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Introduction and summary of results. With the settling of the 
Problem of Post by Friedburg and Mucnik2 a question that naturally 
presents itself is whether or not unsolvability results about word prob­
lems and related problems can be paralleled for arbitrary recursively 
enumerable degrees of unsolvability, i.e., for any such degree, D, 
does there exist a problem of such-and-such a kind having degree D? 
The present results furnish a partial answer to this general question. 
Throughout our statement of results, existence is intended in the 
strong sense of the exhibition of a uniform procedure for constructing. 

Corresponding to a well-known unsolvability result of Markov 
[12]3 and Post [20] we have the following. 

RESULT A. For any recursively enumerable degree of unsolvability, 
D, there exists a Thue system, XD, such that the word problem for XD 
is of degree D. 

Corresponding to an unsolvability result noted by Marshall Hall 
[7], we have the following. 

RESULT B. Result A may be strengthened to require that XD be a 
Thue system on two symbols. 

The following result corresponds more closely to the unsolvability 
result of WP, §36, than to the unsolvability of the word problem for 
groups as usually formulated. 

RESULT C. For any recursively enumerable degree of unsolvability, D, 
there exists a group presentation, XD, consisting of a finite number of 
generators and an infinite but recursive set of defining relations, such 
that the word problem for XD is of degree D. 

As elsewhere noted,4 "arbitrary degree" analogues of the Markov-
1 The author is an Associate Member of the Center for Advanced Study, Uni­

versity of Illinois. This research was supported earlier by the John Simon Guggenheim 
Memorial Foundation and the United States Office of Naval Research. 

2 E. L. Post, Bull. Amer. Math. Soc. 50 (1944), 314, lines 17-22; R. M. Friedburg, 
Proc. Nat. Acad. Sci. U.S.A. 43 (1957), 236-238; A. A. Mucnik, Dokl. Akad. Nauk 
SSSR (N.S.) 108 (1956), 194-197. 

3 «WP" indicates The Word Problem, Ann. of Math. 70 (1959), 207-265 and num­
bers in square brackets refer to the bibliography of WP. 

4 Meeting of the Association for Symbolic Logic, Leeds, August 1962. Result B 
and related results were presented to this meeting. Result A, to the International Con­
gress of Mathematicians, Stockholm, August 1962. Result C, to the Internationales 
Kolloquium Über Endliche Gruppen, Oberwolfach, June, 1960. Result C was dis­
covered independently by C. R. Clapham. 
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Addison-Feeney-Rabin-Adjan Theorems5 follow: the analogue for 
Thue systems by Result A and a very easy modification of Markov's 
original argument; the analogue for group presentations of the type 
described in Result C, by Result C and a very easy modification of 
Rabin's argument. (As to the analogue for finitely presented groups, 
this would similarly be established by the existence of a finitely 
presented group with word problem of preassigned arbitrary recur­
sively enumerable degree.) 

PROOF OF RESULT A.6 Let Xi be any semi-Thue system having the 
form which we now stipulate. The semi-Thue systems X2, Xz and Xi 
depend on Xi. 

£ 1 
c3i : Jo, $1, • • • , SM, h; Ci, q%y • • qtr, q. 

Ui: © i - + © i ' , 0 2 - > © 2 , • • - © P - » © / . 

Here each ©, ->©ƒ, t « l , 2 , - - P is of the form HAgaA'H' 
- ^ H n ^ n ' H ' , where (1) A, A', II, IT are words on the s-symbols; 
(2) H is 1 or the word h; (3) H ' is 1 or the word h; (4) qa is 
Ci, 22, • • QN\ (5) & is 22, qz, • • qN, or q. 

X, 

3 2 : AH symbols of 3 i ; q0; fi, ƒ2, • • • / p . 
U2: Where 1 = 1, 2, • • • , P and j8 = 0, 1, • • • , M the rules or rule 

pairs 2.1 through 2.9 are rules of U2: 

2.1 hqo*->fJiqo9 2.6 fji<-*hfi, 
2.2 g0Sr-»Si2o, 2 - 7 hqhft<-*hqh, 
2.3 Siqoh-*Siqih, 2.8 fjiqh*-*hqh, 
2.4 f&c+®if» 2.9 hqof^hqQ. 
2.5 fiSfit-tSfffi, 

X* 
£3: All symbols of ^2. 
U3: ©<->©' where ©—>©' or ©'—>© (or both) is a rule of U2. 

SjIfJÎ, AjKÎ f IL, f IR, f IL, fîR 

5 See, e.g., Markov [13], the review in English [16], or M. O. Rabin, Ann. of 
Math. 67 (1958), 172-194 (the latter lists references to the papers of the other authors). 

6 Only WP3 §1 and the first paragraph of §2, are needed to understand the termi­
nology and notation used here. The terms g-symbol, s-symbol, etc., defined on p. 220 
of WP, seem self-explanatory. 

S±: SOL, SIL, * 
fpL,fpR\ Qoi qu • 

Xi 

• s ML, &LÎ SOR, SIR, 

• • Q.N, q. 
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U4: ©<->©' is a rule couple of U4 where ©«->©' is any rule couple of 
U3 other than of U2.5 or U2.6 and © and ©' are obtained from © and ©' 
respectively by adding L as (additional) subscript to h and every 
5-symbol a t each occurrence left of the ^-symbol and adding R as 
(additional) subscript to ft and every s-symbol a t each occurrence 
right of the g-symbol. Where i = l , 2, • • P and j3 = 0, 1, • • Mt 

fiLS0L+->spLflLf fiRSf3R<r+spRfiR, fiihifi+hifiL, j\RhR^hRf\R are rule 
couples of U4. 

LEMMA l.7 For any recursively enumerable set of natural numbers, S, 
there is a choice of Xi such that nÇî.S if and only if hsni*lq\h\-\hqh. 

Lemma 1 is well-known.8 

EQUIVALENCE THEOREM 1. For any choice of X\, the problem to de­
termine f or two arbitrary words U and V on g>\ whether or not U h i V 
reduces to the problem to determine for arbitrary natural number n 
whether or not hsï+1qih\-ihqh; and vice versa. 

Since X* is a Thue system, by Lemma 1 and Equivalence Theorem 
1, Result A is immediate. 

The following definitions apply to Xi, £2, Xz. Both A and II are 
variables for words on the s- and /-symbols ; both S and 0, for words on 
the/-symbols ; S is a variable for words of form9 EftAgaIIftO (special 
words) ; À is (Â is) the word A with /-symbols (with all symbols but 
/-symbols) everywhere erased. The word A is semi-special if A or h A 
or Ah or h Ah is special ; © is a variable for semi-special words. A word 
of form AhqôB is initial. We use T (We use A) as a variable for initial 
special (for initial semi-special) words. We use $ as variable for words 
containing at most one occurrence of a g-symbol (regular words). 
With no r (no A) in the context, "T is (A is) a variable for/-free special 
initial (for /-free semi-special initial) words. A special initial word of 
form hq0s"+lh is numerical. The notation (?f, f numerical) t\-2hqh 
indicates10 the following decision problem: to determine for arbitrary 
T, «Does f1 hafts*?" 

The plan of the argument for Equivalence Theorem 1 in the non-

7 Exponents are used in the usual way; within exponents, n is always a variable for 
natural numbers. 

8 See Kleene [9], §§68 and 71. Alternatively see the text book of Martin Davis 
(McGraw-Hill, 1958) or of Hans Hermes (Springer Verlag, 1961). 

9 Lower case Greek letters are variables for subscripts on symbols—including the 
blank subscript. 

10 By analogy, the notation (? — , . . — . . . ) • • • • — . • • • should be clear to 
the reader in general. 
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trivial direction is to show, in the diagrammatic arrangement below, 
that each decision problem P is reducible to the decision problem(s) 
a t the head(s) of the arrow (s) issuing upward from P. Beside each 
arrow is written the number of the theorem asserting the reduction 
indicated.11 

(?n)hsi qxh h i hqh 

(?T, T numerical) Y h 2 hqh 

Il \ IV 

( ? S ) S h 2 * î * (?À)Àh«*î* 

I I I 

(?0)0 h2 hqh 

V 

(?e, @')@h*e' 

VI 

VII 

( ? U , V ) U h V 

Outline of arguments for these theorems. Theorem I: Show 
hqos"~{'1h[-2hqh if and only if hs"+lqih}r-ihqh, » = 0, 1, 2, • • • . Theo­
rem I I : Call a special word terminal if of form %hqh£l\ intermediate if 
neither initial nor terminal. We have the following (recursive) pos­
sibilities for a given special word 2 . (a) 2 initial and 2 initial numeri­
cal; (b) 2 initial and S initial but not numerical; (c) 2 intermediate; 
(d) S terminal. If (a), apply assumed oracular process to determine 
if S\-2hqh. By U2.1, U2.6, U2.6, U2.9, S h - 2 ^ if and only if t\-2hqh. If 

11 Theorem V asserts that a certain decision problem is reducible to the union of 
two other decision problems. 

file:///-2hqh
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(b), not S \~-Jiqh. If ( d ) , S h 2 ^ by rules U2.7 and U2.8. There remains 
only case (c) so it suffices to show (?2, 2 intermediate) S h - 2 ^ is 
solvable. But this follows since an application of a rule of U2.4 (a rule 
of U2.6 or Us.c) to a special word decreases by one (does not change) 
the number of occurrences of /-symbols left of the occurrence of the 
g-symbol;12 and hence the number of applications of rules of U2.2 and 
U2.4 to a special word is bounded. Theorem I I I : If 0 is not special, 
then not ®\~2hqh. Theorem IV: By the method of "Post's Reduc­
tion"13 show that thzhqh if and only if TY-^hqh. Note that if À is not 
both special and numerical, then not A\~zhqh. Theorem V: LEMMA 2. 
Suppose not kt-Jiqh. Then k\~zk' if and only if A is À'. LEMMA 3. 
There is a recursive procedure, RQ, to determine f or any 0 such that not 
<d\-2hqh whether or not there is a À such that 01—3A, and if so to produce 
such a À, say A(0) . LEMMA 4. There is a recursive procedure R\ to 
determine f or any pair 0 , 0 ' such that not ®\~2hqh and À(0) does not 
existt whether or not 0 h-3©'. For Lemmas 2, 3 and 4, first show by the 
method of "Post's Reduction" that , for certain values of A and B 
given obviously by the statements of these lemmas, if AhsB then 
AI-2B or BI-2A. For Lemmas 3 and 4 the argument proceeds, as for 
Case (c) of the argument for Theorem II , by showing the number of 
applications for the rules of U2.2 and U2.4 in these X2 proofs is bounded 
and hence that the problems indicated are solvable. Now to show 
Theorem V, let R2 be an oracular process to solve (?@)0r-2ftg&; Rz, 
to solve (?A.)k\-%hqh. Then for any given pair of semi-special word 
0 , 0 ' to determine whether or not 01-30 ' apply R% to both 0 and 0 ' , 
consulting Table 1 about the answer—and subsequent tables as 
directed.14 

TABLE 1 

Is 0 \-Jtqh1 

Yes 

No 

No 

IsB' \-thqh7 

Yes 

Yes 

No 

Final Answer or 
Subsequent Action 

©h-sO' 

Apply R0 to 0 consulting Table 2 
about answer. 

Apply R0 to 0 and to 0' consulting 
Table 3 about answers. 

12 Argue, similarly, for the rules U2.2 and U2.3 about the number of occurrences of 
Si right of qo. 

w I.e., the method of Lemma II of (20]. 
14 The Yes-No row omitted from Table 1 is clear by symmetry. 

file:///~-Jiqh
file:///-Jtqh1
file:///-thqh7
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TABLE 2 

Does Â(0) exist? 

Yes 

No 

Final Answer or Subsequent Action 

Apply R3 to Â(0); 0 t - 3 0 ' if and only if 
A (®)\-Jiqh. 

Apply Rl to the pair 0, 0 ' to determine 
whether or not 01— 30' . 

TABLE 3 

Do both À(0) and 1(0 ' ) exist? 

Yes 

No 

Final Answer or Subsequent Action 

Apply Rz to both Â(0) and Â(0') consult­
ing Table 4 about answer. 

Apply Ri to 0, 0 ' to determine whether 
or not 0h-30'. 

TABLE 4 

Is À(0) h thqh? 

Yes 

Yes 

No 

No 

Is k(&')hJtq.M 

Yes 

No 

Yes 

No 

Final Answer 

01-*0 ' 

N o t 0 f - 3 0 ' 

Not 01-80' 

01--30' if and only if Â(0) is 
X(0'). 

Theorem VI : Consider the situation wherein $ is AhAqJIhB and 
* ' is A'hA'qa'Tl'hB': 3>f-3$' if and only if AhAqJlhBhzk'hA'qa^hB^ 
À is Â', and B is B'. All other cases are degenerate versions of this 
situation. Theorem VII : Demonstrate by means of Turing's barrier 
argument, [23],15 denning barrier as Turing does on page 500 [23]. 
Given U and V, words on $4 express them in the form U1U2 • • • TJM 
and V1V2 • • • VN respectively where each U*- and V» contain no bar­
riers and M and N are minimal. Let U? (Let V?) be U* (be Vt) with 
subscript L and R everywhere erased. Then show that U h 4V if and 
only if both M = i V a n d U?r-3V?, * = 1 , 2, • • • , M. 

We omit a discussion of the argument for Equivalence Theorem 1 
15 I.e., by the methods of Lemma 11 of [23], cf. [4]. 
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in the trivial direction ; all lemmas needed already occur in the argu­
ment for Equivalence Theorem 1 in the non trivial direction. 

PROOF OF RESULT B. Let 2* be the Thue system whose symbols are 
a, b and whose operation rules are those of Xi with the ith. symbol of 
XA replaced by abla. (Xi is recursively embedded in X$.) The word 
problem for X$ reduces to the word problem for 2V, and vice versa. 
Note £4 has no rules of form A<-»1; the argument proceeds much like 
that for Theorem VII, above, used for Result A. 

PROOF OF RESULT C. We consider the class of group presentations 
of WP, §36; viz., where S is any set of ordered pairs of positive inte­
gers let Xs be the following group presentation. 

Xs 
8s: xi, x2, q, z 

Us'- zmxïqxïn = X2qx2n for each (ra, n) of S\ 3 = 1. 

EQUIVALENCE THEOREM 2. For any recursively enumerable set of 
positive integers, M, let S be the recursive set of ordered pairs of positive 
integers such that dÇ^M if and only if there is a c such that (c, d)(E:S. 
Then the word problem for Xs reduces to the decision problem for M\ 
and vice versa. 

Theorem XVI of W P shows Equivalence Theorem 2 in the trivial 
direction.16 Now as in WP, let Xs be the presentation (isomorphic to 
Xs) with generators Xi, x2, q and defining relations XiqXi — x^qxy. » 
w £ M . Then to show the Equivalence Theorem 2 in the nontrivial 
direction it clearly suffices to show (f) the word problem for Xs re­
duces to the decision problem for M. The following fact seems to be 
well known : Let P be the free product of groups G\ and Gi with the 
amalgamation wherein subgroup H\ of G\ is identified with subgroup H2 

of G2. Suppose (1) the word problem is solvable in Gi and in G2) (2) the 
extended word problem is solvable in G\ relative to H\ and in Gi relative 
to H2. Then the word problem is solvable in P. Now (the group pre­
sented by) Xs can be regarded as the free product of F(xi, q), the 
free group on x\ and q and F(x2l q') with the correspondence x"qxïn 

mm^xlq'x2~
n

1 n = 0 or G M specifying the identification of subgroup V, 
of F(xi, q), generated by the x\qxïn with the subgroup V', of F(x2,q'), 
generated by the x^q X2 f n = 0 or G M. Clearly to show (f) it is suffi­
cient to assume an oracular process R to solve the decision problem 
for M and then show (1) and (2) hold where P , Gi, G2, Hi, Hi are 

18 If the group-theoretic version of the argument for Theorem XVI of WP, page 
262 of WP—due to Graham Higman—then the entire argument for the present 
Equivalence Theorem 2 is a group-theoretic. 
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Xs 9 F(xi, q), F(x2, q')t V, Vf respectively. Regarding (1) we need 
only note tha t F(xi, q) and F(x2, q') are free groups. To verify (2) 
suppose we are given any reduced word W on xi, q. If W is 1 then 
W G V; if W is not 1 and W is g-free, W(£ V. Otherwise express W in 
the form x\qek, e= ± 1 . If k<£M, (consult R) then W ( £ F . If kGM, 
let W be {x\q~exîh)(x\qe&) reduced and reapply this process to W ; ; 
W £ V if and only if W ' G V. Obviously, this is a recursive procedure 
to determine " I s W G F ? ' Similarly for F(x*, q') and V'.17 

UNIVERSITY OF ILLINOIS 

17 This is essentially an argument due to J. Nielsen, Math. Scand. 3, pp. 31-43, as 
pointed out to us by B. H. Neumann. 


