A DUALITY THEORY FOR CONVEX PROGRAMS WITH CONVEX CONSTRAINTS

BY A. CHARNES, W. W. COOPER AND K. KORTANEK1

Communicated by Edwin Hewitt, April 15, 1962

The existence of a solution to the problem of minimizing a convex function subject to restriction of the variables to a closed convex set in *n*-space ("convex programming") has been characterized (for suitable differentiability conditions) by the Kuhn-Tucker theorem [5]. In general, no dual programming problem (not involving the variables of the direct problem) has been associated with this situation except in the linear programming case, and very recently by E. Eisenberg in [3], for homogeneity of order one in the function and linear inequality constraints, and by R. J. Duffin [2] in an inverse manner for a highly specialized problem.

Starting with a little known paper of A. Haar [4] in the light of current linear programming constructs (e.g., "regularization" [1]), we effect a generalization of these ideas (with maximal finite algebra and minimal topology) so that a dual theory practically as straightforward as linear programming theory is obtained, and which includes a dual theorem covering the most general convex programming situation (e.g. no differentiability conditions qualifying the convex function or constraints, or homogeneity, etc.).

This general theorem is made possible by associating a suitably restricted, usually infinite-dimensional space problem with the minimization problem in n-space instead of the usual association of another finite m-space problem. The space we use is a "generalized finite sequence space" (g.f.s.s.), defined with respect to an index set I of arbitrary cardinality as the vector space, S, of all vectors $\lambda = [\lambda_i : i \in I]$ over an ordered field F with only finitely many nonzero entries.

Such spaces possess the following key characteristics for linear programming of ordinary n-spaces. Let V be a vector space over F and consider a collection of vectors: P_0 , P_i : $i \in I$ in V. Let R be the subspace spanned by these vectors, and let

¹ The research of A. Charnes and K. Kortanek at Northwestern University has been supported by O.N.R. contract Nonr-1228(10); that of W. W. Cooper at Carnegie Institute of Technology has been supported by O.N.R. contract Nonr-760(01). Reproduction in whole or in part is permitted for any purpose of the United States Government.

$$\Lambda = \left\{ \lambda \in S : \sum_{i \in I} \lambda_i P_i = P_0, \lambda \geq 0 \right\}.$$

Clearly Λ is convex in S and we have (assuming V finite-dimensional):

THEOREM 1. $\lambda \neq 0$ is an extreme point of Λ in S if and only if the nonzero coordinates of λ correspond to coefficients of linearly independent vectors in R.

THEOREM 2. A is generated by its extreme points if and only if for any $\alpha \in S$, $\alpha \neq 0$, $\sum_{i \in I} \alpha_i P_i = 0$ implies some α_r and some α_s are of opposite signs.

REMARK. A need not be bounded as in *n*-space. ("Bounded" means there exists $M \in F$ such that $\sum_{i} |\lambda_{i}| \leq M$ for all λ in the set.)

These theorems can be proved in similar fashion to their finite space forms due respectively to Charnes and to Charnes-Cooper (see [1]).

By "dual semi-infinite programs" we mean the following pair of problems formed from the same data:

I II
$$\min u^T P_0 \qquad \max \sum_{i \in I} c_i \lambda_i$$
 subject to $u^T P_i \ge c_i$ $i \in I$ subject to $\sum_{i \in I} P_i \lambda_i = P_0$
$$\lambda \in S, \ \lambda \ge 0.$$

We restrict ourselves now to the real field and to semi-infinite programs whose $\{P_i, c_i\}$ are "canonically closed" in the sense that in an equivalent inequality system in which the new $\{P_i, c_i\}$ form a bounded set, e.g. by dividing each inequality by some $d_i > 0$, the set is also closed. We call such programs "dual Haar programs."

We require next the inhomogeneous (inequality system) theorem of Haar [4].

THEOREM 3. Let $u^T P_i \ge c_i$, $i \in I$ be a canonically closed system. If $u^T P \ge c$ holds whenever $u^T P_i \ge c_i$ for all $i \in I$, then there exist $\lambda_k \ge 0$, $\lambda_0 \ge 0$, with at most n+1 nonzero such that

$$u^T P - c = \sum_{k} \lambda_k (u^T P_k - c_k) + \lambda_0.$$

Haar does not specifically use the notion of canonical closure, but as counter-examples show he must have intended something of this sort. By use of Theorem 3 we obtain the following lemma.

LEMMA 1. For Haar programs if both I and II are consistent, then

$$\inf u^T P_0 = \sup \sum_{i \in I} u^T P_i \lambda_i = \sum_{i \in I} c_i \lambda_i^* \quad \text{for some } \lambda^* \in \Lambda.$$

Hence we conclude

THEOREM 4 (EXTENDED DUAL THEOREM). For any pair of dual Haar programs precisely one of the following occurs.

- (i) sup $\sum_{i \in I} c_i \lambda_i = \infty$ and I is inconsistent.
- (ii) inf $u^T P_0 = -\infty$ and II is inconsistent.
- (iii) I and II are both inconsistent.
- (iv) inf $u^T P_0 = \sup \sum_{i \in I} c_i \lambda_i^*$ for some $\lambda^* \in \Lambda$.

REMARK. Only the Farkas-Minkowski property of Theorem 3 is employed to obtain Theorem 4. Canonical closure is a sufficient but not a necessary condition for this.

To obtain the general convex programming dual theorem, we move the functional into the constraints and replace it with a linear function as follows. Suppose the direct problem is: min C(u) subject to $G(u) \ge 0$, where $G^T = (\cdots, G_i(u), \cdots)$ is a finite vector of concave functions which defines the convex set W of the u's. Let $u^T P_i \ge c_i$, $i \in I$ be a system of supports for W, and $z - u^T Q_\alpha \ge d_\alpha$, $\alpha \in A$ be a system of supports for $z - C(u) \ge 0$. Then the direct problem may be rewritten as:

min z, subject to
$$z - u^T Q_{\alpha} \ge d_{\alpha}$$
, $u^T P_i \ge c_i$, $\alpha \in A$, $i \in I$.

Thus we have

THEOREM 5. Assuming the Farkas-Minkowski property for this system, the extended dual theorem applies to the following dual programs:

min z
$$\max \sum_{\alpha} d_{\alpha} \eta_{\alpha} + \sum_{i} c_{i} \lambda_{i}$$
subject to $z - u^{T}Q_{\alpha} \ge d_{\alpha}$ subject to $\sum_{\alpha} \eta_{\alpha} = 1$

$$-\sum_{\alpha} Q_{\alpha} \eta_{\alpha} + \sum_{i} P_{i} \lambda_{i} = 0$$

$$\eta_{\alpha}, \lambda_{i} \ge 0.$$

Complete generality may now be obtained since an arbitrary semi-infinite program may be replaced by a Haar program according to the following observation:

THEOREM 6. The canonical closure $u^T P_i \ge c_i$, $i \in \hat{I}$ of the system $u^T P_i \ge c_i$, $i \in I$, has precisely the same set of solutions $\{u\}$, where $\hat{I} \supseteq I$

denotes the increased index set to index limit points of the (P_i, c_i) not indexed by I.

REFERENCES

- 1. A. Charnes and W. W. Cooper, Management models and industrial applications of linear programming, Vols. I and II, Wiley, New York, 1961.
- 2. R. J. Duffin, Dual programs and minimum cost, J. Soc. Indust. Appl. Math. 10 (1962), 119-123.
- 3. E. Eisenberg, Duality in homogeneous programming, Proc. Amer. Math. Soc. 12 (1961), 783-787.
 - 4. A. Haar, Über lineare Ungleichungen, Acta. Math. Szeged 2 (1924), 1-14.
- 5. H. W. Kuhn and A. W. Tucker, *Non-linear programming*, Proc. 2nd Berkeley Sympos. Math. Statist. Prob., 1950, pp. 481-492, Univ. of California Press, Berkeley, Calif., 1951.

NORTHWESTERN UNIVERSITY AND CARNEGIE INSTITUTE OF TECHNOLOGY