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The existence of a solution to the problem of minimizing a convex
function subject to restriction of the variables to a closed convex set
in n-space (“convex programming”) has been characterized (for
suitable differentiability conditions) by the Kuhn-Tucker theorem
[5]. In general, no dual programming problem (not involving the vari-
ables of the direct problem) has been associated with this situation
except in the linear programming case, and very recently by E. Eisen-
berg in [3], for homogeneity of order one in the function and linear
inequality constraints, and by R. J. Duffin [2] in an inverse manner
for a highly specialized problem.

Starting with a little known paper of A. Haar [4] in the light of
current linear programming constructs (e.g., “regularization” [1]),
we effect a generalization of these ideas (with maximal finite algebra
and minimal topology) so that a dual theory practically as straight-
forward as linear programming theory is obtained, and which includes
a dual theorem covering the most general convex programming situa-
tion (e.g. no differentiability conditions qualifying the convex func-
tion or constraints, or homogeneity, etc.).

This general theorem is made possible by associating a suitably
restricted, usually infinite-dimensional space problem with the mini-
mization problem in z-space instead of the usual association of an-
other finite m-space problem. The space we use is a “generalized
finite sequence space” (g.f.s.s.), defined with respect to an index set
I of arbitrary cardinality as the vector space, S, of all vectors
A=\ iEI] over an ordered field F with only finitely many nonzero
entries.

Such spaces possess the following key characteristics for linear
programming of ordinary n-spaces. Let V' be a vector space over F and
consider a collection of vectors: Py, P;: 1€ in V. Let R be the sub-
space spanned by these vectors, and let
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A= {AES: inp,:z’o,}\go}.

el
Clearly A is convex in S and we have (assuming V finite-dimensional):

THEOREM 1. N5%20 is an extreme point of A in S if and only if the
nonzero coordinates of \ correspond to coefficients of linearly independent
vectors in R.

THEOREM 2. A is generated by its extreme points if and only if for any
a€ S, a0, D icr a;P;=0 implies some o, and some a, are of opposite
signs.

REMARK. A need not be bounded as in #-space. (“Bounded” means
there exists ME F such that Y _; I)\,l = M for all \ in the set.)
These theorems can be proved in similar fashion to their finite
s[pzllce forms due respectively to Charnes and to Charnes-Cooper (see
1]).
By “dual semi-infinite programs” we mean the following pair of
problems formed from the same data:

I II
min 7P, max 2 cA;
i€l
subject to uTP; = ¢; 1 & I subject to Y PA; = Py
el
AES, Az0.

We restrict ourselves now to the real field and to semi-infinite pro-
grams whose {P,-, ci} are “canonically closed” in the sense that in an
equivalent inequality system in which the new {P;, ¢} form a
bounded set, e.g. by dividing each inequality by some d;>0, the set
is also closed. We call such programs “dual Haar programs.”

We require next the inhomogeneous (inequality system) theorem of
Haar [4].

THEOREM 3. Let uTP;=ci, 1E€1 be a canonically closed system. If
uTP =c¢ holds whenever uTP;=c; for all 1&1, then there exist N =0,
Mo =0, with at most n+1 nonzero such that

uTP —Cc= Z )\k(uTPk - Ck) + >\o.
k
Haar does not specifically use the notion of canonical closure, but

as counter-examples show he must have intended something of this
sort. By use of Theorem 3 we obtain the following lemma.
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LeEMMA 1. For Haar programs if both 1 and 11 are consistent, then

inf uTPy = sup 2 uTP\; = D, cA¥  for some \* € A.

el el
Hence we conclude

THEOREM 4 (EXTENDED DuAL THEOREM). For any pair of dual
Haar programs precisely one of the following occurs.

(i) sup D ier chi= » and 1 is inconsistent.

(i1) inf uTPy= — « and 11 is inconsistent.

(iii) I and 11 are both inconsistent.

(iv) inf uTPo=sup 2 _icr c\¥ for some N*CA.

REMARK. Only the Farkas-Minkowski property of Theorem 3 is
employed to obtain Theorem 4. Canonical closure is a sufficient but
not a necessary condition for this.

To obtain the general convex programming dual theorem, we move
the functional into the constraints and replace it with a linear func-
tion as follows. Suppose the direct problem is: min C(«) subject to
G(u) =20, where GT=(- - -, Gi(u), - - - ) is a finite vector of concave
functions which defines the convex set W of the u's. Let uTP;=c¢;,
12E& 1 be a system of supports for W, and z—u7Q,=d,., aE A be a sys-
tem of supports for z—C(#) =0. Then the direct problem may be
rewritten as:

min 2, subject to 2 — #TQu = doy uTP; = ¢;, aE A,1E I
Thus we have

THEOREM 5. Assuming the Farkas-Minkowski property for this sys-
tem, the extended dual theorem applies to the following dual programs:

min z max Z Eane + E Ci\i
subject to 2 — uTQq = da subject 10 3 1a =1

MTPi

1%
D

_ZQa"]a'I-ZPiki:O
ﬂa,A.';O.

Complete generality may now be obtained since an arbitrary semi-infinite
program may be replaced by a Haar program according to the following
observation:

THEOREM 6. The canonical closure uT™P;Z=c;, iC1 of the system
uTP;=c;, €1, has precisely the same set of solutions {u}, where IDT
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denotes the increased index set to index limit points of the (P;, ¢;) not
indexed by I.
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