
A DUALITY THEORY FOR CONVEX PROGRAMS 
WITH CONVEX CONSTRAINTS 

BY A. CHARNES, W. W. COOPER AND K. KORTANEK1 

Communicated by Edwin Hewitt, April 15, 1962 

The existence of a solution to the problem of minimizing a convex 
function subject to restriction of the variables to a closed convex set 
in w-space ("convex programming") has been characterized (for 
suitable differentiability conditions) by the Kuhn-Tucker theorem 
[5]. In general, no dual programming problem (not involving the vari­
ables of the direct problem) has been associated with this situation 
except in the linear programming case, and very recently by E. Eisen­
berg in [3], for homogeneity of order one in the function and linear 
inequality constraints, and by R. J. Duffin [2] in an inverse manner 
for a highly specialized problem. 

Starting with a little known paper of A. Haar [4] in the light of 
current linear programming constructs (e.g., "regularization" [ l ] ) , 
we effect a generalization of these ideas (with maximal finite algebra 
and minimal topology) so that a dual theory practically as straight­
forward as linear programming theory is obtained, and which includes 
a dual theorem covering the most general convex programming situa­
tion (e.g. no differentiability conditions qualifying the convex func­
tion or constraints, or homogeneity, etc.). 

This general theorem is made possible by associating a suitably 
restricted, usually infinite-dimensional space problem with the mini­
mization problem in w-space instead of the usual association of an­
other finite w-space problem. The space we use is a "generalized 
finite sequence space" (g.f.s.s.), defined with respect to an index set 
/ of arbitrary cardinality as the vector space, S> of all vectors 
X— [Xt: i G / ] over an ordered field F with only finitely many nonzero 
entries. 

Such spaces possess the following key characteristics for linear 
programming of ordinary w-spaces. Let F be a vector space over F and 
consider a collection of vectors: PQ, P*: i £ I in V. Let R be the sub-
space spanned by these vectors, and let 
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A = h G S: £ XiPi = Po, X è 0 

Clearly A is convex in 5 and we have (assuming V finite-dimensional) : 

THEOREM 1. X^O is an extreme point of A. in S if and only if the 
nonzero coordinates of\ correspond to coefficients of linearly independent 
vectors in R. 

THEOREM 2. A is generated by its extreme points if and only if for any 
« G 5 , a ^ O , ^2iei ouiPi = 0 implies some ar and some aa are of opposite 
signs. 

REMARK. A need not be bounded as in w-space. ("Bounded" means 
there exists M G F such that ]F)< |X,-| S M for all X in the set.) 

These theorems can be proved in similar fashion to their finite 
space forms due respectively to Charnes and to Charnes-Cooper (see 
[i]). 

By "dual semi-infinite programs" we mean the following pair of 
problems formed from the same data: 

I I I 

min uTPo max ]T) cîki 
ier 

subject to uTPi ^ d i (~ I subject to ]T) -PA* = Po 
iei 

We restrict ourselves now to the real field and to semi-infinite pro­
grams whose {Pi, d} are "canonically closed" in the sense that in an 
equivalent inequality system in which the new {Pt-, c»} form a 
bounded set, e.g. by dividing each inequality by some di>0, the set 
is also closed. We call such programs "dual Haar programs." 

We require next the inhomogeneous (inequality system) theorem of 
Haar [é]. 

THEOREM 3. Let uTPi^ciy iGI be a canonically closed system. If 
uTP^c holds whenever uTPi^Ci for all iÇzI> then there exist Xjb^O, 
Xo^O, with at most n + 1 nonzero such that 

uTP-c=J2 *k(uTPk - ck) + Xo. 
k 

Haar does not specifically use the notion of canonical closure, but 
as counter-examples show he must have intended something of this 
sort. By use of Theorem 3 we obtain the following lemma. 

• 
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LEMMA 1. For Haar programs if both I and II are consistent, then 

inf UTPQ = sup X) MTPî)^i = X) £*̂ ** for some ^* €E A.» 
iel t e l 

Hence we conclude 

THEOREM 4 (EXTENDED DUAL THEOREM). For any pair of dual 
Haar programs precisely one of the following occurs» 

(i) sup X)**er c^i= °° a w ^ I ^5 inconsistent. 
(ii) inf uTP§ — — o° and II is inconsistent. 
(iii) I awd II are ôtf/& inconsistent. 
(iv) inf wrPo = sup X^ier elk* for some X*£A. 

REMARK. Only the Farkas-Minkowski property of Theorem 3 is 
employed to obtain Theorem 4. Canonical closure is a sufficient but 
not a necessary condition for this. 

To obtain the general convex programming dual theorem, we move 
the functional into the constraints and replace it with a linear func­
tion as follows. Suppose the direct problem is: min C(u) subject to 
G(u) ^ 0 , where GT= ( • • • , G»(w), • • • ) is a finite vector of concave 
functions which defines the convex set W of the «'s. Let uTPi*zCi, 
i(~I be a system of supports for W, and z — uTQa^da, aQA be a sys­
tem of supports for z — C(u) ^ 0. Then the direct problem may be 
rewritten as: 

min 2, subject to z — uTQa è da, uTPi ^ c», a 6 i , i G A 

Thus we have 

THEOREM 5. Assuming the Farkas-Minkowski property for this sys­
tem, the extended dual theorem applies to the following dual programs: 

min z max ^T, darja + ^2 d\i 
a i 

subject to z — uTQa ^ da subject to ^2 Va = 1 
a 

uTPi ^a - £ Q«V« + E P*i = 0 
a i 

Va, X< è 0. 

Complete generality may now be obtained since an arbitrary semi-infinite 
program may be replaced by a Haar program according to the following 
observation : 

THEOREM 6. The canonical closure uTPi^cif iÇ.Î of the system 
uTPi^ciy i £ J , has precisely the same set of solutions {u}, where / 2 1 



608 A. CHARNES, W. W. COOPER AND K. KORTANEK 

denotes the increased index set to index limit points of the (Pt-, Ci) not 
indexed by I. 
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