in g,—; and contain g; when p=2,

constant parity is not required.
For a given dimension function n(g) let Q@ be the totality of se-

1 This work has been supported by the Office of Naval Research.



