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1. Introduction. This note is devoted to proof and application of 
estimates of the form 

(1.1) W < m 

X r f i D"u\*e*«dx g Ki f \ P(x, D)u\2e2^dx 
x\<m J J 

+ K2 X) r II 1?u\ e T dx, u G C*(û), r > ro, 
\a\<m-l J 

where P is a linear differential operator of order m in an open set 12 
in Rn and <£ is a fixed function. (For all other notations we refer to 
Hörmander [4].) From the estimate (1.1) with Z2 = 0we obtain theo­
rems on uniqueness for the Cauchy problem for the operator P(x, D) 
by means of a classical method of Carleman [2]. These extend the 
results of Calderón [ l ] . Using the estimate (1.1) with an arbitrary 
constant K% we can prove existence theorems for the differential equa­
tion Pipe, D)u—f which improve those of Hörmander [3]. The esti­
mate (1.1) also implies results on unique continuation of singularities of 
solutions of the differential equation P{x} D)u — 0 such as have been 
given by John [ó] and Malgrange [8] for operators with constant 
coefficients. For the importance of such results in connection with 
existence theorems for the differential equation P(x, D)u=f when ƒ is 
an arbitrary distribution, as well as for all details of proof, we refer 
the reader to Hörmander [5], 

2. The a priori estimate (1.1). Let all coefficients of P be in L00 

and those of the principal part Pm be in C1. Also assume that 4> is in 
C2 and write 

P~\*> Ö = dPm(x, Ö/3&; PmÀ*, Ö = dPm(x, Q/dxj. 

THEOREM 2.1. Let iV==grad 4>{x) where # £ Q and let Ç = %+iaN, with 
%ÇzRn and OT^CTG^I, satisfy the characteristic equation 

(2.1) Pm(xA) = 0. 

If (1.1) is valid, it then follows that 

1 This work was supported by NSF research grants G-14362 and G-10093 at 
Madison, Wisconsin. A summary of the results was given at the AMS conference on 
Functional Analysis at Stanford in August 1961. 
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f h"- 1 * - ÜT2<r2( I f I2 + <r2)™-2 £ 2JTi{ E - ^ - Piy>(x, flP.'C*, f) 

(2.2) 

+ (2*r) * E CP«.*(*, i O i ^ f o f) - ^ % , f )^ .*(« , f))} , 

when the left-hand side is positive. 

This follows by applying (1.1) to functions of the form 

u(x) = exp(ÎTw(x)/a)i/(xT1/2) 

where w(x) = (x, f ) + 0 ( | # | 2 ) when x—»0. When r—>°o a differential 
inequality for \f/ is obtained which leads to (2.2). (A similar but less 
precise discussion occurs in Hörmander [4, pp. 216-217].) 

Note that (2.2) is applicable for every f satisfying (2.1) if X2 = 0, 
but only for nearly real f if K2 is large. An elementary algebraic dis­
cussion shows that Theorem 2.1 implies 

COROLLARY 2.1. Let the assumptions of Theorem 2.1 be fulfilled and 
assume that Pm has real coefficients. If x<~z& and 0 ^ £ £ P n is a solution 
of the equations 

JUL a) 

(2.3) Pm(x, Q = £ Pm (*, Qdt/dxj = 0 
i 

but P$(x, £) 7^0 for some j , it follows that 

I {|,<"-1)
 £2KA Z d^/dxfixt PU2 (x, QP*\x, Ö 

(2.4) n ' " 

+ S (PZ(X, &P»\», & - Pmj(x, $)PT\x, &)d4>/dx\ . 

The geometric significance of the positivity of the right-hand side 
of (2.4) is that the restriction of <j> to any real bicharacteristic curve 
has a positive second derivative where the first derivative vanishes. 

The conditions (2.2) and (2.4) are nearly sufficient for the validity 
of (1.1). For simplicity in statements we limit ourselves here to the 
case when Pm has real coefficients ; if Pm does not have real coefficients 
and is not elliptic, we need the same additional hypothesis as in 
Theorem 4.3 of Hörmander [3]. 

THEOREM 2.2. Let SI be a bounded open set, <t> a real valued f unction 
in C°°(0) with grad <^(x)?^0 when xGfi, and P(xt D) a differential 
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operator of order m with bounded measurable coefficients such that the 
principal part Pm(x} D) has real coefficients belonging to Cl(Çi). Assume 
further that 

È d2<l>/dXjdxkPn\x, QP»\x, 0 

(2.5) 

+ Ê (P*i(*, QPH\x, & - PmAx, &P™ (*, 8) ô*/*fc > 0 

if xÇzSL and 0 5^£Gi?n satisfy the characteristic equation Pm(x, £) = 0 awd 

(2.6) i P . f e Ö W / ^ - O . 
l 

Then there is a constant K such that when r is sufficiently large 

X T2<™-I«I)-I f | D*u\*e*+dx 

£ if ƒ { | P{x, D)u\2 + r2m_11 u \'}e*dx, u G C? (0). 

|a|<m 

(2.7) 

THEOREM 2.3. Assume that, in addition to the hypotheses of Theorem 
2.2, we have 

£ d 4/dXjdXMPÏ (X, t)Pm {X} f) 

(2.8) 

+ (2fT) * È (*».*(*, D ^ ' C * . f) - Pm\», t)Pm*(x, f)) > 0 
1 

*ƒ f — Ç+ir grad <K#), Wtó #GQ, £G-Rn a^d O^rG-Ri, satisfies the 
characteristic equation Pm(x, f) = 0. ZTtén there is a constant K such 
that for sufficiently large r 

(2.9) M<m 

« G Co (0). 

It is sufficient to prove these theorems locally assuming that <j> is 
a linear function, (f>(x) = (x, N) with a constant JV. We then start with 
the trivial estimate, where v(x) —u(x)eT<iCtN\ 
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f I Pm(x, D)u\2e2^N)dx = j J Pm(x, D + irN)v\2dx 

è ƒ { I PmO, D + irN)v\2 - j Pm(x, D - irN)v\2}dx. 

In the right-hand side it is possible to make an integration by parts 
so that only derivatives of v of order g ra —1 occur afterwards. The 
error committed in fixing the argument in the coefficients of this form 
can then be estimated by means of derivatives of v of order g w - 1 
and the estimate (1.1) can thus be obtained by means of Fourier 
transforms in a way similar to the standard estimates for elliptic 
operators. 

3. Uniqueness of the Cauchy problem. From Theorem 2.3 and the 
usual argument of Carleman [2 ] we obtain 

THEOREM 3.1. Let P(x, D) be a differential operator of order m with 
bounded measurable coefficients in some open neighbourhood S2 of a point 
x°y and assume that the coefficients of Pm are in Cl and are real. Let <t> 
be a real-valued function in C2 such that iV° = grad <j>(x°) 5*0 and 

J2 à <t>/dXjdxh Pi (X, f)Pm (xy f) 

(3.1) '•*-1 

+ (2*T) S (Pm.h(*,£)Pm (*,f) - Pm (*, f)-?».*(*, f)) > 0 
1 

if x = x° and 0?^f = £+iriVro with %€zRn and rÇiR\ is a solution of 

(3.2) Pm(x\ f) = 0, J2 PmW, Ï)NÏ = 0. 
i 

If wGCm(l!î) satisfies the equation P(x, D)u = 0 and u = 0 when #(#) 
><j>(x°), it then follows that u = 0 in a neighbourhood of #°. 

Note that the left hand side of (3.1) is a polynomial in £ and r since 
the coefficients of Pm are real. Hence it makes sense also if r = 0. 

The hypothesis of Calderón [ l ] is that (3.2) has no solution f ?*0. 
Counterexamples due to P. Cohen show that the convexity assump­
tion (3.1) is vital a t least as far as real solutions f of (3.2) are con­
cerned. 

4. Existence theorems. Let H(S) be the space of all distributions 
uG§>'(Rn) such that 

(4.1) H|2
(.) - ( 2 * r ƒ | *(© |2(1 + | È | V « < co. 
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The methods of §6 in Hörmander [3] can be used to show that it is 
possible to pass from the L2 norms in (1.1) to H(8) norms for an arbi-
tary real s. (The possibility to choose the parameter r large is very 
important here.) We thus obtain the following theorem where the 
existence statement follows by duality. 

THEOREM 4.1. Let P be a differential operator of order m with C00 

coefficients and let <j> be a C™ function such that (1.1) is valid, at least for 
all u with support in fixed compact subsets of Q,. If u is a distribution 
with compact support in Ö such that P(x, D)u — 0, it then follows that 
UÇZCQ($Ï). The set of such f unctions u with support in a fixed compact 
subset of Q is finite dimensional. Let £2' be a relatively compact open sub­
set of 0 and fÇzH(s). If 

m = o 
for every VÇZCQ(Q) with support in Q! such that P(x, D)v = Q, it then 
follows that one can find uÇzH(8+m-\) such that lP(x, D)u=f in Q'. Here 
' P is the adjoint of P. 

Thus we have a local existence theorem for every P satisfying the 
assumptions of Theorem 2.2 for some <£. In view of the methods of 
Malgrange [7], Theorems 3.1 and 4.1 together give global existence 
theorems for the differential equation 'P(x, D)u—f if ƒ is an arbitrary 
distribution of finite order and the boundary of 0 satisfies the con­
dition in Theorem 3.1. 

5. Unique continuation of singularities. From the estimate (1.1) 
we can also obtain the following result. 

THEOREM 5.1. Let P be a differential operator of order m with C00 

coefficients and real coefficients in the principal part, defined in an open 
neighbourhood Q of a point x°. Let cj> be a function in C2(Q) such that 
grad <t>(x°) 5*0 and (2.5) is valid when x = x° for every real £5^0 satisfy­
ing the characteristic equation Pm(x, £) = 0 and (2.6). If ^(E3y(Œ) and 

(i) u G C"(£2+) where 12+ = {x; x G ft, 4>(x) > <t>(x0)} 

(ii) P(x, D)u=feC"(Q), 

it then follows that uÇzC^iiï') in a neighbourhood Q' of x°. 

If P has constant coefficients and <f> is strictly convex, this result is 
due to Malgrange [8] and John [6], but for other functions <j> the re­
sult is new even for the wave equation. That the convexity of </> along 
bicharacteristics which is assumed in Theorem 5.1 is essential follows 
from an example of Zerner [9] (which can also easily be extended). 
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The fairly technical proof of Theorem 5.1 proceeds as follows. We 
may assume that 4>(x) ~xn. Using the methods of §§5-6 in Horman-
der [3] we can then replace the L2 norms in (1.1) by norms of the 
kind 

I |p(#n)||(aa;rrf-&)^#n 

where a and b are constants and ||w(ff»)||(t) is the norm (4.1) of the 
function u of when xn is fixed. If we apply these estimates 
to the function u in Theorem 5.1, after multiplication by a function 
in C"(ft), the desired result follows. 
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