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1. Let M be an oriented separable differentiable manifold of dimen­
sion n. (We do not assume that M is connected.) Let C*(M) denote 
the space of all complex-valued C00 functions on M with compact sup­
port. A distribution T on M is a linear mapping T: C™(M)-*C which 
is continuous in the topology of Schwartz. More explicitly, this means 
the following. Let U be any open and relatively compact set in M. 
Then we can select differential operators2 Di9 • • • , Dr on M such that 

In/)I ^ZsupiA/i a€cT(to). 
i 

Let G be a group acting on M. We denote by x° the transform of 
x G M b y ^ G G . We assume that, for a fixed g, the mapping x—>x° of 
M is of class C°°. Then for any ƒ G C" (M), the function/': x->f(xg~l) 
is again in C?(M) and if T is a distribution, the mapping T°: 
f-*T(f°~l) (fEC?(M)) is also a distribution. We say T is invariant 
(under G) if I*= T for all gGG. 

Now G operates in a natural way on the spaces2 of differential oper­
ators and differential forms on M. For example if D is a differential 
operator, D°f=(Df°~1)° (/GCc

e0(M), g&G). Fix a (real) differential 
form cc on Jkf of degree w which is invariant under G and which is 
everywhere positive (with respect to the given orientation of M). 
Then for every differential operator D on M, we define its adjoint D* 
to be the (unique) differential operator satisfying the relation 

•J Jlf «J M 

for all ƒ, <t>EC?(M). If T is a distribution, the mapping f-*T(D*f) 
(fGC?(M)) is also a distribution which we denote by DT. Now co 
defines a positive Borel measure JU on M. For example if U is an open 
set in M, 

1 This work was supported by a grant from the Sloan foundation and a contract 
with the U. S. Army. 

8 All differential operators and differential forms are meant to be C00 unless ex­
plicitly mentioned otherwise. 
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Ju 

Let F be a function on M which is locally summable (with respect 
to fj). Then corresponding to F, we get a distribution 

TV: ƒ - > /}F</M = f /F-co (ƒ G CT(JO). 
J J M 

If r is a distribution, we say T= F if T = TV. 

2. Let G be a connected semisimple Lie group. Take M = G , 
xg~gXg-i (X) gÇLG) and co the invariant differential form correspond­
ing to the Haar measure dx on G. Let S be the algebra of all differen­
tial operators on G which are invariant under both left and right 
translations of G. Then 3 is abelian. Let / = rank G. t being an in­
determinate, we denote by D(x) the coefficient of tl in 
det(2 + l— Ad(x)) (xGG). Then D is an analytic function on G and 
an element xGG is called regular if D(#) 5^0. Let Gf be the set of all 
regular elements in G. Then Gf is an open and dense subset of G 
whose complement is of measure zero. 

Let © be a distribution on G. We say that it is invariant if @* 
= © (xGG) and that it is an eigendistribution of 3 if *® — xW® (sG<8) 
for some homomorphism % of S into C. 

THEOREM 1. Let © 6e aw invariant eigendistribution of S °n G. Then 
& is a locally summable function which is analytic on G'. 

This answers, in particular, a question raised in [3, p. 396]. 

3. Now assume that the center of G is finite. Fix a maximal com­
pact subgroup K of G and let &K denote the set of all equivalence 
classes of irreducible finite-dimensional representations of K. For any 
b(~&K, let £b be the character of b and b* the class contragradient to 
b so that3 &•(*) =conj &(Jfe) (&G#). For any ƒ G C (G), define 

Mx) = <*(b) f &(k)f(kx)dk (x G G), 

where d(b) is the degree of any representation in the class b and dk 
is the normalized Haar measure of K. Then /bGGc°°(G) and the series 
]CbeSx / b C O n v e r g e s i n G?(G) tof- If ^ i s a n y distribution on G, the 
mapping/—»r(/b*) (/GCC°°(G)) is also a distribution, which we de­
note by Tb. Since 

3 conj c stands for the complex conjugate for cÇzC 
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n / ) = Z Tb(f) (/ecc°°(G)), 
be&K 

it is clear that Tb^O for some b(~8>K, if TT*0. 

Now suppose T is an eigendistribution of 3 o n G. Then the same 
holds for Tt (b<E:&K). But since Tt transforms, under left translations 
by elements of Ky according to b, it follows easily that it satisfies an 
elliptic differential equation on G with analytic coefficients. There­
fore Tt is an analytic function. 

4. Let g be the Lie algebra of G and QC its complexification. Let Gc 

be the simply connected complex-analytic group corresponding to gc. 
Assume that G is the real analytic subgroup of Gc corresponding to g 
and rank G — rank K. Fix a maximal connected abelian subgroup A of 
K and let a denote its Lie algebra. Then A is a Cartan subgroup of G 
and A' = AC\G' is open and dense in A. Let ctc denote the complexi­
fication of a, P the set of all positive roots (under some fixed order) 
and W the Weyl group of (gc, ctc). Then there exists an analytic func­
tion A on A such that 

A(exp#) = I I (ea(H)l2 - <r«(ff)/2) (H G a). 
a<=P 

Let A denote the character group of A. For any â(EA, define 

'M = n <«, x) 
aeP 

where X is the linear function on ctc such that #(exp H)=e^H)(HÇ,a) 
and (a, X) denotes the usual scalar product defined under the Killing 
form of gc. W operates on Â in a natural way by duality. An element 
â(EÂ is called regular if its transforms âs (sG W) are all distinct. Then 
â is singular or regular according as <x{â) = 0 or not. Moreover cr(^) 
= €(s)(r(â) ( s £ W , âÇîÂ), where e(s) = l or —1 and is independent 
old. 

If ® is an invariant eigendistribution of 3 o n G, one can, in view of 
Theorem 1, speak of the value ®(x) of © at any point #£(•?'. Define 
the function D as in §2. 

THEOREM 2. Fix a regular element âÇiÂ. Then there exists exactly one 
invariant eigendistribution ® â of 3 on G such that : 

(1) The function \D\ 1/2@4 remains bounded on G'\ 
(2) ©d=(~l)^(^)A~1Xl8eTr€(5)^ pointwise on A'. 

Here g=£(dim G—dim K). 

F o r / , gGC*(G), let ƒ * g denote their convolution product so that 
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(ƒ*«)(*) = f f(y)g(y^)dy (* G G). 

Also let /(x) = conj(jf(ar1)). 

THEOREM 3. Put © = ©<$ for a fixed regular element â in A. Then 
©(ƒ*ƒ) è 0 for every f £ C"(G). Moreover the analytic functions 
©b (bGSic) a« K« in L2(G). 

It is obvious from its definition that ©5^0. Hence we can choose 
bÇz&K such that ©b^O. Let V be the smallest closed subspace of 
L%(G) containing @b, which is invariant under the left-regular repre­
sentation X of G. Then VT^ {O} and it is easy to show that V is the 
orthogonal sum of a finite number of subspaces which are all invariant 
and irreducible under X. This shows that each of the corresponding 
irreducible representations belongs to the discrete series. 

Define 0^ = 0 if â is a singular element of A and let § be the small­
est closed subspace of L2(G) which contains every C00 eigenfunction 
of 3 lying in L2(G). For any fE.C?(G) and xGG, let fx denote the 
function y—*f(yx) (y&G). 

THEOREM 4. The series 

converges absolutely and the function 

lies in ^p. Moreover the Haar measure of G can he so normalized that 
ƒ—ƒ# is orthogonal to &for every fÇzC?(G). 

Theorem 4 shows that our method gives the entire discrete series. 

5. The proofs of these results are rather long. We shall only give 
a brief outline of the main steps in the proofs of Theorems 1 and 2. As 
before, let gc be the complexification of the Lie algebra g of G and 
S(gc) the symmetric algebra over gc. G operates on gc by means of the 
adjoint representation. Let I(gc) be the subalgebra of all invariants of 
G in 5(gc). Now we take (in the set up of §1) M= g and œ the differen­
tial form corresponding to the Euclidean measure dX on g. For 
££S(8c), define the differential operator d(p) on g as in [4, §2] and 
identify gö with its dual under the Killing form £2 given by Q(X) 
= tr(ad X)2(XÇ£$C). Let g' be the set of all regular elements of g. 
Then g' is open and dense in g and its complement is of measure zero. 

(fecZm 
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A subset U of g is called completely invariant, if it satisfies the 
following condition. C being any compact subset of U, Cl(CG) C U. 
Here C° = \Jxeo Cx and CI denotes closure. If U is an open and com­
pletely invariant subset of g, we can take M = U in §1. 

LEMMA 1. Let T be a distribution on a completely invariant open sub-
set U of Q such that: 

(1) r * = 2 > G G ) , 
(2) There exists an ideal U in I(gc) such that dim I(gc)/U< oo and 

d(u)T=OforuEK. 
Then T is a locally summable function on U, which is analytic on 

u'=ur\$'. 
This is proved by induction on dim g. Let 91 be the set of all 

«XTGô such that ad X is nilpotent. The most important step in the 
proof of Lemma 1 is the following result. 

LEMMA 2. Let T be an invariant distribution on g such that* Supp T 
C$1 and d(ti)T=0. Then T=0. 

The proof of this makes use of a result of Kostant [6, Corollary 3.7 
and Lemma 5.1] from which it follows (see [2, 2.3]) that 91 is the 
union of a finite number of G-orbits. 

In order to obtain Theorem 1, we have now to lift the result of 
Lemma 1 to the group. For this one needs the following fact. 

LEMMA 3. Let D be a polynomial differential operator [4, §2] on g 
such that DX = D (*GG) and Dp = 0 for pEIfa). Then DT=0 for 
every invariant distribution T on g. 

The proof again proceeds by induction on dim g. The crucial part 
is the following lemma. 

LEMMA 4. Let T be a distribution and D a polynomial differential 
operator on g. We assume that: 

(1) T*=T(xGG), 
(2) D* = D and Dp = 0 (x&G, £ G/(««)). 
(3) Supp p r e 9 i . 

ThenDT^O. 

First one shows that it is sufficient to consider the case when T is 
tempered. (This requires a result of Borel, according to which, we 
can always find a discrete subgroup r of G such that G/Y is compact. 
See Remark (2) at the bottom of p. 582 of [l].) Now we use the 

4 Supp T denotes the support of T. 
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theory of Fourier transforms. Put B(X, Y) = t r (ad X ad F) (Z , FGg) 
and define 

KY) - ƒ *^,x)/(z)rfX ( / € C;(B)| r G ô). 

Then for any tempered distribution r, its Fourier transform f is 
defined by ?(ƒ) = r ( / ) ( /GC({j ) ) . Let J be the ideal of I(gc) spanned 
by all homogeneous elements of degree è 1. Then 91 is exactly the set 
of zeros of / in g. Let pu • • • , pr be an ideal basis for J". Then for 
every j ( 1 S j Û r), we can choose an integer ntj à 0 such that p^'D T=0 
around the origin. Since Supp DTQVl and DT is invariant, it follows 
that p?'DT=0. Let U be the ideal in 7(gc) generated by p? (1 èj^r). 
Then dim I (g c ) /U< <*> and uDT=0 for w£U. Hence we conclude 
from Lemma 1 tha t (DT)^ is a locally summable function. Now 
define D as in [4, p. 91 ]. Then (DT)^~ Ût and it is easy to see that 
D also verifies condition (2) of Lemma 4. From this it follows without 
difficulty that D<x = 0 on g' for any invariant distribution <s on g. 
Hence DT = 0 on g'. But since Of1 is a locally summable function, 
this implies that Dt = 0 and therefore DT=0. 

6. Now we come to Theorem 2. So assume that rank g = r a n k ! 
where Ï is the Lie algebra of K. Put a' = aHg ' and 7r== H«ep <x. Then 
7T is a polynomial function on ac. 

LEMMA 5. Fix ü?o E et' a w ^ ^ T be a tempered and invariant dis­
tribution on g such that 

d(p)T = p(iH0)T (p G/(Be)). 

TTte» i/6 T(H) = 0for HGft', we caw conclude that r = 0 . 

LEMMA 6. 7<ïx Ho G a'. jHAew tóeré existe exactly one tempered and 
invariant distribution T on g swefe tóa/ : 

(1) d(p)T=p{iH«)T (PGI(%C)), 

(2) T ( i î ) = 7 r ( H ) - 1 i : . s ^ € ( 5 ) e ^ ^ o ^ ) ( H € a ' ) . 

The uniqueness of T follows from Lemma 5. The existence is 
proved as follows. Put 

r(f) = T(27O) E f K(sH,Y)dx (ƒ G cTfo)). 

Then r is a tempered and invariant distribution and d(p)T = p(iHo)T 
6 In view of Lemma 1, we can speak of the value T(X) of T at any point X in g'. 
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for p<EI($c) (see [5, pp. 225-226]). Moreover it can be shown that 
r satisfies condition (2) of Lemma 6 up to a nonzero constant factor. 

Theorem 2 is obtained by lifting the result of Lemma 6 to the group. 
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COLUMBIA UNIVERSITY 

CORRECTION TO ABSTRACT CLASS FORMATIONS1 

BY K. GRANT AND G. WHAPLES 
Professor Yukiyosi Kawada has kindly pointed out to us that our 

construction for an abstract class formation {£(i£)} is wrong. 
Namely, we defined E(K) to be a direct limit of a family of groups 
{M(K, N)} under a mapping system {VNIN}» These maps rj§;N in­
duce on the second cohomology groups homomorphism whose kernel 
is not in general 0; hence it is in general not true that H2(F, E{k)) 
~Z(#F)Z. For details, see Theorem 2 of a paper by Kawada, forth­
coming in Boletim da Sociedade de Matemâtica de Sâo Paolo. 

Our main theorem that a class formation does exist for every GW1 

is however t rue: this is proved by Kawada in the paper just men­
tioned, using the same family of groups M(K, N) but taking an in­
verse limit. 

After seeing Kawada's work, one of us has found a correct construc­
tion using a direct limit and replacing the {rj§;N} by a different sys­
tem of maps. This will be explained in a paper to be published else­
where. 

Received by the editors September 11, 1962. 
1 Bull. Amer. Math. Soc. 67 (1961), 393-395. 


