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1. Let M be an oriented separable differentiable manifold of dimen-
sion #. (We do not assume that M is connected.) Let C; (M) denote
the space of all complex-valued C* functions on M with compact sup-
port. A distribution T on M is a linear mapping T': C;°(M)—C which
is continuous in the topology of Schwartz. More explicitly, this means
the following. Let U be any open and relatively compact set in M.
Then we can select differential operators? Dy, - - -, D, on M such that

| 7(H| = X sup | D] (f € 3 ).

Let G be a group acting on M. We denote by x¢ the transform of
xE M by gEG. We assume that, for a fixed g, the mapping x—x? of
M is of class C=. Then for any f&€ C? (M), the function f7: x—f(x9"")
is again in C;(M) and if T is a distribution, the mapping 77:
f=T (") (FEC?(M)) is also a distribution. We say T is invariant
(under G) if T*=T for all gEG.

Now G operates in a natural way on the spaces? of differential oper-
ators and differential forms on M. For example if D is a differential
operator, Dif = (Df¢™")¢ (fEC? (M), gEG). Fix a (real) differential
form w on M of degree » which is invariant under G and which is
everywhere positive (with respect to the given orientation of M).
Then for every differential operator D on M, we define its adjoint D*
to be the (unique) differential operator satisfying the relation

fMDf-dw - [ ipoe

for all f, & C;(M). If T is a distribution, the mapping f—T(D*f)
(fECS(M)) is also a distribution which we denote by DT. Now w
defines a positive Borel measure u on M. For example if U is an open
set in M,

1 This work was supported by a grant from the Sloan foundation and a contract
with the U. S. Army.

* All differential operators and differential forms are meant to be C* unless ex-
plicitly mentioned otherwise.
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w(U) = fuw.

Let F be a function on M which is locally summable (with respect
to w). Then corresponding to F, we get a distribution

TF:f—%fdep = foF-w (f € Co(M)).

If T is a distribution, we say T'=F if T=TF.

2. Let G be a connected semisimple Lie group. Take M=4gG,
x?=gxg~! (x, g&EG) and w the invariant differential form correspond-
ing to the Haar measure dx on G. Let 8 be the algebra of all differen-
tial operators on G which are invariant under both left and right
translations of G. Then J is abelian. Let I=rank G. ¢ being an in-
determinate, we denote by D(x) the coefficient of ¢ in
det(t+1—Ad(x)) (x&G). Then D is an analytic function on G and
an element x &G is called regular if D(x)5£0. Let G’ be the set of all
regular elements in G. Then G’ is an open and dense subset of G
whose complement is of measure zero.

Let © be a distribution on G. We say that it is invariant if @
=0 (x€G) and that it is an eigendistribution of B if 20 =x(2)0 (€ 3)
for some homomorphism x of 3 into C.

THEOREM 1. Let © be an invariant eigendistribution of B on G. Then
© is a locally summable function which is analytic on G'.

This answers, in particular, a question raised in [3, p. 396].

3. Now assume that the center of G is finite. Fix a maximal com-
pact subgroup K of G and let &x denote the set of all equivalence
classes of irreducible finite-dimensional representations of K. For any
dE &g, let & be the character of b and b* the class contragradient to
b so that? &+(k) =conj &(k) (REK). For any fEC;(G), define

fil@) = d(d) f BB k)b =EQ),

where d(b) is the degree of any representation in the class b and dk
is the normalized Haar measure of K. Then fo & C; (G) and the series
D beex fo converges in C°(G) to f. If T is any distribution on G, the
mapping f—T(fe*) (fFEC7(G)) is also a distribution, which we de-
note by T%. Since

% conj ¢ stands for the complex conjugate for ¢&C.
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T(f) = 22 To(f) (f € C:(6)),
ve8y

it is clear that 73520 for some d&E 8k, if T 0.

Now suppose T is an eigendistribution of 8 on G. Then the same
holds for Ty (b&E€k). But since T transforms, under left translations
by elements of K, according to b, it follows easily that it satisfies an
elliptic differential equation on G with analytic coefficients. There-
fore T is an analytic function.

4. Let g be the Lie algebra of G and g, its complexification. Let G,
be the simply connected complex-analytic group corresponding to g..
Assume that G is the real analytic subgroup of G, corresponding to g
and rank G=rank K. Fix a maximal connected abelian subgroup 4 of
K and let a denote its Lie algebra. Then 4 is a Cartan subgroup of G
and A’=ANG’ is open and dense in 4. Let a, denote the complexi-
fication of a, P the set of all positive roots (under some fixed order)
and W the Weyl group of (g, a,). Then there exists an analytic func-
tion A on A4 such that

Alexp H) = [] (s — ¢mimr2) (H € o).

aEP

Let A denote the character group of A. For any ¢E€ 4, define
o(@) = II (e 2

a€EP

where \ is the linear function on a, such that d(exp H) =eM®D(HEa)
and (@, \) denotes the usual scalar product defined under the Killing
form of g.. W operates on 4 in a natural way by duality. An element
€ 4 is called regular if its transforms 4* (s& W) are all distinct. Then
¢ is singular or regular according as ¢(8) =0 or not. Moreover o(4*)
=e(s)o(8) (SEW, 4 A), where €(s)=1 or —1 and is independent
of a.

If © is an invariant eigendistribution of 8 on G, one can, in view of
Theorem 1, speak of the value @(x) of ® at any point x&G’. Define
the function D as in §2.

THEOREM 2. Fix a regular element & A. Then there exists exactly one
invariant eigendistribution 0, of 8 on G such that:

(1) The function IDI 12Q, yemains bounded on G';

(2) B4=(—1)w(8)A! Z,ewe(s)&' pointwise on A’
Here ¢=4%(dim G—dim K).

For f, g&C?(G), let f * g denote their convolution product so that
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(0@ = [ foretray “€o.

Also let f(x) =conj(f(x~1)).

THEOREM 3. Put ©=0, for a fixed regular element & in A. Then
O *f) = 0 for every f € C2(G). Moreover the amalytic functions
®b (begx) all lie in Lz(G).

It is obvious from its definition that ®0. Hence we can choose
d&E8Ex such that ©,70. Let V be the smallest closed subspace of
L:(G) containing 0y, which is invariant under the left-regular repre-
sentation N of G. Then V5 {0} and it is easy to show that V is the
orthogonal sum of a finite number of subspaces which are all invariant
and irreducible under A. This shows that each of the corresponding
irreducible representations belongs to the discrete series.

Define ©;=0 if 4 is a singular element of A and let § be the small-
est closed subspace of Ly(G) which contains every C* eigenfunction
of B lying in Le(G). For any f&EC;(G) and xEG, let f, denote the
function y—f(yx) (yEQG).

THEOREM 4. The series

% 0~(f) (f € C;(G))

converges absolutely and the function

fErx— 3 0:(f) (€6

lies in ©. Moreover the Haar measure of G can be so normalized that
f—st is orthogonal to D for every fEC; (G).

Theorem 4 shows that our method gives the entire discrete series.

5. The proofs of these results are rather long. We shall only give
a brief outline of the main steps in the proofs of Theorems 1 and 2. As
before, let g. be the complexification of the Lie algebra g of G and
S(g.) the symmetric algebra over g.. G operates on g, by means of the
adjoint representation. Let I(g.) be the subalgebra of all invariants of
G in S(g,). Now we take (in the set up of §1) M =g and w the differen-
tial form corresponding to the Euclidean measure dX on g. For
pES(g.), define the differential operator d(p) on g as in [4, §2] and
identify g, with its dual under the Killing form @ given by Q(X)
=tr(ad X)X Eg.). Let ¢’ be the set of all regular elements of g.
Then ¢’ is open and dense in g and its complement is of measure zero.
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A subset U of g is called completely invariant, if it satisfies the
following condition. C being any compact subset of U, CI(C%) CU.
Here C9=U,c¢ C* and Cl denotes closure. If U is an open and com-
pletely invariant subset of g, we can take M= U in §1,

LemMA 1. Let T be a distribution on o completely invariant open sub-
set U of g such that:

(1) T*=T(=€0),

(2) There exists an ideal W in I(g,) such that dim I(g,) /U< » and
()T =0 for uc.

Then T is a locally summable function on U, which is analytic on
U'=UNg.

This is proved by induction on dim g. Let 91 be the set of all
X &g such that ad X is nilpotent. The most important step in the
proof of Lemma 1 is the following result.

LeEMMA 2. Let T be an invariant distribution on g such that* Supp T
CNand I(QT=0. Then T=0.

The proof of this makes use of a result of Kostant [6, Corollary 3.7
and Lemma 5.1] from which it follows (see [2, 2.3]) that 9 is the
union of a finite number of G-orbits.

In order to obtain Theorem 1, we have now to lift the result of
Lemma 1 to the group. For this one needs the following fact.

LeEMMA 3. Let D be a polynomial differential operator [4, §2] on g
such that D*=D (xEG) and Dp=0 for pEI(a;). Then DT =0 for
every invariant distribution T on g.

The proof again proceeds by induction on dim g. The crucial part
is the following lemma.

LemMA 4. Let T be a distribution and D a polynomial differential
operator on §. We assume that:

(1) T*=T (x€0),

(2) D*=D and Dp=0 (xE€G, p€I(g.),

(3) Supp DT C9.
Then DT =0.

First one shows that it is sufficient to consider the case when T is
tempered. (This requires a result of Borel, according to which, we
can always find a discrete subgroup I of G such that G/T' is compact.
See Remark (2) at the bottom of p. 582 of [1].) Now we use the

4 Supp T denotes the support of T.
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theory of Fourier transforms. Put B(X, Y)=tr(ad X ad V)(X, YEg)
and define

j® = [esropnax gecio, vew.

Then for any tempered distribution 7, its Fourier transform # is
defined by #(f) =7(}) (fECZ(g)). Let J be the ideal of I(g,) spanned
by all homogeneous elements of degree = 1. Then 3 is exactly the set
of zeros of J in ¢. Let py, « - -, p» be an ideal basis for J. Then for
every j (1£j=r), we can choose an integer m; =0 such that pJ"DT'=0
around the origin. Since Supp DT C N and DT is invariant, it follows
that p7"DT =0. Let U be the ideal in I(g,) generated by p (1=j=7).
Then dim I(g))/U <« and «DT=0 for «u&1ll. Hence we conclude
from Lemma 1 that (DT)™ is a locally summable function. Now
define D as in [4, p. 91]. Then (DT)™= DT and it is easy to see that
D also verifies condition (2) of Lemma 4. From this it follows without
difficulty that Doe=0 on ¢ for any invariant distribution ¢ on g.
Hence DT=0 on ¢’. But since DT is a locally summable function,
this implies that DT'=0 and therefore DT =0.

6. Now we come to Theorem 2. So assume that rank g=rank !
where I is the Lie algebra of K. Put o’ =aNg’ and m= [Jscr @. Then
w is a polynomial function on a,.

LEMMA 5. Fix HoEao' and let T be a tempered and invariant dis-
tribution on ¢ such that

a(p)T = p(¢H)T (» € I(g)).
Then if5 T(H) =0 for HE ', we can conclude that T=0.

LeEMMA 6. Fix HoSao'. Then there exists exactly one tempered and
invariant distribution T on g such that:

(1) dp)T=pGH)T  (pE€I(g.)),

() T(H)=n(H)" Liew e(s)eBEed  (HEW).

The uniqueness of T follows from Lemma 5. The existence is
proved as follows. Put

7(f) = «(Ho) 2 | H(sHo)?)dx (f € C@)).

€W Q

Then 7 is a tempered and invariant distribution and d(p)7=p((Ho)7

5 In view of Lemma 1, we can speak of the value T'(X) of T"at any point X in g'.
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for p&1I(g.) (see [5, pp. 225-226]). Moreover it can be shown that
7 satisfies condition (2) of Lemma 6 up to a nonzero constant factor.
Theorem 2 is obtained by lifting the result of Lemma 6 to the group.
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CorumBIiA UNIVERSITY

CORRECTION TO ABSTRACT CLASS FORMATIONS!
BY K. GRANT AND G. WHAPLES

Professor Yukiyosi Kawada has kindly pointed out to us that our
construction for an abstract class formation {E(K)} is wrong.
Namely, we defined E(K) to be a direct limit of a family of groups
{M (X, N)} under a mapping system {nﬁ(N}. These maps 75’y in-
duce on the second cohomology groups homomorphism whose kernel
is not in general 0; hence it is in general not true that H2(F, E(k))
=Z#F)Z. For details, see Theorem 2 of a paper by Kawada, forth-
coming in Boletim da Sociedade de Matemética de Sao Paolo.

Our main theorem that a class formation does exist for every G,
is however true: this is proved by Kawada in the paper just men-
tioned, using the same family of groups M (X, N) but taking an in-
verse limit.

After seeing Kawada’s work, one of us has found a correct construc-
tion using a direct limit and replacing the {nﬁ{N} by a different sys-
tem of maps. This will be explained in a paper to be published else-
where.
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